The following notes are based on those of Tom Marley’s lecture notes from a course on local cohomology in the

summer 1999.

1. REFRESHER ON INJECTIVE MODULES
Recall the following proposition from 902:

Proposition 1.1. If E is an injective R—modules and S is an R—algebra, then Hompg(S, E) is an injective

S—module.

In particular, the proposition shows for an ideal I of R and an injective R—module E that (0 :g I) & Homg(R/I, E)

is an injective R/I—module.
Proposition 1.2. If M is torsion-free and divisible then M is injective.

Proof. Consider the maps
M
|
0——I1——R
Let ¢ € I'\ {0}. Since M is divisible, there exists € M such that ¢(i) = ix. Let i’ € T\ {0}. Then ¢(ii') = ip(i') =
i'¢(i) = i'iz. As M is torsion-free, ¢(i') = i'z. Define ¢ : R — M by ¢(r) = rz. O

Corollary 1.3. If R is a domain then Q(R) is an injective R—module.

2. DEFINITION OF LocAL COHOMOLOGY
Definition. Let R be a ring, I an ideal, and M an R—module. Define
Lr(M) :=Up31(0 s [") = {m € M|I"m =0 for some n}.

Let f: M — N be an R—linear map. Note that f(I';(M)) C T';(N) as for z € I';(M) there exists n such that
Iz =0 and so I" f(x) = f(I"x) = 0. Thus we may define I';(f) = f|r, ) : 1 (M) — T';(N), making I';(—) into a

covariant functor on the category of R—modules.
Proposition 2.1. I';(—) is an additive left exact covariant functor.

Proof. Tt is clear that I';(—) is additive as the map T';(f) is just the restriction map. Thus we are left to prove the
left exactness. Suppose 0 — M I, N & L is exact and apply T';(—) : This gives the sequence 0 — T';(M) L:h,
T'y(N) L), I';(L). As T'z(f) is just the restriction map, we see it is injective. We see kerI';(g) 2 imT';(f) as
Ti(g)Ti(f) = Ti(gf) = 0. Lastly, suppose = € kerI';(g) C kerg = im f. Then there exists m € M such that
f(im) =z and n € N such that Iz = 0. So 0 = ["x = I"f(m) = f(I"™m) implies I"m = 0 as f is injective. Thus
m €T (M) and z € imT';(f). O

Definition. The i*" local cohomology of M with support in I is HY{(M) := R'T[(M), where R'F is the right

deriwed functor of a covariant left exact functor.

Remarks.
(1) HY{(E) =0 if E is injective and i > 0.
0,if IZp
Er(R/p), if I Cp.
In particular, this says that since every injective module I is a sum of indecomposable injective modules
(that is, I = @pespec RER(R/p)*PD), we have HY, (I') = Er(R/m)"*M) where 0 — M — I" is an injective
resolution for M.

(2) H{(Er(R/p)) =



very element o J is kille a power of I.
(3) Every el f H} (M) is killed by a p f7

Proof. Hi(M) = HY(E") where E" is an injective resolution. But every element in HY(E?) is killed by a
power of I. 0

(4) Suppose every element of M is killed by a power of I. Then H?(M) = M and H:(M) =0 for i > 0.

Proof. Clearly HY(M) =T;(M) = M. For the latter equality, we first prove the following claim.
Claim. If p;(p, M) > 0 then p D I.
Proof. Suppose not. Let 0 — M — J* be a minimal injective resolution of M. Then 0 — M, — J,,
is minimal. Since p € J, we have M), = 0 and thus 0 — J, is minimal. As each J' is injective,

we see 0 — J;, is split exact. Thus

Howp, (k(p), Ji=1) % Homg, (k(p), J2) > Homg, (k(p), Ji™1)

1Up

is exact and so Hompg, (k(p), J;) = 0, a contradiction.
Thus 0 — I';(M) — T'y(J") is exact and Hi(M) = 0 for i > 0. O

(5) Let R be Noetherian, M a finitely generated R—module. Then depth; M = min{i|H}(M) # 0}.

Proof. Induct on depth; M. If depth;(M) = 0, then I C Z(M) and so I C p := (0 : z) for z # 0. So
Iz = 0 which implies HY(M) = I';(M) # 0. So suppose ¢t = depth; M > 0. Then I contains a nonzero-
divisor on M and so HY(M) = 0. Let z € I be a nonzero-divisor on M. Then we have the exact sequence
0— M5 M — M/zM — 0. As depth; M/xM = depth; M — 1 =t — 1, inductive gives Ji(M/xM) = 0 for
i<t—1and 0= H""(M/xM)# 0. So we have

Hi Y (M/zM) — H{(M) = Hi(M)
for i —1 <t — 1. Since Hi(M) is killed by some power of z, we have H:(M) = 0 for i < t. If i = ¢, we have
0=Hi " (M) — H Y(M/xM) — H%(M) where the middle term is nonzero. Thus H(M) # 0. O
Corollary 2.2. Let (R, m) be local. Then R is Cohen Macaulay if and only if H. (R) = 0 for all i < dim R.

