
The following notes are based on those of Tom Marley’s lecture notes from a course on local cohomology in the
summer 1999.

1. Refresher on Injective Modules

Recall the following proposition from 902:

Proposition 1.1. If E is an injective R−modules and S is an R−algebra, then HomR(S,E) is an injective
S−module.

In particular, the proposition shows for an ideal I of R and an injective R−module E that (0 :E I) ∼= HomR(R/I,E)
is an injective R/I−module.

Proposition 1.2. If M is torsion-free and divisible then M is injective.

Proof. Consider the maps

M

0 // I

φ

OO

// R

Let i ∈ I \ {0}. Since M is divisible, there exists x ∈ M such that φ(i) = ix. Let i′ ∈ I \ {0}. Then φ(ii′) = iφ(i′) =
i′φ(i) = i′ix. As M is torsion-free, φ(i′) = i′x. Define φ̃ : R → M by φ̃(r) = rx. ¤

Corollary 1.3. If R is a domain then Q(R) is an injective R−module.

2. Definition of Local Cohomology

Definition. Let R be a ring, I an ideal, and M an R−module. Define

ΓI(M) := ∪∞n≥1(0 :M In) = {m ∈ M |Inm = 0 for some n}.

Let f : M → N be an R−linear map. Note that f(ΓI(M)) ⊆ ΓI(N) as for x ∈ ΓI(M) there exists n such that
Inx = 0 and so Inf(x) = f(Inx) = 0. Thus we may define ΓI(f) = f |ΓI(M) : ΓI(M) → ΓI(N), making ΓI(−) into a
covariant functor on the category of R−modules.

Proposition 2.1. ΓI(−) is an additive left exact covariant functor.

Proof. It is clear that ΓI(−) is additive as the map ΓI(f) is just the restriction map. Thus we are left to prove the

left exactness. Suppose 0 → M
f−→ N

g−→ L is exact and apply ΓI(−) : This gives the sequence 0 → ΓI(M)
ΓI(f)−−−→

ΓI(N)
ΓI(g)−−−→ ΓI(L). As ΓI(f) is just the restriction map, we see it is injective. We see ker ΓI(g) ⊇ imΓI(f) as

ΓI(g)ΓI(f) = ΓI(gf) = 0. Lastly, suppose x ∈ ker ΓI(g) ⊆ ker g = im f. Then there exists m ∈ M such that
f(m) = x and n ∈ N such that Inx = 0. So 0 = Inx = Inf(m) = f(Inm) implies Inm = 0 as f is injective. Thus
m ∈ ΓI(M) and x ∈ im ΓI(f). ¤

Definition. The ith local cohomology of M with support in I is Hi
I(M) := RiΓI(M), where RiF is the right

derived functor of a covariant left exact functor.

Remarks.

(1) Hi
I(E) = 0 if E is injective and i > 0.

(2) H0
I (ER(R/p)) =





0, if I 6⊆ p

ER(R/p), if I ⊆ p.

In particular, this says that since every injective module I is a sum of indecomposable injective modules
(that is, I = ⊕p∈Spec RER(R/p)µ(p,I)), we have H0

m(Ii) = ER(R/m)µi(M) where 0 → M → I · is an injective
resolution for M.
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(3) Every element of Hi
I(M) is killed by a power of I.

Proof. Hi
I(M) = H0

I (E·) where E· is an injective resolution. But every element in H0
I (Ei) is killed by a

power of I. ¤

(4) Suppose every element of M is killed by a power of I. Then H0
I (M) = M and Hi

I(M) = 0 for i > 0.

Proof. Clearly H0
I (M) = ΓI(M) = M. For the latter equality, we first prove the following claim.

Claim. If µi(p,M) > 0 then p ⊇ I.

Proof. Suppose not. Let 0 → M → J · be a minimal injective resolution of M. Then 0 → Mp → J ·p
is minimal. Since p 6⊆ J, we have Mp = 0 and thus 0 → J ·p is minimal. As each J i is injective,
we see 0 → J ·p is split exact. Thus

HomRp(k(p), J i−1
p ) 0−→ HomRp(k(p), J i

p)
0−→ HomRp(k(p), J i+1

p )

is exact and so HomRp(k(p), J i
p) = 0, a contradiction.

Thus 0 → ΓI(M) → ΓI(J ·) is exact and Hi
I(M) = 0 for i > 0. ¤

(5) Let R be Noetherian, M a finitely generated R−module. Then depthI M = min{i|Hi
I(M) 6= 0}.

Proof. Induct on depthI M. If depthI(M) = 0, then I ⊆ Z(M) and so I ⊆ p := (0 : x) for x 6= 0. So
Ix = 0 which implies H0

I (M) = ΓI(M) 6= 0. So suppose t = depthI M > 0. Then I contains a nonzero-
divisor on M and so H0

I (M) = 0. Let x ∈ I be a nonzero-divisor on M. Then we have the exact sequence
0 → M

x−→ M → M/xM → 0. As depthI M/xM = depthI M − 1 = t− 1, inductive gives J i
I(M/xM) = 0 for

i < t− 1 and 0 = Ht−1
i (M/xM) 6= 0. So we have

Hi−1
I (M/xM) → Hi

i (M) x−→ Hi
I(M)

for i− 1 < t− 1. Since Hi
I(M) is killed by some power of x, we have Hi

I(M) = 0 for i < t. If i = t, we have
0 = Ht−1

I (M) → Ht−1
I (M/xM) → Ht

I(M) where the middle term is nonzero. Thus Ht
I(M) 6= 0. ¤

Corollary 2.2. Let (R,m) be local. Then R is Cohen Macaulay if and only if Hi
m(R) = 0 for all i < dim R.

Corollary 2.3. Let (R,m) be local. Then R is Gorenstein if and only if

Hi
m(R) =





0, i 6= dim R

ER(R/m), i = dim R
.

Proof. Let I · be a minimal injective resolution of R. By the above remarks, we have H0
m(Ii) = Eµi(R) where

E = ER(R/m).
For the forward direction, suppose R is Gorenstein. Then µi(R) = 0 if i 6= d = dim R and µd(R) = 1. So

H0
m(Ii) = 0 for i 6= d and H0

m(Id) = E. Therefore Hd
m(R) = E and Hi

m(R) = 0 for all i 6= d.

For the backward direction, note R is Cohen Macaulay by the previous corollary. So Exti
R(R/m,M) = 0 for

all i < d, which implies µi(R) = 0 for all i < d. Thus it is enough to show µd(R) = 1. Consider H0
m(I ·) :

0 → Eµd(R) → Eµd+1(R) → · · · . By assumption,

0 // Hd
m(R) // Eµd(R)

φ

""EE
EE

EE
EE

E
// Eµd+1(R) // · · ·

C

$$IIIIIIIIII
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0
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0

is exact. As Hd
m(R) ∼= E, we have Eµd(R) ∼= Hd

m(R)⊕C. Thus C ∼= Eµd(R)−1. Hence µd(R) = 1 if and only if C = 0.



Apply HomR(R/m,−) :

(1) HomR(R/m, Eµd(R))
φ̃

))SSSSSSSSSSSSSS
// HomR(R/m, Eµd+1(R)) // · · ·

HomR(R/m,C)
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Note that φ̃ is surjective as the map φ splits.
In general, note that (0 :N m) = HomR(R/m,N) ∼= HomR(R/m, H0

m(N)) = (0 :H0
m(N) m) naturally. Hence we

have the following commutative diagram

HomR(R/m, Eµd(R)) //

∼=
²²

HomR(R/m, Eµd+1(R))

∼=
²²

HomR(R/m, H0
m(Id)) //

∼=
²²

HomR(R/m, H0
m(Id+1))

∼=
²²

HomR(R/m, Id) // HomR(R/m, Id+1)

where the last map is zero as I · is minimal. Thus, by diagram (1) we see HomR(R/m, C) = 0. But HomR(R/m, C) =
HomR(R/m, Eµd(R)−1) = Kµd(R)−1. Therefore µd(R) = 1 and R is Gorenstein. ¤

Proposition 2.4. Let R be Noetherian. Then for any ideal I of R we have ΓI = Γ√I . In particular, Hi
I(M) =

Hi√
I
(M) for all i ≥ 0 and for all R−modules M.

Proof. As R is Noetherian,
√

I is finitely generated. Thus there exists n such that (
√

I)n ⊆ I. Let x ∈ Γ√I(M).
Then there exists k such that (

√
I)kx = 0, which implies Ikx ⊆ (

√
I)kx = 0. Therefore x ∈ ΓI(M).

Let x ∈ ΓI(M). Then there exists k such that Ikx = 0. Since (
√

I)n ⊆ I, (
√

I)kn ⊆ Ik and so (
√

I)knx = 0.

Therefore x ∈ Γ√I(M). ¤

Proposition 2.5. Let R be Noetherian, S a multiplicatively closed set, M an R−module, and I an ideal. Then
Hi

I(M)S
∼= Hi

IS
(MS) for all i.

Proof. Recall that Hi
I(M)S is computed by taking an injective resolution of M, applying H0

I (−), taking homology
and then localizing. As localization is flat, it commutes with taking homology. Thus it is enough to show localization
commutes with the functor H0

I (−), that is, H0
I (M)X = H0

IS
(MS). Clearly H0

I (M)S ⊆ H0
IS

(MS). Suppose (IS)n ·
(m

s ) = 0. As I is finitely generated there exists s′ ∈ S such that s′Inm = 0 This implies s′m ∈ H0
I (M) and so

m
s ∈ H0

I (M)S . ¤

Proposition 2.6. Let (R, m) be a local ring, M a finitely generated R−module. Then Hi
m(M) is Artinian for all i.

Proof. Let 0 → M → I · be a minimal injective resolution of M. As H0
m(Ii) = ER(R/m)µi(M), µi(M) < ∞, and

ER(R/m) is Artinian, we see H0
m(Ii) is Artinian and Hi

m(M) is a subquotient of H0
m(Ii). ¤

Proposition 2.7. Let I be an ideal, M an R−module. Then Hi
I(M) ∼= lim−→Exti

R(R/In, M).

Proof. For i = 0, note that HomR(R/In,M) ∼= (0 :M In). ¤

3. “A Note on Factorial Rings” Murthy, 1964

The goal of this section is to prove the following theorem, but to do so we must first prove a series of lemmas.



Theorem 3.1. Let A be a UFD which is a quotient of a regular local ring. Then TFAE

(1) A is Cohen Macaulay
(2) A is Gorenstein

From now on, let B be a regular local ring, n = dim B, A = B/p where p ∈ Spec B and r = ht p.

Lemma 3.2. Let M be a Cohen Macaulay B−module and h = pdB M. Then Exti
B(M,B) = 0 for all i < h and

M ′ = Exth
B(M, B) is Cohen Macaulay with pdB M = h.

Proof. See Proposition 3.3.3 in BH, or my reading course notes. ¤

Lemma 3.3. Let M be a finitely generated B−module. Then p ∈ AssM implies pdB M ≥ ht p.

Proof. Since B is a regular local ring, pdB M = dim B−depthB M and ht p = dim B−dim B/p. Thus pdB M ≥ ht p

if and only if depthB M ≤ dim B/p. But if p ∈ Ass M, this inequality holds. ¤

Lemma 3.4. Suppose A = B/p is a Cohen Macaulay ring. Then M := Extr
B(A,B) ∼= A or an unmixed height one

ideal.

Proof. Recall an ideal I is unmixed if every member of AssB B/I has the same height. We will prove by induction
on ` = dim A = dimB/p = n − r. First suppose ` = 0. Then p = mB and so M = Extn

B(B/m, B) ∼= B/m = A.

Now suppose ` > 0. Then p 6= mB . Let q = q/p ∈ Spec A where p ( q ( mB . We have Mq = Extr
Bq

(Aq, Bq).
By induction, Mq is a torsion-free Aq−module of rank 1. Thus q 6⊆ AssA M. So AssA M ⊆ {(0), m}. Since A is
Cohen Macaulay, depthA = dim A = `. Then pdB A = dim B − depth A = dim B − dim A = n − ` < dim B.

By the lemma above, M = Extr
B(A, B) is Cohen Macaulay and pdB M = r. Hence depthA M = depthB M =

dim B − pdB M = dim B − r > 0. Therefore m 6⊆ Ass M. Hence Ass M = {(0)} and M is torsion free. Now
M(0) = Mp = Extr

B(A,B)p = Extr
Bp

(k(p), Bp) = k(p). So rankA M = 1. Thus M ∼= I where I ⊆ B is an ideal. If
I = B, then M ∼= A and we are done. So suppose I is proper. We have the following short exact sequences:

(a) 0 → p → B → A → 0
(b) 0 → p → I → Ip → 0 where Ip = I ∼= M

(c) 0 → I → B → B/I → 0

From (a), pdB p = pdA p− 1 = r− 1. We already have pdB M = r and so from (b) and the Horseshoe Lemma we get
pdB I ≤ r. Then by (c) we have pdB B/I ≤ r+1. By the previous lemma, if q ∈ Ass B/I then ht q ≤ pd B/I ≤ r+1.

Therefore I is unmixed of height r + 1. Hence M ∼= I = I/p is unmixed of height 1. ¤

Proof of Theorem 3.1. We need only show that A Cohen Macaulay implies A is Gorenstein. Write A = B/p as in
the theorem. By the last lemma, Extr

B(A,B) ∼= A or I where I is an unmixed ideal of height 1. If Extr
B(A,B) ∼= A,

then we are done as ωA = Extr
B(A,ωB) = Extr

B(A,B) ∼= A. So suppose Extr
B(A,B) ∼= I. Recall that height 1 primes

are principal in a UFD. So I is principal which implies I ∼= A. ¤

4. The Tensor Product of Co-complexes

Let C ·, D· be two co-complexes. Define (C ⊗R D)· by (C ⊗R D)n := ⊕i+j=nCi ⊗R Dj and define a map ∂ on
C ⊗R D as follows: for c⊗ d ∈ Ci ⊗Dj , let ∂(c⊗ d) = ∂c⊗ d + (−1)ic⊗ ∂d. Note here that ∂2 = 0.

Facts.

(1) (C ⊗R D)· ∼= (D ⊗R C)· as complexes.
(2) C ⊗ (D ⊗ E) ∼= (C ⊗D)⊗ E.



Definition. Let x = x1, ..., xn ∈ R. Define the Čech complex on R with respect to x1, ..., xr by

C ·(x1; R) := 0 → R → Rx1 → 0 where r 7→ r
1

C ·(x1, ..., xn;R) := C ·(x1, ..., xn−1; R)⊗R C ·(xn;R)
= ⊗n

i=1C
·(xi; R)

Example. Lets compute C ·(x, y;R) : By the above, we get the sequence

0 → R⊗R
f−→ Rx ⊗R⊕R⊗Ry

g−→ Rx ⊗Ry → 0

where f(1⊗ 1) 7→ 1
1 ⊗ 1⊕ 1⊗ 1

1 , g( 1
1 ⊗ 1, 0) = (−1) 1

1 ⊗ 1
1 , and g(0, 1⊗ 1

1 ) = 1
1 ⊗ 1

1 . Simplifying this, we get

0 → R
f−→ Rx ⊕Ry

g−→ Rxy → 0

where f(1) = (1, 1), g(1, 0) = −1 and g(0, 1) = 1. In general, C ·(x; R) looks like

0 →
0

R → ⊕n
i=1Rxi

→ ⊕i<jRxixj
→ · · · → Rx1···xn

→ 0

where the differentials are the same as the maps in the Koszul co-complex with 1’s in the place of the x′is.

Definition. If M is an R−module, we define C ·(x; M) := C ·(x;R) ⊗R M. The ith Čech cohomology of M is
Hi

x(M) := Hi(C ·(x;M)).

We want to show Hi
x(M) = Hi

(x)(M), that is, the Čech Cohomology and local cohomology for M are the same.
We will start by proving the claim for i = 0 and later show for i ≥ 0.

Lemma 4.1. Let M be an R−module, x = x1, .., xn ∈ R, I = (x). Then H0
x(M) ∼= H0

I (M).

Proof. From the above, C ·(x; M) starts out as 0 → M
∂0−→ ⊕n

i=1Mxi . Now

m ∈ H0
x(M) ⇔ m ∈ ker ∂0

⇔ m
1 = 0 in Mxi for all i

⇔ there exists t ≥ 0 such that xt
im = 0 for all i

⇔ there exists t ≥ 0 such that Itm = 0
⇔ m ∈ H0

I (M).
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Proposition 4.2. Suppose 0 → L → M → N → 0 is a short exact sequence of R−modules and x = x1, ..., xn ∈ R.

Then there exists a natural long exact sequence

· · · → Hn
x (L) → Hn

x (M) → Hn
x (N) → Hn+1

x (L) → · · ·



Proof. Consider the following commutative diagram with exact rows and columns (the columns are exact as local-
ization is).

0

²²

0

²²

0

²²
0 // L //

²²

⊕Lxi

²²

// · · · // Lx1···xn
//

²²

0

0 // M //

²²

⊕Mxi

²²

// · · · // Mx1···xn
//

²²

0

0 // N //

²²

⊕Nxi

²²

// · · · // Nx1···xn
//

²²

0

0 0 0

This gives us the short exact sequence of co-complexes: 0 → C ·(x; L) → C ·(x;M) → C ·(x; N) → 0. The long exact
sequence now follows. ¤

Proposition 4.3. Let M be an R−module and x = x1, ..., xn ∈ R. Let y ∈ R. Then there exists a long exact sequence

· · ·Hi
x,y(M) → Hi

x(M)
(−1)i

−−−→ Hi
x(M)y → Hi+1

x,y (M) → · · · .

Proof. Let C · = C ·(x; M) and C ·(y) = C ·(x, y; M) = C ·(x;M)⊗ C ·(y; R). Then C ·(y) = C · ⊗ (0 →
0

R →
1

Ry → 0).
Hence C ·(y)n = Cn−1 ⊗R Ry ⊕ Cn ⊗R R ∼= Cn−1

y ⊕R Cn. Consider the following commutative diagram.

This yields the short exact sequence of co-complexes: 0 → C ·y[−1] → C ·(y) → C · → 0, which gives the long exact
sequence

· · · // Hi−1
x (M)y

// Hi
x,y(M) // Hi

x(M) ∂ // Hi
x(M)y

// · · ·

Hi−1(C ·y) ∼= Hi−1(C ·(y))

OO

where ∂ is the connecting homomorphism given by the snake lemma applied to the previous diagram. It is clear that
∂ = (−1)n. ¤

Corollary 4.4. Let M be an R−module and x1, .., xn ∈ R. Suppose some xi acts as a unit on M (that is, M is an
Rxi−module). Then Hi

x(M) = 0 for all i.

Proof. For i = 0, it is clear that Hi
x(M) = H0

(x)(M) = 0. So suppose i > 0. As C ·(x;M) = [⊗n
i=1C

·(xi;R)] ⊗R M,

we may assume without loss of generality that xn acts as a unit on M. Let x′ = x1, ..., xn−1. By the proposition,

there exists a long exact sequence · · · → Hi
x(M) → Hi

x′(M)
(−1)i

−−−→ Hi
x′(M)xn → · · · . As M is an Rxn−module, each

module in C ·(x′;M) is an Rxn−module. Hence the map Hi
x′(M)

(−1)i

−−−→ Hi
x′(M)xn defined by m 7→ (−1)i m

1 is an
isomorphism for all i. Therefore, Hi

x(M) = 0 for all i. ¤

Proposition 4.5. Let R be a Noetherian ring, x = x1, ..., xn ∈ R. For any injective R−module I, Hi
x(I) = 0 for all

i ≥ 1.



Proof. As I = ⊕ER(R/p), it is enough to show the proposition in the case E = ER(R/p) for some p ∈ Spec R.

Case 1. x1, .., xn ∈ p. As every element in E is annihilated by a power of p, Exi = 0 for all i. Thus
C ·(x;E) = 0 → E → 0 → 0 → · · · . So H0

x(E) = E and Hi
x(E) = 0 for all i ≥ 1.

Case 2. There exists xi 6∈ p. Then xi acts as a unit on E and hence Hi
x(E) = 0 for all i ≥ 1 by the

corollary.
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Theorem 4.6. Let R be Noetherian, I = (x1, ..., xn), M any R−module. Then there exists a natural isomorphism
Hi

x(M) ∼= Hi
I(M) for all i ≥ 0.

Proof. We will induct on i. We have already shown the claim for i = 0. So suppose i > 0. Let E = ER(M) and
consider the short exact sequence 0 → M → E → C → 0. Then there exists a long exact sequence

· · · // Hi−1
x (E) //

∼=
²²

Hi−1
x (C) //

∼=
²²

Hu
x (M) //

²²Â
Â
Â

Hi
x(E) = 0

· · · // Hi−1
I (E) // Hi−1

I (C) // Hi
I(M) // Hi

I(E) = 0

By the Five Lemma, Hi
x(M) ∼= Hi

I(M). ¤

5. Local Cohomology and Arithmetic Rank

Definition. If I is an ideal of R, the arithmetic rank of I, denoted ara(I), is defined by

ara(I) = min{n ≥ 0| there exists a1, ..., an such that
√

I =
√

(a1, ..., an)}.

Corollary 5.1. Let I be an ideal of a Noetherian ring R and M an R−module. Then Hi
I(M) = 0 for all i > ara(I).

Proof. Let t = ara(I). Then there exists a1, ..., at ∈ R such that
√

(a1, ..., at) =
√

I. Then

Hi
I(M) ∼= Hi√

I
(M) ∼= Hi√

(a)
(M) ∼= Hi

(a)(M) = Hi
a(M) = 0

for i > t. ¤

Definition. Let R be a Cohen Macaulay local ring and p a prime of height h. Then p is called a set theoretic

complete intersection if ara(p) = h.

Corollary 5.2. Let R be Cohen Macaulay, ht p = h and Hh+1
p (R) 6= 0. Then p is not a s.t.c.i.

Example. Let R = k[xij ]1≤i≤2,1≤j≤3 with char k = 0. Let I = I2((xij)), the ideal of 2 × 2 minors of the matrix
(xij). Then I is prime of height 2. Hochster proved that H3

I (R) 6= 0 and so I is not a s.t.c.i.

Lemma 5.3. Let R be a Noetherian ring, I an ideal. For any integer r ≥ 1, there exists f1, ..., fr ∈ I such that for
any prime p with ht p ≤ r − 1 we have p ⊇ I if and only if p ⊇ (f1, ..., fr).

Proof. We will induct on r. If r = 1, choose f1 ∈ I \ ∪Pi where the union ranges over all primes with ht pi = 0 and
I 6⊆ Pi. Now suppose r > 1. By induction, we have f1, ..., fr−1 ∈ I such that if ht p ≤ r − 2 then p ⊇ (f1, ..., fr−1) if
and only if p ⊇ I. Choose fr ∈ I \ ∪pi where now the union ranges over all primes pi minimal over (f1, .., fr−1) with
ht pi = r − 1 and I 6⊆ pi.

Claim. (f1, ..., fr) works.
Proof. Let p ⊇ (f1, ..., fr) with ht p ≤ r − 1. If ht p ≤ r − 2, then we are done by induction. So
suppose ht p = r − 1. If p is not minimal over (f1, ..., fr−1), then there exists a prime q with
p ) q ⊇ (f1, ..., fr−1). So ht q ≤ r − 2 and q ⊇ I. If p is minimal over (f1, ..., fr−1) then I ⊆ p by
choice of fr.
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Theorem 5.4. Let R be a Noetherian ring of dimension d and I an ideal of R. Then ara(I) ≤ d + 1. If R is local,
then ara(I) ≤ d.

Proof. By the lemma, there exists f1, ..., fd+1 ∈ I such that for all p ∈ Spec R, p ⊇ I if and only if p ⊇ (f1, ..., fd+1).
Hence

√
I =

√
(f1, ..., fd+1). If (R, m) is local, we know there exists f1, ..., fd ∈ I such that for all p 6= m we have

p ⊃ (f1, ..., fd) if and only if p ⊃ I. Since m contains both ideals,
√

I =
√

(f1, ..., fd). ¤

Theorem 5.5. Let R be a Noetherian ring of dimension d, I an ideal, and M an R−module. Then Hi
I(M) = 0 for

all i > d.

Proof. If R is local, then ara(I) ≤ d. Otherwise, let p ∈ Spec R. Then for i > d we have Hi
I(M)p

∼= Hi
IRp

(Mp) = 0
as dim Rp ≤ d. Hence Hi

I(M) = 0 for all i > d. ¤

Theorem 5.6 (Change of Rings Principle). Let S be an R−algebra, where R and S are Noetherian. Let I be
an ideal of R and M an S−module. Then Hi

I(M) ∼= Hi
IS(M) for all i where we consider M as an R−module on the

left hand side and as an S−module on the right hand side.

Proof. Let I = (x1, ..., xn)R. Then, consider the Čech complex, we have

C ·R(x; M) = C ·(x; R)⊗M = C ·(x; R)⊗R (S ⊗S M) = C ·(x;S)⊗S M = C ·S(x; M).

Thus Hi
I(M) = Hi

x(M) = Hi
xS(M) = Hi

IS(M). ¤

Corollary 5.7. Let R be a Noetherian ring, I an ideal of R and M a finite R−module. Then Hi
I(M) = 0 for all

i > dim M.

Proof. Recall dimM = dim R/ AnnR M and M is an R/AnnR M−module. Thus Hi
I(M) ∼= Hi

IS(M) where S =
R/ AnnR M. Hence Hi

IS(M) = 0 for i > dim S. ¤

Proposition 5.8. Let S be a flat R−algebra with R, S Noetherian. Let I be an ideal of R and M an R−module.
Then Hi

I(M)⊗R S ∼= Hi
IS(M ⊗R S) for all i ≥ 0.

Proof. We have
Hi

I(M)⊗R S = Hi(C ·(x;M))⊗R S where I = (x)R
∼= Hi(C ·(x;M)⊗R S) (since S is flat, −⊗R S is exact)
∼= Hi(C ·(xS; M ⊗R S))
= Hi

xS(M ⊗R S)
= Hi

IS(M ⊗R S).

¤

Corollary 5.9. Let (R, m) local, I an ideal, M a finite R−module. Let R̂ be the m−adic completion of R. Then
Hi

I(M)⊗R R̂ ∼= Hi
IR̂

(M ⊗R R̂) ∼= Hi
IR̂

(M̂) for all i.

Proposition 5.10. Let R be Noetherian, M be an R−module, and I = (x1, ..., xn) an ideal. Then Hn
I (M) ∼=

Mx1···xn/
∑n

i=1 Mx1···x̂i···xn .

Proof. Recall that Hn
I (M) is the homology of ⊕iMx1···x̂i···xn

φ−→ Mx1···xn → 0 where φ(0, ..., w, ..., 0) = (−1)iw.

Therefore, imφ =
∑

i Mx1···x̂i···xn ⊆ Mx1···xn . Hence Hn
I (M) = Mx1···xn/

∑
Mx1···x̂i···xn . ¤

Corollary 5.11. Let (R, m) be a Gorenstein local ring and x1, ..., xd be a system of parameters for R. Then
ER(R/m) ∼= Rx1···xd

/
∑

i Rx1···x̂i···xd
.

Proof. Hd
(x)(R) = Hd

m(R) ∼= ER(R/m). ¤

Example. Let R = k[x1, ..., xd] for a field k and m = (x1, ..., xd). Then ER(R/m) = Rx1···xd
/

∑
Rx1···x̂i···xd

∼=
⊕i1,...,id∈Ndkx−i1

1 · · ·x−id

d .



6. Direct Limits and Koszul Cohomology

Theorem 6.1. Let I ⊆ R, M an R−module. Then Hi
I(M) ∼= lim−→Exti

R(R/In,M) for all i.

Proof. First note that Exti
R(−,M) applied to R/In+2 → R/In+1 → R/In → · · · gives the directed system

Exti
R(R/In,M) → Exti

R(R/In+1, M) → Exti
R(R/In+2,M) → · · · . In the i = 0 case, we have HomR(R/In,M) ∼=

(0 :M In). So lim−→HomR(R/In,M) ∼= lim−→(0 :M In) ∼= ∪n(0 :M In) = H0
I (M). In general, let E· be an injective

resolution of M. Then, as lim−→ is exact, we have

lim−→Exti
R(R/In,M) = lim−→Hi(HomR(R/In, E·))

∼= Hi(lim−→HomR(R/In, E·))
∼= Hi(H0

I (E·))
= Hi

I(M).

¤

Definition. Let x = x1, ..., xn ∈ R. Define the Koszul co-complex on R with respect to x as follows:

n = 1 : K ·(x1; R) := 0 →
0

R
x1−→

1

R → 0
n > 1 : K ·( x−→; R) := K ·(x1, ..., xn−1; R)⊗K ·(xn;R)

= ⊗n
i=1K

·(xi;R)

which looks like

0 →
0

R
1 7→(x1,...,xn)−−−−−−−−→

1

R → R(n
2) → · · · → Rn ei 7→±xi−−−−−→

n

R → 0

This is essentially the same as K·(x; R), the Koszul complex, except it is written as a co-complex and the signs
in the maps differ. If M is an R−module, define the Koszul co-complex on M with respect to x−→ by K ·(x;M) =
K ·(x;R)⊗R M. Then ith Koszul cohomology on M with respect to x is Hi(x; M) = Hi(K ·(x; M)).

Proposition 6.2. Let x = x1, ..., xn ∈ R, M an R−module. Then

(1) H0(x;M) ∼= (0 :M (x)).
(2) Hn(x; M) ∼= M/(x)M.

(3) If x1, ..., xn is an M−regular sequence, then Hi(x;M) = 0 for all i < n.

Definition. Let M = {Mα}, N = {Nα} be directed systems of R−modules. Define a directed system M ⊗R N by

(M ⊗R N)α = Mα ⊗Nα and Mα ⊗Nα

Mα
β ⊗Nα

β−−−−−−→ Mβ ⊗Nβ for α ≤ β.

Lemma 6.3. lim−→(Mα ⊗Nα) ∼= lim−→Mα ⊗ lim−→Nα.

Definition. Let {C ·α} be a directed system of co-complexes of R−modules, that is,

· · · // Cn
α

//

²²

Cn+1
α

//

²²

Cn+2
α

//

²²

· · ·

· · · // Cn
β

// Cn+1
β

// Cn+2
β

// · · ·

for α ≤ β. Then lim−→C ·α is a co-complex:

· · · → lim−→Cn
α → lim−→Cn+1

α → lim−→Cn+2
α → · · · .

Definition. Let C ·, D· be directed systems of co-complexes of R−modules. Define a directed system C · ⊗R Di by

(C · ⊗R D·)n
α

²²

∑
i+j=n Ci

α ⊗Dj
α

²²
(C ⊗R D)n+1

β

∑
i+j=n Ci

β ⊗Dj
β



Fact. lim−→(C · ⊗D·)α
∼= (lim−→C ·α)⊗ (lim−→D·

α).

Recall for x ∈ R that lim−→(R x−→ R
x−→ R

x−→ · · · ) ∼= Rx. As a corollary to this, one can prove lim−→(M x−→ M
x−→ M

x−→
· · · ) ∼= Mx.

Definition. Let x = x1, ..., xn ∈ R, M an R−module. Define a directed system K ·(xt; M) as follows:

n = 1 K ·(xt; M) := 0 // M
x //

=

²²

M //

x

²²

0

0 // M
x2

//

=

²²

M //

x

²²

0

0 // M
x3

//

=
²²

M //

=
²²

0

...
...

n > 1 K ·(xt; M) := K ·(xt
1, ..., x

t
n−1; M)⊗K ·(xt

n; R)

Theorem 6.4. lim−→K ·(xt; M) ∼= C ·(x; M), the Čech Complex.

Proof. We will prove by induction. Let n = 1. Clearly lim−→(M =−→ M
=−→ M

=−→ · · · ) ∼= M. By the Corollary,

lim−→(M x−→ M
x−→ M

x−→ · · · ) ∼= Mx. One easily checks that the induced map on direct limits is M → Mx defined by
m 7→ m

1 . So suppose n > 1. Then

lim−→K ·(xt; M) = lim−→(K ·(xt
1, ..., x

t
n−1;M)⊗R K ·(xt

n; R)

= (lim−→K ·(xt
1, ..., x

t
n−1;M))⊗R (lim−→K ·(xt

n; R))

= C ·(x1, ..., xn−1; M)⊗ C ·(xn; R)
= C ·(x; M).

¤

Theorem 6.5. Let R be Noetherian, I = (x)R, M an R−module. Then Hi
I(M) ∼= lim−→Hi(xt; M).

Proof. As lim−→ is exact,

Hi
I(M) ∼= Hi

x(M)
∼= Hi(C ·(x; M))
∼= Hi(lim−→K ·(xt; M))
∼= lim−→Hi(K ·(xt; M))

= lim−→Hi(xt;M).

¤

Corollary 6.6. Let R be Noetherian, I = (x1, ..., xn)R, M an R−module. Then Hn
I (M) ∼= lim−→M/(xt

1, ..., x
t
n)M

where M/(xt
1, ..., x

t
n)M x1···xn−−−−→ M/(xt+1

1 , ..., xt+1
n )M.

Remark. Let {In}, {Jn} be two decreasing chains of ideals. We say the chains are cofinal if for all n there exists
k such that Jk ⊆ In, and for all m there exists ` such that I` ⊆ Jm.

If {In} is a descending chain of ideals cofinal with {In} then

H0
I (M) = ∪n(0 :M In) = lim−→HomR(R/In,M).

One can show that Hi
I(M) = lim−→Exti

R(R/In,M).



Theorem 6.7 (Mayer-Vietoris sequence). Let R be a Noetherian ring, I, J ⊆ R, M an R−module. Then there
exists a natural long exact sequence

0 → H0
I+J (M) → H0

I (M)⊕H0
J(M) → H0

I∩J(M) → · · · → Hi
I+J (M) → Hi

I(M)⊕Hi
J(M) → Hi

I∩J(M) → · · · .

Proof. For all n there exists a short exact sequence

0 → R/(In ∩ Jn) → R/In ⊕R/Jn → R/(In + Jn) → 0.

Apply HomR(−,M) to get a long exact sequence

· · · → Exti
R(R/(In + Jn), M) → Exti

R(R/In ⊕R/Jn,M) → Exti
R(R/(In ∩ Jn),M) → · · · .

This forms a directed system of long exact sequences. Take direct limits. It is enough to show {In + Jn} is confinal
with {(I + J)n} and {In ∩ Jn} is cofinal with {(I ∩ J)n}. We know In + Jn ⊆ (I + J)n and (I + J)2n ⊆ In + Jn.

Now (I ∩ J)n ⊆ In ∩ Jn. By the Artin Rees Lemma, there exists k = k(n) such that for all m ≥ k

Im ∩ Jn = Im−k(Ik ∩ Jn) ⊆ Im−kJn.

Therefore, for m ≥ n + k we have

Im ∩ Jm ⊆ Im ∩ Jn ⊆ Im−kJn ⊆ InJn ⊆ (I ∩ J)n. ¤

Proposition 6.8 (Hartshorne). Let (R, m) be a local ring such that depth R ≥ 2. Then U = Spec R − {m} is
connected.

Proof. Assume U is disconnected. Then there exist clopen sets V (I) ∩ U 6= ∅ and V (J) ∩ U 6= ∅ such that

(V (I) ∩ U) ∪ (V (J) ∩ U) = U and V (I) ∩ V (J) ∩ U = ∅.

Notice that the first is true if and only if
√

I ∩ J ⊆ ∪p∈Spec R\{m}p =
√

0 which is if and only if I ∩ J is nilpotent.
The second equality is true if and only if

√
I + J = m as I and J must be proper. Together with V (I) ∩ U 6= ∅ and

V (J) ∩ U 6= ∅, we have neighther I nor J is m−primary or nilpotent.
By Mayer-Vietoris,

0 → H0
I+J(R) → H0

I (R)⊕H0
J(R) → H0

I∩J(R) → H1
I+J(R).

Now
√

I + J = m and depthR ≥ 2, so H0
I+J (R) = H1

I+J = 0. Also H0
I∩J(R) = R as I ∩ J is nilpotent. Therefore

R ∼= H0
I (R) ⊕H0

J (R). As R is local, R is indecomposable. Say H0
I (R) ∼= R, which implies H0

I (R) is generated by a
nonzero-divisor. Thus I is nilpotent, a contradiction. ¤

7. Local Duality

Lemma 7.1 (Flat Resolution Lemma). Let R be a ring, M, N R−modules and F· a flat resolution of M, that
is, each Fi is a flat R−module and · · · → F2 → F1 → F0 → M → 0 is exact. Then TorR

i (M, N) ∼= Hi(F· ⊗R N) for
all i ≥ 0.

Proof. Induct on i. For i = 0, as −⊗R N is right exact we have F1⊗R N → F0⊗R N → M ⊗R N → 0 is exact. Thus
H0(F·⊗R N) = M ⊗R N = TorR

0 (M, N). Now suppose i > 0. Let K0 = ker(F0 → M). Then 0 → K0 → F0 → M → 0
is exact. As F0 is flat, TorR

i (F0, N) = 0 for all i ≥ 1. Therefore

0 → TorR
1 (M, N) → K0 ⊗R N → F0 ⊗R N → M ⊗R N → 0

is exact and TorR
i (M, N) ∼= TorR

i−1(K0, N) for all i ≥ 2.



For i = 1 we have TorR
1 (M, N) = ker(K0 ⊗N → F0 ⊗N) but from the diagram

F2 ⊗N // F1 ⊗N //

%%KKKKKKKKKK
F0 ⊗N

K0 ⊗N

99ssssssssss

onto

%%LLLLLLLLLLL

0

where the bottom sequence is exact we have

ker(K0 ⊗N → F0 ⊗N) ∼= ker(F1 ⊗N/ im(F2 ⊗N) → F0 ⊗N) = H1(F1 ⊗R N).

For i > 1 use the isomorphism TorR
i (M, N) ∼= TorR

i−1(K0, N) for all i ≥ 2 and the fact that · · · → F2 → F1 → K0 → 0
is a flat resolution of K0. ¤

Theorem 7.2 (Local Duality). Let (R, m) be a complete Cohen Macaulay local ring of dimension d. Then for all
finitely generated R−modules M,

Extd−i
R (M, ωR) ∼= Hi

m(M)∨ and Extd−i
R (M, ωR)∨ ∼= Hi

m(M)

for all i where (−)∨ = HomR(−, ER(R/m)).

Proof. We will prove the first isomorphism. The second isomorphism follows using Matlis Duality as Extd−i
R (M, ωR)

is finitely generated and Hi
m(M) is Artinian.

Let x1, ..., xd be a system of parameters for R. Then C ·(x;R) looks like 0 → R → ⊕Rxi → · · · → Rx1···xd
→ 0.

The homology at the ith place is Hi
(x)(R) = Hi

m(R). As R is Cohen Macaulay, Hi
m(R) = 0 for all i < d. Therefore

0 → R → ⊕Rxi → · · · → Rx1···xd
→ Hd

m(R) → 0

is exact. Hence F· = C ·(x; R) is a flat resolution of Hd
m(R) (by letting Fi = Cd−i). Now

Hi
m(M) = Hi(C ·(x; R)⊗R M) = Hd−i(F· ⊗R M) ∼= TorR

d−i(H
d
m(R),M).

Computing this Tor using a free resolution G· of M, we see Hi
m(M) = Hd−i(G· ⊗R Hd

m(R)). Therefore, for all i, we
have

Hi
m(M)∨ = Hd−i(G· ⊗R Hd

m(R))∨

∼= Hd−i((G· ⊗R Hd
m(R))∨) as (−)∨ is exact

∼= Hd−i(HomR(G· ⊗Hd
m(R), E))

∼= Hd−i(HomR(G·,Hd
m(R)∨)) by Hom-⊗ adjointness

∼= Extd−i
R (M, Hd

m(R)∨)).

It is enough to show ωR
∼= Hd

m(R)∨. Note Hd
m(R)∨ is finitely generated by Matlis Duality. Since our above isomor-

phism is true for i, we see Exti
R(M, Hd

m(R)∨) = 0 for i > d and all finite R−modules M. Hence Exti
R(R/p, Hd

m(R)∨) =
0 for all p ∈ Spec R for i > d which implies µi(p,Hd

m(R)∨) = 0 for all p ∈ Spec R for i > d. Thus idR Hd
m(R)∨ < ∞.

Also

Exti
R(R/m, Hd

m(R)∨) = Hd−i
m (R/m)∨ =





0 if 0 ≤ i < d

R/m if i = d
.

Thus depth Hd
m(R)∨ = d and µd(Hd

m(R)∨) = 1. Hence ωR
∼= Hd

m(R)∨. ¤

Remarks. Let (R, m) be a local ring and M an R−module. Let R̂ denote the m−adic completion of R and
E = ER(R/m) = ER̂(R̂/m̂).

(1) HomR̂(M ⊗R R̂, E) ∼= HomR(M, E).



Proof. By Hom-⊗ adjointness, HomR̂(M ⊗R R̂, E) ∼= HomR(M, HomR̂(R̂, E)) ∼= HomR(M, E). ¤

(2) If M is Artinian then M is naturally an R̂−module and M ⊗R R̂ ∼= M.

(3) If M is a finitely generated R−module Hi
m(M) ∼= Hi

mR̂
(M̂) for all i.

Proof. Note Hi
mR̂

(M̂) = Hi
m(M)⊗R R̂ and Hi

m(M) is Artinian. ¤

Theorem 7.3 (Version of Local Duality for Non-Complete Rings). Let (R, m) be a d−dimensional Cohen
Macaulay ring which is the homomorphic image of a Gorenstein ring. Let ωR be the canonical module of R. Then
for all finitely generated R−modules M and all i, Extd−i

R (M,ωR)∨ ∼= Hi
m(M).

Proof.
Extd−i

R (M,ωR)∨) = HomR(Extd−i
R (M,ωR), E)

∼= HomR̂(Extd−i
R (M,ωR)⊗R R̂, E) by Remark 1

∼= HomR̂(Extd−i

R̂
(M̂, ωR̂), E) as ω̂R = ωR̂

∼= Hi
mR̂

(M̂) by the complete case of local duality
∼= Hi

m(M) by Remark 3.

¤

Remark. Let (R,m) be a local Cohen Macaulay ring which has a canonical module. Let K be a finitely generated
R−module. If hatK ∼= ω̂R then K ∼= ωR.

Proof. See Bruns and Herzog Proposition 3.3.14. ¤

Proposition 7.4. Let (R,m) be a Cohen Macaulay local ring which has a canonical module. Write R ∼= S/I where
(S, n) is a Gorenstein local ring and ht I = g. Then ωR

∼= Extg
S(R,S).

Proof. By the remark, it is enough to show Extg
S(R, S)⊗R R̂ ∼= ωR̂ = Hd

mR̂
(R̂)∨. Thus we may assume R and S are

complete. Now
Extg

S(R, S)∨ = HomR(Extg
S(R, S), ER(k))

= HomR(Extg
S(R, S), HomS(R, ES(k)))

= HomS(Extg
S(R,S)⊗R R,ES(k))

= HomS(Extg
S(R,S), ES(k))

= Hdim S−g
n (R) by local duality and as ωS

∼= S

= Hdim R
m (R) by the chance of rings principal

By Matlis Duality, Extg
S(R, S) ∼= Hdim R

m (R)∨ ∼= ωR. ¤

Theorem 7.5 (Chevelley’s Theorem). Let (R,m) be a complete local ring. If In for n = 1, 2, .. are ideals of R

such that In ⊇ In+1 for all n and ∩nIn = 0 then for any n ∈ N there exists s = s(n) ∈ N such that Is ⊆ mn.

Proof. We will prove by contradiction. Assume there exists r ∈ N such that Is 6⊆ mr for any s ∈ N. Then
for any n ≥ r, Is 6⊆ mn for all s. Now dim R/mn = 0 and so R/mn is Artinian. Thus there exists t(n) ∈ N
such that It(n) + mn = Is + mn for all s > t(n). Now we may assume t(n) < t(n + 1) for any n > r. Then
It(n) ⊆ It(n) +mn = It(n+1) +mn. Therefore for any xn ∈ It(n) there exists xn+1 ∈ It(n+1) such that xn−xn+1 ∈ mn.

Start with xr ∈ It(r) \mr. Then we have a sequence (xn)n≥r such that xn − xn+1 ∈ mn. Clearly, (xn) is a Cauchy
sequence. As R is complete, let x∗ = limn→∞ xn. Now xn, xn+1, ... ∈ It(n). As ideals are closed in the m−adic
topology x∗ ∈ It(n) and so x∗ ∈ ∩n≥rIt(n) = 0.

On the other hand, xn − xr ∈ mr for all n ≥ r. So x∗ − xr ∈ mr (as there exists n ≥ r such that x∗ − xn ∈ mr

and so (x∗ − xn) + (xn − xr) ∈ mr). Thus xr ∈ mr, a contradiction. ¤

Theorem 7.6. Let (R, m) be a local ring and M a finite R−module of dimension s. Then Hs
m(M) 6= 0. Hence

dim M = sup{i|Hi
m(M) 6= 0}.



Proof. Since dim M̂ = dim M and Hi
m̂(M̂) ∼= Hi

m(M), we may assume R is complete. Let R = S/I where (S, n) is a
complete regular local ring. By the change of rings principle, it is enough to show Hs

n(M) 6= 0 where M is considered
as an S−module. Let g = htAnnS M. As S is Cohen Macaulay, there exists x1, .., xg ∈ AnnS M which form an
S−sequence. Let T = S/(x1, ..., xg). Then (T, n1) is a complete Gorenstein local ring, M is a finite T−module, and
dim M = dim T = S. By the change of rings principle, it is enough to show Hs

n1
(M) 6= 0 where M is considered as a

T−module. ¤

Definition. Let (R, m) be a local ring and M a finitely generated R−module. M is said to be a Buchsbaum module

if and only if for all system of parametersx = x1, ..., xr ∈ R for M (that is, r = dim M and λ(M/(x)M) < ∞),

λ(M/(x)M)− e(x)(M) = C, a constant

Recall e(x)(M) = limn→∞
λ(M/(x)nM)

nr · r!, the multiplicity of M with respect to (x).

Note. Since e(x)(M) = λ(M/(x)M) if x is an M−sequence, Cohen Macaulay modules are Buchsbaum.

Theorem 7.7 (Stückrad-Vogel). If M is a Buchsbaum module of dimension d, then m ·Hi
m(M) = 0 for all i < d.

The converse, however, does not hold. (There is no known cohomological characterization of Buchsbaum modules).

Note that as Hi
m(M) are Artinian R/m−modules, this means dimR/m Hi

m(M) < ∞ for all i < d. This lead to the
following.

Definition. Let (R, m) be a local ring and M a finitely generated R−module. M is said to be a generalized Cohen

Macaulay module if λ(Hi
m(M)) < ∞ for all i < dim M.

Remark. Buchsbaum modules are generalized Cohen-Macaulay modules. Let

I(M) := sup
x∈R,s.o.p for M

{λ(M/(x)M)− e(x)(M)}.

Theorem 7.8 (Cuong-Schezel-Trun, 1978). Let (R,m) be a local ring and M a finite R−module. TFAE

(1) M is generalized Cohen Macaulay.
(2) I(M) < ∞.

Moreover, if either holds then I(M) =
∑d−1

i=0

(
d−1

i

)
λ(Hi

m(M)) for d = dim M.

Definition. A finite R−module M is equidimensional if dim R/p = dim M for all p ∈ MinR M = MinR(R/ AnnR M),
that is, R/ AnnR M is equidimensional.

Remark. We always have dim R/p + dim Mp ≤ dim M for all p ⊇ AnnR M. If R is local and catenary, then M is
equidimensional if and only if dim R/p + dim Mp = dim M for all p ⊇ AnnR M.

Lemma 7.9. Let (R,m) be a local ring and N an R−module. Then AnnR N = AnnR N∨.

Proof. Certainly AnnR N ⊆ AnnR HomR(N,E) = AnnR N∨. Thus AnnR N∨ ⊆ AnnR N∨∨. But the natural map
N → N∨∨ is always injective, so AnnR N∨∨ ⊆ AnnR N implies AnnR N∨ ⊆ AnnR N. ¤

Theorem 7.10. Let (R, m) be a local ring which is the homomorphic image of a Gorenstein ring. Let M be a finite
R−module. TFAE

(1) M is generalized Cohen Macaulay.
(2) M is equidimensional and Mp is Cohen Macaulay for all p ∈ Spec R \ {m}.

Proof. Let R = S/I where (S, n) is a local Gorenstein ring. Then M is an S−module in the natural way. By the
change of rings principle, Hi

n(M) ∼= Hi
m(M) for all i (where M is considered as an S−module on the left hand side

and as an R−module on the right hand side). Therefore, M is generalized Cohen Macaulay as an R−module if and
only if it is as an S−module. Likewise, M is equidimensional as an R−module if and only if it is as an S−module



(since S/ AnnS M = R/AnnR M) and Mq is Cohen Macaulay for all q ∈ Spec S \ {m} if and only if Mp is Cohen
Macaulay for all p ∈ Spec R \ {m}. Thus we may assume (R, m) is Gorenstein.

Note that as Hi
m(M) is Artinian, λ(Hi

m(M)) < ∞ if and only if mnHi
m(M) = 0 for some n if and only if

mn ⊆ AnnR Hi
m(M) for some n. By local duality, Hi

m(M) = Extd−i
R (M, R)∨. By the Lemma, AnnR Hi

mM) =
AnnR Extd−i

R (M, R). Thus

λ(Hi
m(M)) < ∞ ⇔ mn ⊆ AnnR Extd−i

R (M,R)
⇔ Extd−i

R (M, R)p = 0 for all p 6= m as Extd−i
R (M,R) is finitely generated

⇔ Extd−i
Rp

(Mp, Rp) = 0 for all p 6= m, p ⊇ AnnR M.

As Rp is Gorenstein, we can use local duality again to say Extd−i
Rp

(Mp, Rp)∨ ∼= H
ht(p)−(d−i)
pRp

(Mp). Thus (as N = 0

if and only if N∨ = 0), we see Extd−i
Rp

(Mp, Rp) = 0 if and only if H
ht(p)−d+i
pRp

(Mp) = 0. Thus we arrive at the following

(∗) λ(Hi
m(M)) < ∞⇔ H

i−dim R/p
pRp

(Mp) = 0 for all p 6= m, p ⊇ AnnR M.

For (2) ⇒ (1), as Mp is Cohen Macaulay for all p 6= m, H
i−dim R/p
pRp

(Mp) = 0 for all i− dim R/p < dim Mp, which

implies H
i−dim R/p
pRp

(Mp) = 0 for all i < dim M by the Remark. Therefore λ(Hi
m(M)) < ∞ for all i < dim M.

For (1) ⇒ (2) H
i−dim R/p
pRp

(Mp) = 0 for all i < dim M and for all p 6= m with p ⊇ AnnR M, or, Hj
pRp

(Mp) = 0 for

all j < dim M − dim R/p and for all p 6= m with p ⊇ AnnR M. Since H
dim Mp

pRp
(Mp) 6= 0, this says that dim Mp ≥

dim M −dim R/p for all p 6= m, p ⊇ AnnR M. Since we always have dim Mp ≤ dim M −dim R/p for all p ⊇ AnnR M,

we have dim Mp = dim M − dim R/p for all p 6= m, p ⊇ AnnR M. Thus M is equidimensional and Hj
pRp

(Mp) = 0 for
all j < dim Mp. So Mp is Cohen Macaulay for all p 6= m. ¤

Recall that soc(M) := (0 :M m) = {x ∈ M |mx = 0}.

Lemma 7.11. Let (R, m) be a local ring and M a finitely generated R−module. Then µ(M) = dimR/m soc(M∨).

Proof. Since µ(M) = µ(M∨) and M∨ ∼= M̂∨, we may assume R is complete. Consider 0 → mM → M → L → 0
where µ(M) = dimk L for k = R/m. Since 0 → L∨ → M∨ is exact and m ·L∨ = 0, dim soc(M∨) ≥ dim L∨ = µ(M).
On the other hand, let V = soc(M∨). From 0 → V → M∨ → B → 0 we get M∨∨ → V ∨ → 0 is exact. As R is
complete, µ(M) = µ(M∨∨) ≥ µ(V ∨) = dim V ∨ = dim V. ¤

Question: Let (R, m) be a local ring of dimension d and I an ideal of R. When is Hd
I (R) = 0?

Certainly we need
√

I 6= m. Is that enough? The Hartshorne-Lichtenbaum Vanishing Theorem (HLVT) answers
this. A special case of HLVT is the following:

• Let (R, m) be a complete domain of dimension d. Then Hd
I (R) = 0 if and only if dim R/I > 0 (that is,√

I 6= m).

We will actually prove a more general version for arbitrary local rings. But first we begin with a very special case.

Proposition 7.12. Let (R, m) be a complete local Gorenstein domain of dimension d. Let p ∈ Spec R with dim R/p =
1. Then Hd

p (R) = 0.

Proof. We first need to show the following claim.

Claim. {Pn}n≥1 and {P (n)}n≥1 are cofinal.
Proof. As R is a domain ∩n≥1P

(n) = 0 (Check). By Chevalley’s Theorem for all k there exists n such
that P (n) ⊆ mk. By primary decomposition Pn = P (n) ∩ Jn where Jn is primary to m. Therefore
mk ⊆ Jn for some k and so there exists t >> 0 such that p(t) ⊆ mk ⊆ Jn. We may as well assume
t ≥ n. Then Pn = P (n) ∩ Jn ⊇ P (n) ∩ P (t) = P (t). Thus they are cofinal.

Note that depth R/P (n) > 0 for all n as AssR R/P (n) = {P}. Now Hd
P (R) = lim−→Extd

R(R/P (n), R). But by local
duality Extd

R(R/P (n), R) = H0
m(R/P (n))∨ = 0. Thus Hd

p (R) = 0. ¤



Lemma 7.13. Let R be a Noetherian ring, I an ideal, x ∈ R, and M an R−module. Then there exists a long exact
sequence

· · · → Hi
(I,x)(M) → Hi

I(M) → Hi
Ix

(Mx) → Hi+1
(I,x)(M) → · · · .

Proof. We proved this for Čech Cohomology earlier. ¤

Proposition 7.14. Let (R,m) be a local ring of dimension d. TFAE

(1) Hd
I (R) = 0 for all ideals I such that dim R/I > 0

(2) Hd
p (R) = 0 for all p ∈ Spec R such that dim R/p = 1.

Proof. Clearly (1) implies (2). So suppose there exists an ideal I such that dim R/I > 0 and Hd
I (R) = 0. Let I be

maximal with respect to this property. By hypothesis, I is not prime of dimension 1. Thus there exists x ∈ R \ I

such that dim R/(I, x) > 0. By the long exact sequence since Hd
I (R) 6= 0 and Hd

Ix
(Rx) = 0 (as dim Rx < d), we have

Hd
(I,x)(R) 6= 0, a contradiction. ¤

Proposition 7.15. Let (R,m) be a local ring of dimension d, I ⊆ R and M an R−module. Then Hd
I (M) ∼=

Hd
I (R)⊗R M. Hence if Hd

I (R) = 0 then Hd
I (M) = 0 for all R−modules M.

Proof. As ara(I) ≤ d, let I =
√

(x1, ..., xd) for some x1, ..., xd ∈ R. Then ⊕iRx1···x̂i···xd
→ Rx1···xd

→ Hd
I (R) → 0

is exact. Tensoring with M gives us ⊕iMx1···x̂i···xd
→ Mx1···xd

→ Hd
I (R) ⊗R M → 0 is exact. But this implies

Hd
I (M) ∼= Hd

I (R)⊗R M. ¤

Corollary 7.16. Let (R, m) be a local ring of dimension d. TFAE

(1) Hd
I (R) = 0

(2) Hd
I (M) = 0 for all R−modules M.

Let (R, m) be a local ring. Then one of the following holds:

(1) charR = 0 and charR/m = 0
(2) charR = p and charR/m = p

(3) charR = 0 and charR/m = p

(4) charR = pn, n > 1 and charR/m = p.

If (1) or (2) hold, R is said to have equal characteristic; otherwise, R has unequal characteristic. Note also that
(1) holds if and only if Q ⊆ R and (2) holds if and only if Zp ⊆ R. Thus R has equal characteristic if and only if R

contains a field.

Definition. Let (R,m) be a complete local ring. A subring K ⊆ R is called a coefficient ring for R if

(1) R = K + m

(2) If R has equal characteristic, then K is a field. Otherwise (K, n) is a complete local ring such that n = pK

where p = charR/m.

Note here that R/m ∼= K/n. Also if R is a domain then K is a domain. Hence K is a field or a complete DVR.
In any case, K is a quotient of a complete DVR.

Theorem 7.17 (Cohen). Every complete local ring has a coefficient ring.

Proof. See Matsamura ¤

Lemma 7.18. Let (R,m) be a complete local ring, K a coefficient ring for R and y1, ..., yd a system of parameters
for R. Let A = K[[y1, ..., yd]]. Then R is a finite A−module.



Proof. First note that A is the image of the ring map φ : K[[T1, ..., Td]] → R defined by Ti 7→ yi. Therefore as
K[[T1, ..., Td]] is complete and local, so is A. Let n be the maximal ideals of A. Then n = (p, y1, ..., yd)A where
p = char R/m (here p may be prime or 0). Clearly n ⊆ m. By definition of coefficient ring, A/n ∼= R/m. Therefore
every R−module of finite length has finite length as an A−module. In particular, λA(R/nR) < ∞ (as n contains a
system of parameters for R). Choose x1, ..., xr ∈ R such that R/nR = Ax1 + ... + Axr.

Claim. R = Ax1 + ... + Axr.

Proof. We have R =
∑

Axi + nR. Let u ∈ R. Write u =
∑

ai,0xi + u1 for ai,0 ∈ A, u1 ∈ nR

and iteratively uk =
∑

ai,kxi + uk+1 for ai,k ∈ nk, uk+1 ∈ nk+1R. Now for each i we have ai =
ai,0 + ai,1 + ... converges in A. Then u−∑r

i=1 aixi ∈ ∩nkR ⊆ ∩mk = 0, a contradiction.

¤

Proposition 7.19. Let (R, m) be a complete local domain of dimension d and I an ideal of R. TFAE

(1) Hd
I (R) 6= 0

(2) dim R/I = 0.

Proof (due to Huneke and Brodmann, independently in 1994). The content of the proof is that (2) implies (1). By
Proposition 7.14, it is enough to show Hd

p (R) = 0 for any p ∈ Spec R such that dim R/p = 1. Let K be a coefficient
ring for R. As R is a domain, K is a field or a complete DVR with uniformizing parameter q where q = charR/m.

Let p ∈ Spec R with dimR/p = 1. As ara(I) ≤ d, we know there exists x1, ..., xd ∈ R such that p =
√

(x1, ..., xd).
Furthermore, we may choose x1, .., xd with the following properties.

(1) x1, ..., xd−1 form part of a system of parameters for R as ht p = d− 1.

(2) If K is not a field and q ∈ p, then x1 = q as R is a domain.
(3) If K is not a field and q 6∈ p, then x1, ..., xd−1, q is a system of parameters for R (as

√
(p, q) = m, we may

choose x1, ..., xd−1 ∈ p = (p + q)/q to form a system of parameters for R/q).

If K is either a field or q ∈ p, choose y ∈ R such that x1, ..., xd−1, y is a system of parameters for R. If q 6∈ p, let
y = q. By (3) x1, ..., xd−1, y is a system of parameters for R.

Let A = K[[x1, ..., xd−1, y]]. Then (as remarked in the previous lemma) A is a complete local domain as R is a
domain and R is a finite A−module. Thus dim A = dim R = d.

Claim. A is a complete regular local ring.
Proof. First suppose K is a field. Then A ∼= K[[T1, ..., Td]]/I where T1, ..., Td are indeterminates. As
K[[T1, ..., Td]] is a d−dimensional complete regular local ring and dimA = d, I = 0.

Now suppose K is not a field. Then q ∈ A. Hence A = K[[x2, ..., xd−1, y]] if x1 = q or A =
[[x1, ..., xd−1]] if y = q. In either case, A ∼= K[[T1, ..., td]]/I. Again K[[T1, ..., Td]] is a complete regular
local ring of dimension d and so I = 0.

Now let B = A[xd]. Then A ⊆ B ⊆ R.

Claim. B is a complete local Gorenstein domain and R is a finite B−module.
Proof. As R is a finite A−module, R is certainly a finite B−module. Clearly B is Noetherian (as A

is). Since R is a domain, so is B. As R is integral over B, any maximal ideal of B is contracted from
R. As R is local, B must be also.

To see B is complete, first note that as B is a finite A−module and A is complete, B is complete
as an A−module. Let mA,mB represent the maximal ideals of A and B respectively. As B/A is
integral,

√
mAB = mB . Therefore mn

B ⊆ mAB for some b. Hence, the mA and mB−adic topologies
on B are equivalent and so B is complete.

Finally, B = A[xd] ∼= A[T ]/I where T is an indeterminate and I is a prime ideal. Since we know
B is local, B ∼= A[t]M/IM where M = (mA, T )A[T ]. Now A is a regular local ring of dimension d



and so A[T ]M is a regular local ring of dimension d + 1. Since B is a domain of dimension d, IM is
a height 1 prime of A[T ]M and hence principal (since a RLR is a UFD).

Now let Q = P ∩ B. Since R/p is integral over B/Q, dim B/Q = 1. By Proposition 7.12, Hd
Q(B) = 0. Since

P =
√

(x1, ..., xd) and x1, ..., xd ∈ B, Q =
√

(x1, ..., xd)B (by the lying over theorem). Thus by change of rings and
Proposition 7.15, we have

Hd
p (R) = Hd

(x1,...,xd)R(R) = Hd
(x1,...,xd)B(R) = Hd

(x1,...,xd)B(B)⊗B R = Hd
Q(B)⊗B R = 0.

¤

Remarks. The proof given also shows that if (R, m) is a complete local domain of dimension d then there exists a
complete regular local ring A of dimension d such that R is a finite A−module.

8. Hartshorne-Lictenbaum Vanishing Theorem

Theorem 8.1 (Hartshorne-Lichtenbaum Vanishing Theorem, 1968). Let (R, m) be a local ring of dimension d and
I an ideal of R. TFAE

(1) Hd
I (R) = 0

(2) dim R̂/(IR̂ + p) > 0 for all p ∈ Spec R̂ such that dim R̂/p = d.

(3) Hd
I (M) = 0 for all R−modules M.

Proof. We have already shown the equivalence of 1 and 3 (as a corollary to Proposition 7.15). We will show the
equivalence of 1 and 2. Suppose Hd

I (R) = 0. Let p ∈ Spec R̂ such that dim R̂/p = d. Then Hd
(IR̂+p)/p

(R̂/p) ∼=
Hd

I (R)⊗R R̂/p = 0. By Proposition 7.19, we see dim R̂/(IR̂ + p) > 0.

For the other direction suppose Hd
I (R) 6= 0. Then Hd

IR̂
(R̂) 6= 0 as R̂ is a faithfully flat R−module. Let J be an

ideal of R̂ maximal with respect to the property that Hd
IR̂

(R̂/J) 6= 0. Then dim R̂/J = d. Let p ∈ AssR̂(R̂/J) such
that dim R̂/p = d. Then we have an exact sequence

0 → R̂/p
φ−→ R̂/J → R̂/(J, x) → 0

where φ(1) = x 6= 0. Then
Hd

IR̂
(R̂/p) → Hd

IR̂
(R̂/J)︸ ︷︷ ︸
6=0

→ Hd
IR̂

(R̂/(J, x))︸ ︷︷ ︸
=0

and so Hd
IR̂

(R̂/p) 6= 0 by exactness, a contradiction. ¤

History. Originally, Lichtenbaum conjectured a geometric analogue of this vanishing theorem for sheaf cohomol-
ogy. Grothendieck proved this conjecture in 1961 (nevertheless, it became known as “Lichtenbaum’s Theorem”).
Hartshorne proved this local vanishing theorem in 1968. Lichtenbaum’s Theorem follows readily from Hartshorne’s.

Theorem 8.2 (Faltings, 1979). Let (R, m) be a complete local domain of dimension d and I an ideal such that
ara(I) ≤ d− 2. Then Spec(R/I)− {m/I} is connected.

Proof. (due to J. Rung) Let U = Spec(R/I) \ {m/I} ∼= V (I) \ {m}. Suppose U is disconnected. This means there
exist ideals J,K ⊇ I in R such that

(1) J ∩K ⊆ √
I (and so

√
J ∩K =

√
I)

(2)
√

J + K = m

(3)
√

J 6= m and
√

K 6= m (that is, dim R/J,dim R/K > 0)

By the Mayer-Vietoris sequence, we have

Hd−1
J+K(R) → Hd−1

J (R)⊕Hd−1
K (R) → Hd−1

J∩K(R) → Hd
J+K(R) → Hd

J(R)⊕Hd
K(R).



Now Hd−1
J∩K(R) = 0 as

√
J ∩K =

√
I and ara(I) ≤ d − 2. Thus 0 → Hd

m(R) → Hd
J(R) ⊕ Hd

K(R) is exact. Since
Hd

m(R) 6= 0 we have either Hd
J(R) 6= 0 or Hd

K(R) 6= 0. But dim R/J > 0 and dim R/K > 0, a contradiction to the
HLVT. ¤

This theorem has the following geometric consequence.

Theorem 8.3 (Fulton-Hansen, 1979). Let K be an algebraically closed field and X, Y irreductible projective varieties
in Pn

k . Suppose dim X + dim Y > n. Then X ∩ Y is connected.

Idea of Proof. Use reduction to the diagonal: K(X × Y ) = K(X)⊗K K(Y ) ∼= K[X0, ..., Xn, Y0, ..., Yn]/I(X) + I(Y )
has dimension > n + 2. Now mod out by {Xi − Yi}n

i=0 and use Falting’s result. ¤

Question. Let (R, m) be a complete local domain, I ⊆ R. When is Hd−1
I (R) = 0 and Hd

I (R) = 0 for d = dim R? One
might guess it is if and only if dim R/I > 1. But this is false, as shown by the following example of Hartshorne.

Example. Let R = k[[x, y, u, v]]/(xu − yv), where k is a field. Then R is a three-dimensional complete Gorenstein
domain (in fact, it is a hypersurface). Let I = (x, y)R. Then R/I ∼= k[[u, v]] and so I is a prime of dimension 2. If the
conjecture were true, then H2

I (R) = 0. We know H3
I (R) = 0 as µ(I) = 2. Let J = (u, v)R. Consider the short exact

sequence 0 → J → R → R/J → 0. Then · · · → H2
I (R) → H2

I (R/J) → H3
I (J) = 0 is exact (H3

I (J) = 0 as µ(I) = 2).
But H2

I (R/J) = H2
(I+J)/J (R/J) = H2

m/J(R/J) 6= 0 as dim R/J = 2. So H2
I (R) 6= 0.

Note that in this example ht I = htJ = 1 but ht(I + J) = ht(m) = 3. If R is a regular local ring, we always have
ht(p + q) ≤ ht p + ht q for all p, q ∈ Spec R. Thus there is reason to believe the conjecture may hold for regular local
rings.

Theorem 8.4 (Peskine-Szpiro in char p > 0 (1973) and Ogus in char 0 (1973)). Let (R,m) be a complete regular
local ring containing a field. Suppose R/m is algebraically closed. Let I be an ideal of R. TFAE

(1) Hd−1
I (R) = Hd

I (R) = 0
(2) dim R/p > 1 for all p ∈ Min R/I and Spec(R/I) \ {m/I} is connected.

Further improvements of the theorem have been given by Huneke and Lyubeznik.

Theorem 8.5 (Sharp, 1981). Let (R, m) be a local ring, I an ideal of R and M a finite R−module of dimension n.

Then Hn
I (M) is Artinian.

Proof. As R → R̂is faithfully flat, if Hn
IR̂

(M̂) = Hn
I (M)⊗R R̂ has DCC, then Hn

I (M) has DCC. Thus we may assume
R is complete. By the change of rings principle, we may pass to the ring R/AnnR M and so assume AnnR M = 0
and dim R = dim M = n.

Let R = S/L where S is a complete regular local ring. Let g = htL and x1, ..., xg ∈ L an S−sequence. Let
B = S/(x) and J = L/(x). Then R = B/J where dim R = dim B = n and B is a complete Gorenstein ring. Now M

can be considered as a B−module. Thus it is enough to show Hn
IB(M) is Artinian.

Claim. Hn
J (B) is Artinian for any ideal J.

Proof. An injective resolution for B looks like

0 → B →
0

⊕
ht p=0

EB(B/p) → · · · →
n

EB(B/m) → 0.

We know EB(B/m) is Artinian. Thus HomB(B/J,E) is Artinian. Now Hn
J (B) is a quotient of this

module and is hence Artinian.

Now we have seen Hn
J (M) ∼= Hn

J (B) ⊗B M as n = dim B. As Hn
J (B) is Artinian, it is enough to show N ⊗B M is

Artinian if N is Artinian and M is finitely generated. By Matlis Duality, it is enough to show (N ⊗B M)∨ is finitely
generated. But (N ⊗B M)∨ = HomB(N ⊗B M, E) = HomB(M, N∨) is finitely generated as N∨ is. ¤



8.1. An application of HLVT.

Definition. Let (R, m) be a local ring, M an R−module and E = ER(R/m). A coassociated prime of M is an
associated prime of M∨ = HomR(M, E). That is, Coass(M) = Ass(M∨).

Remarks.

(1) Let (R,m) be a local ring, M a finitely generated R−module, N any R−module. Then we have that
AssHomR(M, N) = Supp M ∩Ass N.

Proof. Recall that p ∈ AssHomR(M, N)

⇔ HomRp
(k(p), HomR(M,N)p) 6= 0

⇔ HomRp
(k(p), HomRp

(Mp, Np)) 6= 0
⇔ HomRp

(k(p)⊗Rp
Mp, Np) 6= 0

⇔ HomRp(k(p)µ(Mp), Np) 6= 0
⇔ HomRp

(k(p), Np)µ(Mp) 6= 0
⇔ p ∈ AssN and µ(Mp) 6= 0.

¤

(2) Let (R,m) be a Noetherian local ring, M a finitely generated R−module, N any R−module. Then
Coass(M ⊗R N) = SuppM ∩ Coass N.

Proof.
Coass(M ⊗R N) = Ass((M ⊗R N)∨)

= AssHomR(M ⊗R N, E)
= AssHomR(M, HomR(N, E))
= AssHomR(M, N∨)
= SuppM ∩AssN∨ = Supp M ∩ Coass N.

¤

Recall. Let R be a local ring of dimension d, I ⊆ R, and M an R−module. Then Hd
I (M) = M ⊗R Hd

I (R).

HLVT. If (R, m) is a complete local ring of dimension d, I ⊆ R, then Hd
I (R) 6= 0 if and only if

√
I + p = m for some

p ∈ Spec R such that dim R/p = d.

Lemma 8.6. Let (R, m) be a complete local ring, I ⊆ R, and M a finitely generated R−module of dimension n.

Then
Coass Hn

I (M) = {p ⊇ AnnR M | dim R/p = n and
√

I + p = m}.

Proof. By the change of rings principle, we may assume dim M = dim R and AnnR M = 0. Notice

Coass Hn
I (M) = Coass(M ⊗R Hn

I (R)) = SuppM ∩ Coass Hn
I (R) = Coass Hn

I (R)

as AnnR M = 0. We may assume n
I (R) 6= 0 as otherwise both sets in the theorem would be empty by HLVT. Let

q ∈ Coass Hn
I (R). Then q ∈ Coass(R/q ⊗Hn

I (R)) = SuppR/q ∩Hn
I (R). Therefore R/q ⊗R Hn

I (R) = Hn
I (R/q) 6= 0.

So dim R/q = n and
√

I + q = m by HLVT.
Let q ∈ Spec R such that dim R/q = n and

√
I + q = m. Hence R/q ⊗R Hn

I (R) ∼= Hn
(I+q)/q(R/q) 6= 0 by HLVT.

Let p ∈ Coass(R/q ⊗Hn
I (R)) = Supp R/q ∩ Coass Hn

I (R). So p ⊇ q and p ∈ Coass Hn
I (R). But we have shown that

if p ∈ Coass Hn
I (R) then p is minimal. Thus p = q. ¤

Remark. Let (R,m) be a complete local ring, M, N R−modules with M finitely generated and N Artinian. Then
Exti

R(M, N)∨ ∼= TorR
i (M, N∨).



Proof. If F· is a free resolution of N∨, then F∨· is an injective resolution of N∨∨ ∼= N. Then

TorR
i (M, N∨)∨ = Hi(M ⊗R F·)∨

= Hi((M ⊗R F·)∨)
= Hi(HomR(M ⊗R F·, E))
∼= Hi(HomR(M,F∨· )
∼= Exti

R(M,N).

¤

Definition. Let (R, m) be a local ring, I ⊆ R, and N an R−module. N is I−cofinite if Supp N ⊆ V (I) and
Exti

R(R/I,N) is finitely generated for all i.

Lemma 8.7. Let (R, m) be a local ring and R̂ the m−adic completion of R, I ⊆ R and M an R−module. Then
Hi

I(M) is I−cofinite if and only if Hi
IR̂

(M ⊗R R̂) is IR̂−cofinite.

Proof. Exti
R(R/I, Hi

I(M)) ⊗R R̂ ∼= Exti
R̂
(R̂/IR̂, Hi

IR̂
(M ⊗R R̂)). It is enough to show N ⊗R R̂ is finitely generated

if and only if N is finitely generated. Of course, this has already been shown. ¤

Theorem 8.8 (Delfino-Marley, 1997). Let (R, m) be a Noetherian local ring, I ⊆ R, M a finitely generated R−module
of dimension n. Then Hn

i (M) is I−cofinite. In fact, Exti
R(R/I, Hn

I (M)) has finite length for all i.

Proof. By Lemma 8.7, we may assume (R, m) is complete. As Hn
I (M) is Artinian, Hn

I (M)∨ is finitely generated.
Therefore Coass Hn

I (M) is a finite set, say Coass Hn
I (M) = {p1, ..., pk}. Then Supp Hn

I (M) = V (p1 ∩ · · · ∩ pk). Now
Exti

R(R/I,Hn
I (M)) has finite length if and only if Exti

R(R/I,Hn
I (M))∨ has finite length which is if and only if

TorR
i (R/I, Hn

I (M)∨) has finite length. As TorR
i (R/I, Hn

I (M)∨) is a finitely generated R−module, it is enough to
show its support is {m}. Now suppose

TorR
i (R/I, Hn

I (M)∨) ⊆ V (I) ∩ Supp Hn
I (M)∨ = V (I) ∩ V (p1 ∩ · · · ∩ pk) = V (I + p1 ∩ · · · ∩ pk) = {m}

as
√

I + pi = m for all i. ¤

9. Graded Local Cohomology

Let R = ⊕Rn be a Z−graded ring, x ∈ R a homogeneous element and M a graded R−module. Note that Mx is
a graded R− and Rx−module, where deg m

xn = deg m− n deg x. Recall an R−homomorphism f : M → N of graded
R−modules is said to be (homogeneous) of degree 0 if f(Mn) ⊆ Nn for all n. The kernel and image of degree 0
homomorphisms are graded submodules of M and N, respectively.

Now, if M is a graded R−module and x = x1, ..., xn ∈ R is a sequence of homogeneous elements, then it is easy
to see that all the maps in the Čech complex C ·(x; M) are degree 0 (In the n=1 case, we have 0 → M → Mx → 0
defined by m 7→ m

1 . Proceed by induction). Therefore, the homology modules Hi
x(M) are graded R−modules. Since

every homogenous ideal has a homogeneous set of generators, we get that for all i Hi
I(M) is a graded R−module for

every homogeneous ideal I of R and graded R−module M.

From now on, when we say R is a “graded ring,” let us assume R is N−graded. Then R is a Noetherian graded ring
if and only if R0 is Noetherian and R = R0[x1, ..., xn] where x1, ..., xn are homogeneous elements in R+ = ⊕n>0Rn.

If the xi can be chosen such that deg xi = 1 for all i, we say that R is a standard graded ring. Note that the
homogeneous maximal ideals of R are of the form (m0, R+)R where m0 is a maximal ideal of R0. Thus R has a
unique homogeneous maximal ideal if and only if R0 is local. We call such graded rings *local (where *local implies
Noetherian).

Proposition 9.1. Let (R, m) be a *local ring and M a finitely generated graded R−module. Then

(1) Hi
m(M)n = 0 for all n >> 0 and for all i.



(2) Hi
m(M)n is an Artinian R0−module for all i and for all n.

Proof. Note that as every element of Hi
m(M) is annihilated by a power of m, Hi

m(M) ∼= Hi
mRm

(Mm) for all i. In
the local case, we showed Hi

mRm
(Mm) is Artinian. Thus Hi

m(M) is an Artinian R−module. Let Hi
m(M)≥t :=

⊕n≥tH
i
m(M)n. Then Hi

m(M)≥t is a graded R−module and Hi
m(M)≥t ⊇ Hi

m(M)≥t+1 ⊇ · · · . By DCC, Hi
m(M)≥t =

Hi
m(M)≥t+1 for all t >> 0. Thus Hi

m(M)t = 0 for all t >> 0.

For 2, suppose Hi
m(M)n = N0 ⊇ N1 ⊇ N2 ⊇ · · · is a descending chain of R0−submodules of Hi

m(M)n. Then
RN0 ⊇ RN1 ⊇ RN2 ⊇ · · · is a desending chain of R−submodules of Hi

m(M). Hence, RNt = RNt+1 for t >> 0.

Therefore
Nt = RNt ∩Hi

m(M)n = RNt+1 ∩Hi
m(M)n = Nt+1

for t >> 0. Hence Hi
m(M)n is an Artinian R0−module. ¤

Corollary 9.2. Suppose in the above proposition that R0 is Artinian. Then λR0(H
i
m(M)n) < ∞ for all i, n.

Proof. An Artinian module over an Artinian ring has finite length. ¤

Definition. Let (R, m) be a *local Cohen Macaulay standard graded ring. The a−invariant of R is defined by
a(R) = sup{n|Hd

m(R)n 6= 0} for d = dim R.

Example. Let R = k[x1, ..., xd] for a field k. Then we have seen

Hd
m(R) ∼= ER(R/m) ∼= Rx1···xd

/ ∑
Rx1···x̂i···xd

∼= ⊕i,j<0kxi1
1 · · ·xid

d .

Thus a(R) = −d.

Proposition 9.3. Let (R, m) be a *local Cohen Macaulay standard graded ring. Suppose x ∈ R is a homogeneous
non-zerodivisor on R. Then a(R/(x)) = a(R) + deg x.

Proof. Consider the exact sequence 0 → R(−k) x−→ R → R/(x) → 0 (where k = deg x). Then we have

0 → Hd−1
m (R/(x)) → Hd

m(R(−k)) x−→ Hd
m(R) → 0

is exact. These are degree 0 maps and so 0 → Hd−1
m (R/(x))n → Hd

m(R)n−k
x−→ Hd

m(R)n → 0 is exact. Now
Hd−1

m (R/(x))n 6= 0 if n = a(R/(x)). Therefore Hd
m(R)a(R/(x))−k 6= 0 and a(R) ≥ a(R/(x))− k.

As Hd−1
m (R/(x))n = 0 for n > a(R/(x)), Hd

m(R)n−k
x−→ Hd

m(R)n is injective for all n > a(R/(x)). But every
element in Hd

m(R) is annihilated by a power of x. Thus Hd
m(R)n = 0 for all n > a(R/(x)) − k. Thus a(R) =

a(R/(x))− k. ¤

Theorem 9.4. Let (R,m) be a Cohen Macaulay *local standard graded ring such that R0 is Artinian. Then a(R) ≥
− dim R with equality if and only if R ∼= R0[T1, ..., Td].

Proof. Assume R/m is infinite (else tensor with R[T ]mR[T ]). Note that as R0 is Artinian, m =
√

R+ =
√

R1R. Let
n = µR0(R1). Choose minimal generators x1, ..., xn for R1 such that x1, ..., xd is an R−regular sequence. (We can do
this as R is Cohen Macaulay. Choose x1 ∈ R1 \m0R1 ∪ p1 ∪ · · · ∪ pr where {pi} = Ass(R)). Induct on d.

If d = 0, H0
m(R) = R and so a(R) ≥ 0. Now a(R) = 0 if and only if R = R0. Suppose d > 0. Then a(R) =

a(R/(x1))− 1 ≥ −d + 1− 1 = −d. Write R = R0[T1, ..., Tn]/I where T1, ..., Tn are indeterminates and n = µR0(R1).
Now a(R/(T1) = a(R) + 1 = −d + 1. Thus R/(T1) = R/(I, T1) ∼= R0[T2, ..., Tn]. Thus n− 1 = d− 1 by induction.

We need to show I = 0. We have I ⊆ (T1). If I 6= 0, then there exists f 6∈ (T1) such that fT1 ∈ I (else T r
1 ⊆ I).

But this means T1 is a zerodivisor in R, a contradiction. Thus I = 0. ¤

The a−invariant is closely related to the Castelnuovo-Mumford regularity of R.

Definition. Let (R, m) be a *local standard graded ring of dimension d such that R0 is Artinian. Define ai(R) :=
sup{n|Hi

m(R)n 6= 0} for i = 0, ..., d (set ai(R) = −∞ if Hi
m(R) = 0). The Castelnuovo-Mumford regularity of



R is
reg(R) := max{ai(R) + i|i = 0, ..., d}.

One can prove that reg(R) ≥ 0 with equality if and only if R ∼= R0[T1, ..., Td].

Definition. Let R be a *local standard graded ring such that R0 is Artinian and M a finitely generated graded
R−module. As each Mn is a finitely generated R0−module, λR0(Mn) < ∞ for all n. Define the Hilbert function

of M by HM (n) := λR0(Mn).

Example.

(1) Let R = k[x1, ..., xd] for a field k. Then HR(n) =
(
n+d−1

d−1

)
, the number of monomials of degree n in x1, ..., xd.

(2) Let R = k[x, y]/(x3, xy). Then HR(0) = 1,HR(1) = 2,HR(2) = 2,HR(3) = 1, and HR(n) = 1 for all n ≥ 3.

Theorem 9.5. Let (R, m) be a *local standard graded ring such that R0 is Artinian and M is a finitely generated
R−module of dimension n. Then there exists a unique polynomial Pm(x) ∈ Q[x] such that Pm(n) = Hm(n) for
n >> 0. Pm(x) is the Hilbert polynomial of M.

Proof. See Atiyah and Macdonald. ¤

Definition. Let f : Z→ Z be a function. Define ∆ : Z→ Z by ∆(f)(n) = f(n)− f(n− 1).

Remark. Let f, g : Z→ Z be a function. Then ∆(f) = ∆(g) if and only if f − g is a constant.

Definition. Let (R, m) be a *local standard graded ring such that R0 is Artinian and M is a finitely generated graded
R−module. Define χM (n) :=

∑∞
i=0(−1)iλ(Hi

m(M)n). Note the sum is finite and χM (n) = 0 for n >> 0. In fact,
χM (n) = 0 for n > max{a0(M), ..., ad(M)} where d = dim M.

Lemma 9.6. Let (R, m) be a *local standard graded ring such that R0 is Artinian and 0 → A → B → C → 0 is a
short exact sequence of finitely generated graded R−modules with degree 0 maps. Then

(1) HB(n) = HA(n) + HC(n) for all n

(2) PB(x) = PA(x) + PC(x)
(3) χB(n) = χA(n) + χC(n) for all n

Proof. (1) Follows from the exactness of 0 → An → Bn → Cn → 0 for all n.

(2) We have a long exact sequence with degree 0 maps · · · → Hi
m(A) → Hi

m(B) → Hi
m(C) → · · · . So · · · →

Hi
m(A)n → Hi

m(B)n → Hi
m(C)n → · · · is exact for all n. Use the additivity of λ.

¤

Theorem 9.7. Let (R, m) be a *local standard graded ring such that R0 is Artinian and M a finitely generated
graded R−module. Then HM (n)− PM (n) = χM (n) for all n.

Proof. Let R = R0[x1, ..., xs], where x1, ..., xs ∈ R1. Induct on s. For s = 0, R = R0 and λ(M) < ∞. Thus
Mn = 0 for n >> 0 which implies PM (n) = 0 for all n. So H0

m(M) = M and Hi
m(M) = 0 for all i > 0. Therefore

χM (n) = χ(Mn) = HM (n).
Suppose s > 0. Consider the exact sequence 0 → K → M(−1) xs−→ M → C → 0 of graded R−modules and degree

0 maps. By the lemma,

∆(HM (n)− PM (n)) = HM (n)HM (n− 1)− PM (n) + PM (n− 1) = HC(n)− PC(n)− (HK(n)− PK(n)).

Now xrK = 0 = xrC, so K and C are R/xsR−modules. By induction on s,

∆(HM (n)− PM (n)) = χC(n)− χK(n) = χM (n)− χM (n− 1) = ∆(χM (n)).

By the remark, HM (n) − PM (n) = χM (n) + C. But χM (n) = 0 for n >> 0 and HM (n) − PM (n) = 0 for n >> 0.

Thus C = 0. ¤



Corollary 9.8. Let (R, m) be a Cohen Macaulay *local standard graded ring such that R0 is Artinian. Then
a(R) = min{n ∈ Z|PR(n) 6= HR(n)}.

Proof. HR(n)− PR(n) = (−1)dλ(Hd
m(R)n). ¤

Question. Let (R, m) be a local ring, M a finitely generated R−module and I ⊆ R. When is Hi
I(M) finitely generated?

Certainly it is when i = 0. However, not always.

Remark. Hi
I(M) is a finitely generated R−module if and only if Hi

IR̂
(M̂) is a finitely generated R̂−module.

Proposition 9.9. Let (R, m) be a local ring and M a finitely generated R−module of dimension n > 0. Then Hn
m(M)

is not finitely generated.

Proof. If it were, then Hn
m(M)⊗R/m 6= 0. But Hn

m(M)⊗R/m) ∼= Hn
m(M/mM) = 0 as dim M/mM = 0 < n. ¤

Proposition 9.10. Let R be a Noetherian ring, I ⊆ R, and M a finitely generated R−module. TFAE

(1) Hi
I(M) is finitely generated for all i ≤ t.

(2) I ⊆
√

AnnR Hi
I(M) for all i ≤ t, that is, there exists k such that IkHi

I(M) = 0 for all i < t.

Proof. Note that 1 implies 2 is clear as every element in Hi
I(M) is killed by a power of I. So we need to show 2 implies

1. We will induct on t. The t = 0 case is clear so assume t > 0. Let L = H0
I (M) and N = M/L. Then H0

I (L) = L

and Hi
I(L) = 0 for all i ≥ 1. Therefore, from the long exact sequence · · · → Hi

I(L) → Hi
I(M) → Hi

I(N) → · · · we
get H0

I (N) = 0 and Hi
I(N) ∼= Hi

I(M) for all i ≥ 1. Hence we may assume depthI M > 0.

Let x ∈ I such that x ∈ I is a non-zerodivisor on M. By assumption, there exists k such that xkHi
I(M) = 0

for all i ≤ t. As xk is a non-zerodivisor on M, replace xk by x. From 0 → M
x−→ M → M/xM → 0, we get

· · · 0−→ Ht−1
I (M) → Ht−1

I (M/xM) → Ht
I(M) x−→ Ht

I(M). By induction, Hi
I(M) is finitely generated for all i ≤ t− 1.

Also, as IkHi
I(M) = 0 for all i ≤ t and

0 → Hi−1
I (M) → Hi−1

I (M/xM) → Hi
I(M) → 0

is exact for all i ≤ t, I2kHi−1
I (M/xM) = 0 for all i ≤ t. Therefore Ht−1

I (M/xM) is finitely generated, which implies
Ht

I(M) is finitely generated. Thus the finite generation of Hi
I(M) is related to the annihilation of Hi

I(M). ¤

Theorem 9.11 (Faltings, 1978). Let (R, m) be a local ring which is the homomorphic image of a regular local ring.
Let M be a finitely generated R−module and J ⊆ I two ideals of R. Set s = minp 6⊇J{depth Mp + ht(I + p)/p}. Then

(1) J ⊆
√

AnnR Hi
I(M) for all i < s

(2) J 6⊆ √
AnnR Hs

I (M).

Note here we define depth Mp = ∞ if Mp = 0 and min ∅ = ∞. As a corollary, we get the following result.

Theorem 9.12 (Grothendieck, SGAII, 1968). Let (R, m) be a local ring which is the quotient of a regular local ring.
Let M be a finitely generated R−module and I ⊆ R. Set s = minp6⊇I{depth Mp +ht(I +p)/p}. Then Hi

I(M) is finitely
generated for all i < s and Hs

I (M) is not finitely generated.

Proof. Set J = I in Falting’s Theorem and use the proposition. ¤

Lemma 9.13. Let (R,m) be a local ring which is the quotient of a Gorenstein ring. Let M be a finitely generated
R−modules and J ⊆ R an ideal. Then J ⊆

√
AnnR Hi

m(M) if and only if for all p 6⊇ J H
i−dim R/p
pRp

(Mp) = 0.

Proof. Let R = T/I where (T, n) is a Gorenstein local ring. Let K ⊆ T such that K/I = J. Then by the change of
rings principle J ⊆

√
AnnR Hi

m(M) if and only if K ⊆
√

AnnT Hi
n(M). Also, if q ⊇ I, q 6⊇ K, then H

i−dim T/q
qTq

(Mq) ∼=
H

i−dim R/p
pRp

(Mp) where p = q/I. If q 6⊇ I, then Mq = 0. Hence, we may assume (R, m) is a Gorenstein local ring.



Now J ⊆
√

AnnR Hi
m(M)

⇔ J ⊆
√

AnnR Extd−i
R (M,R)∨

⇔ J ⊆
√

AnnR Extd−i
R (M,R)

⇔ for all p 6⊇ J, Extd−i
Rp

(Mp, Rp) = 0

⇔ for all p 6⊇ J,H
dim Rp−d+i
pRp

(Mp) = 0 and d− dim Rp = dim R/p.

¤

Proposition 9.14. Let (R, m) be a local ring which is the quotient of a Gorenstein ring. Let M be a finitely generated
R−module and J ⊆ R an ideal. Let s = minp 6⊇J{depth Mp + dim R/p}. Then J ⊆

√
AnnR Hi

m(M) for all i < s and
J 6⊆

√
AnnR Hs

m(M).

Proof. By the lemma, J ⊆
√

AnnR Hi
m(M) for all i < t

⇔ H
i−dim R/p
pRp

(Mp) = 0 for all p 6⊇ J, i < t

⇔ for all p 6⊇ J, t− dim R/p ≤ depth Mp

⇔ t ≤ s.

¤

Lemma 9.15. Let (R, m) be a Cohen Macaulay local ring, M a finitely generated R−module, I ⊆ R. Suppose there
exists p ∈ Spec R such that Mp is free. Then there exists s ∈ R \ p such that sHi

I(M) = 0 for all i < ht I.

Proof. There exists exact sequences 0 → C → F → T → 0 and 0 → T → M → D → 0 such that F is a finitely
generated free R−module and Cp = Dp = 0. Choose s 6∈ p such that sC = sD = 0. Then sHi

I(C) = sHi
I(D) = 0

for all i. Now we have long exact sequences · · · → Hi
I(T ) → Hi

I(M) → Hi
I(D) → · · · and · · · → Hi

I(F ) → Hi
I(T ) →

Hi+1
I (C) → · · · . As R is Cohen Macaulay, Hi

I(F ) = ⊕Hi
I(R) = 0 for all i < ht I. Thus sHi

I(T ) = 0 for all i < ht I.

Hence s2Hi
I(M) = 0 for all i < ht I. ¤

Proof of part 1 of Falting’s Theorem. This proof is due to M. Brodmann in 1983. Set s(J, I, M) := minp6⊇J{depth Mp+
ht(I + p)/p}. We use induction on dim R/I to prove there exists k such that JkHi

I(M) = 0 for all i < s = s(J, I,M).
The case dim R/I = 0 is taken care of by Proposition 9.14. So assume dim R/I > 0. We make a series of reductions.

Reduction 1. We may assume R is a regular local ring.

Proof. Write R = T/L where T is a regular local ring. Let I ′, J ′ be ideals of T such that I ′/L = I

and J ′/L = J. Then, as noted in the lemma preceding Proposition 9.14, s(J ′, I ′,M) = s(J, I, M)
and Hi

I′(M) ∼= Hi
I(M) for all i. ¤

Reduction 2. We may assume s(J, I,M) < ∞.

Proof. s(J, I, M) = ∞ if and only if Mp = 0 for all p 6⊇ J, that is, J ⊆ √
AnnR M, which implies

there exists k such that JkHi
I(M) = 0 for all i. ¤

Reduction 3. We may assume depthJ M > 0.

Proof. Let N = M/H0
J(M). Note N 6= 0 else JkM = 0 for some k, which implies s(J, I, M) = ∞.

Then, as H0
J(M)p = 0 for all p 6⊇ J, Mp

∼= Np for all p 6⊇ J. Therefore s(J, I, M) = s(J, I,N).
Furthermore, as remarked before, depthJ N > 0. From 0 → H0

J(M) → M → N → 0 we get
· · · → Hi

I(H
0
J (M)) → Hi

I(M) → Hi
I(N) → · · · . If we know the theorem for N, then JkHi

I(N) = 0
for all i < s = s(J, I, M). As J`H0

J(M) = 0 for some `, J`Hi
I(H

0
J(M)) = 0 for all i. Therefore

J`+kHi
I(M) = 0 for all i < s. ¤

Reduction 4. We may assume J ⊇ AnnR M.



Proof. By the change of rings principle, Hi
I(M) ∼= Hi

IR/ AnnR M (M) ∼= Hi
I+AnnR M (M) for all i.

Also, as AnnR M ⊆ AnnR Hi
I(M) for all i, we have J ⊆

√
AnnR Hi

I(M) if and only if J +
AnnR M ⊆

√
AnnR Hi

I(M). Finally, if p 6⊇ AnnR M then depth Mp = ∞. Hence s(J + AnnR M, I +
AnnR M, M) = s(J, I, M). ¤

Claim 1. s(J, I, M) ≤ ht I. Furthermore, if s(J, I, M) = ht I then AnnR M = 0.

Proof. Let q be a prime minimal over I such that ht q = ht I = h. As I ⊇ J ⊇ AnnR M, q contains a
prime p which is minimal over AnnR M. Then p ∈ AssR M and so p 6⊇ J as depthJ M > 0. Therefore,
s(J, I, M) ≤ depth Mp + ht(I + p)/p ≤ ht q/p ≤ h.

If we have equality, then (as R is a domain), p = 0. Therefore AnnR M = 0. ¤

Case 1. Assume s := s(J, I, M) = ht I =: h. By the claim, AnnR M = 0. Let U = {p ∈ Spec R|Mp is free}. Then
U 6= ∅ as M(0) is free and U is open. Let U = Spec R− V (L), for L ⊆ R. Let γ := {p ∈ Min R/L|p 6⊇ J}.

Case 1a. Γ = ∅. Then p 6⊇ J, which implies p 6⊇ L and Mp is free. By Lemma 9.15, for all p 6⊇ J there exists
Sp 6∈ p such that spH

i
I(M) = 0 for all i < h = s. Let A = ({sp}p6⊇J)R. Then AHi

I(M) = 0 for all i < s.

Furthermore, J ⊆ √
A for if q ∈ Spec R with q ⊇ A then q ⊇ J (else sq ∈ A, sq 6∈ q). Therefore there exists

k such that JkHi
I(M) = 0 for all i < s.

Case 1b. Γ 6= ∅. Let Γ = {p1, ..., ps} and let {q1, ..., qt} be the minimal primes of height h.

Claim 2. ∩s
i=1pi 6⊂ ∪t

i=1qi.

Proof. Suppose not. Then pi ⊆ qj for some j. Then Mpi is not free as pi 6∈ U. By Auslander-
Buchsbaum, this means depth MpiM dim Rpi . Therefore as pi 6⊇ J

s ≤ depth Mpi + ht(I + pi)/piM dim Rpi + ht qj/pi = ht qj = h,

a contradiction. ¤

So chose x ∈ ∩s
i=1pi \ ∪t

i=1qi. Note that dimR/(I, x) < dim R/I as x 6∈ ∪t
i=1qi and if p 6⊇ J and x 6∈ p, then

Mp is free (else, p ⊇ L implies p ⊇ pi for some i, a contradiction as x ∈ pi).

Claim 3. J ⊆
√

AnnR Hi
Ix

(Mx) for all i < s = h.

Proof. It is enough to show Jx ⊆
√

AnnRx Hi
Ix

(Mx) for all i < h. Now for all px ∈ Spec(Rx),
px 6⊇ Jx and so (Mx)px

∼= Mp is free. Thus by the same argument in Case 1a there exists k

such that Jk
xHi

Ix
(Mx) = 0 for all i < ht(Ix) = h. ¤

Claim 4. J ⊆
√

AnnR Hi
(I,x)(M) for all i < s.

Proof. Note that as ht(((I, x) + p)/p) ≥ ht((I + p)/p) for all p, s′ = s(J, (I, x),M) ≥ s. As
dim R/(I, x) < dim R/I, we have the claim by induction. ¤

Now we have the long exact sequence · · · → Hi
(I,x)(M) → Hi

I(M) → Hi
Ix

(Mx) → · · · . So case 1 follows from
claims 3 and 4.

Case 2. s < h. We use induction on s− h ≥ 0 (the case s− h = 0 is case 1. Let F be a finitely generated R−module
such that 0 → K → F → M → 0 is exact.

Claim 5. s′ := s(J, I, K) > s.

Proof. Let p ∈ Spec R with p 6⊇ J. If Mp is free, then Kp is free. Thus depthKp + ht((I + p)/p) =
dim Rp+ht((I+p)/p) = ht(I+p) ≥ ht I > s. If Mp is not free, then pd Kp = pd Mp−1. By Auslander
Buchsbaum, depth Kp = depth Mp +1. Thus depth Kp +ht((I +p)/p) > depth Mp +ht((I +p)/p) ≥
s. ¤



Thus h − s′ < h − s (note that depthJ K > 0 and AnnR K = 0 as K ⊆ F and R is a domain and so claim 1 still
holds). By induction, J ⊆

√
AnnR Hi

I(K) for all i < s′ (hence for i+1 < s). As R is a regular local ring, Hi
I(F ) = 0

for all i < h(> s). From the long exact sequence · · · → Hi
I(F ) → Hi

I(M) → Hi+1
I (K), we get J ⊆

√
AnnR Hi

I(M)
for all i < s. ¤

Proof of part 2 of Falting’s Theorem. Let s(J, I, M) = minp6⊇J{depth Mp + ht((I + p)/p)}. We will show that if s =
s(J, I, M) < ∞ then J 6⊂

√
AnnR Hi

I(M) for some i ≤ s. As in the proof of part 1, we may replace M by M/H0
J(M)

and assume depthJ M > 0. Induct on s. Note that if p 6⊇ J then ht((I +p)/p) ≥ 1. Thus s ≥ 1. So first suppose s = 1.

Choose p 6⊇ J such that 1 = depth Mp + ht((I + p)/p). Then depth Mp = 0 and ht((I + p)/p) = 1. Then p ∈ AssR M

and so there exists an exact sequence 0 → R/p → M → N → 0. Therefore, 0 → H0
I (N) → H1

I (R/p) → H1
I (M) is

exact.
Suppose J ⊂

√
AnnR H1

I (M). As H0
I (N) is finitely generated, J ⊆ I ⊆

√
AnnR H0

I (N). Thus H ⊆
√

AnnR H1
I (R/p).

As ht((I+p)/p) = 1, choose q ⊇ I+p such that ht q/p = 1. Then Jq ⊆
√

AnnR H1
Iq

(Rq/pq). Let A = Rq/pq with max-

imal ideal n. Then A is a one-dimensional local domain. As p 6⊇ J,
√

JqA =
√

IqA = n. Hence n =
√

AnnR H1
n(A)

which implies H1
n(A) is finitely generated, a contradiction.

Now suppose s > 1. Choose p 6⊆ J such that s = depth Mp + ht((I + p)/p). Let q be a prime which contains I + p

such that ht(q/p) = ht((I + p)/p). Let y ∈ J \ p and consider the set Γ = {Q ∈ Spec R|p ⊆ Q ⊆ q, y 6∈ Q}. As p ∈ Γ,

we see Γ 6= ∅. Choose Q ∈ Γ maximal. Clearly Q 6⊇ J.

Claim 1. ht q/Q = 1.

Proof. Clearly q ( Q as y ∈ J ⊆ I ⊆ q. Suppose ht(q/Q) > 1. By prime avoidance and Krull’s
principle ideal theorem, there exists Q1 ⊆ q such that y 6∈ Q1 and ht(Q1/Q) > 0. But then Q1 ∈ Γ,

contradiction to maximality. ¤

Claim 2. s = depth Mq + ht((I + Q)/Q).

Proof. By definition of s we have s = depth Mp + ht((I + p)/p) ≤ depth MQ + ht((I + Q)/Q). Also,

depth MQ + ht((I + Q)/Q) ≤ depth MQ + ht(q/Q)
≤ depth Mp + ht(Q/p) + ht(q/Q)(∗)
≤ depth Mp + ht(q/p)
= depth Mp + ht((I + p)/p).

(*) To see this inequality, we need to show that if (R,m) is local and M a finitely generated
R−module and p ∈ Spec R then depth M ≤ depth Mp + dim R/p. But this follows from Ischebeck’s
Theorem (Mats, Theorem 17.1). ¤

By Claim 1, q is minimal over I + Q and ht(q/Q) = 1. Replace Q by P (so we may assume ht((I + p)/p) = 1).

It is enough to show Jq 6⊂
√

Anni
Iq

(Mq) for some i ≤ s. Therefore, localize at q and assume q = m. Hence
s = depth Mp + dim R/p = depth Mp + 1.

Claim 3. p contains a non-zerodivisor.

Proof. If not, p is contained in an associated prime of M. As dim R/p = 1 and depthJ M > 0,

p ∈ AssR M. Then depth Mp = 0 and s = 1, a contradiction as s > 1. ¤

Now let x ∈ p be a non-zerodivisor on M. Then 0 → M
M−→→ M/xM → 0 is exact. Note that s′ = s(J, I, M/xM) ≤

s − 1 as depth(M/xM)p = depth Mp − 1. Therefore, for some i ≤ s − 1, J 6⊂
√

AnnR Hi
I(M/xM). From · · · →

Hi
I(M) → Hi

I(M/xM) → Hi+1
I (M) → · · · we see that J 6⊆

√
AnnR Hi

I(M) for some i ≤ s. ¤