Corollary 2.3. Let (R,m) be local. Then R is Gorenstein if and only if

0, i # dim R

H! (R) = .
() Er(R/m), i=dimR

Proof. Let I' be a minimal injective resolution of R. By the above remarks, we have HO (I') = E*(®) where
E = Er(R/m).

For the forward direction, suppose R is Gorenstein. Then p;(R) = 0 if ¢ # d = dim R and pq(R) = 1. So
HY (I') = 0 for i # d and HY, (I?) = E. Therefore H% (R) = E and H} (R) = 0 for all i # d.

For the backward direction, note R is Cohen Macaulay by the previous corollary. So Ext%(R/m,M ) = 0 for
all i < d, which implies p;(R) = 0 for all i < d. Thus it is enough to show u4(R) = 1. Consider HY, (I') :

0 — FralB) — pran(R) ... By assumption,

0 — H}(R) — Era(R)
X\ /

0 0

is exact. As H%(R) = E, we have E#¢(F) = F? (R) @ C. Thus C = EF«F)~1 Hence pg(R) = 1 if and only if C' = 0.

m

Etat1(R) —— -



Apply Hompg(R/m, —) :

(1) Homp(R/m, Era(E Hompg (R/m, EFt1(R)) —

\/

Homg(R/m, C)

/\

Note that QNS is surjective as the map ¢ splits.
In general, note that (0 :y m) = Hompg(R/m,N) = Homg(R/m, H),(N)) = (0 :o (x) m) naturally. Hence we
have the following commutative diagram

Homp(R/m, EF¢(R)) —— Homp(R/m, Erd+1(R))

l: l:

Hompg(R/m, HY, (I%)) — Hompg(R/m, HC, (141))

; -

Hompg(R/m, I%) Hompg(R/m, I4+1)

where the last map is zero as I" is minimal. Thus, by diagram (1) we see Homgr(R/m,C) = 0. But Homg(R/m,C) =
Hompg(R/m, Era(f)=1) = gra(B)=1 Therefore pg(R) = 1 and R is Gorenstein. O

Proposition 2.4. Let R be Noetherian. Then for any ideal I of R we have I't = I' 7. In particular, H{(M) =

Hiﬁ(M) for all i > 0 and for all R—modules M.

Proof. As R is Noetherian, /T is finitely generated. Thus there exists n such that (vT)"* C I. Let x € L 7(M).
Then there exists k such that (v/T)*z = 0, which implies I*z C (v/T)*2 = 0. Therefore x € T';(M).

Let 2 € T;(M). Then there exists k such that I*z = 0. Since (vI)" C I, (v I)*" C I* and so (VI)*"z = 0.
Therefore x € I' 7(M). O

Proposition 2.5. Let R be Noetherian, S a multiplicatively closed set, M an R—module, and I an ideal. Then
Hj(M)g = H}s (Mg) for alli.

Proof. Recall that Hi(M)g is computed by taking an injective resolution of M, applying H?(—), taking homology
and then localizing. As localization is flat, it commutes with taking homology. Thus it is enough to show localization
commutes with the functor HP(—), that is, H)(M)x = H}_(Msg). Clearly H}(M)s C H}_ (Ms). Suppose (Ig)"

(™) = 0. As I is finitely generated there exists s’ € S such that s'I"m = 0 This implies s'm € HP(M) and so
e H)(M)s. O

Proposition 2.6. Let (R, m) be a local ring, M a finitely generated R—module. Then HE (M) is Artinian for all i.

Proof. Let 0 — M — I' be a minimal injective resolution of M. As HY (I') = Er(R/m)*™) ;(M) < oo, and
Egr(R/m) is Artinian, we see H?, (I*) is Artinian and H{ (M) is a subquotient of HY (I?). O

Proposition 2.7. Let I be an ideal, M an R—module. Then H:(M) = H_H)lExtE(R/I",M).
Proof. For i = 0, note that Homp(R/I™, M) = (0 :pr I™). O
3. “A NOTE ON FACTORIAL RINGS” MURTHY, 1964

The goal of this section is to prove the following theorem, but to do so we must first prove a series of lemmas.



Theorem 3.1. Let A be a UFD which is a quotient of a reqular local ring. Then TFAE

(1) A is Cohen Macaulay
(2) A is Gorenstein

From now on, let B be a regular local ring, n = dim B, A = B/p where p € Spec B and r = ht p.

Lemma 3.2. Let M be a Cohen Macaulay B—module and h = pdg M. Then Exty(M,B) = 0 for all i < h and
M’ = Ext" (M, B) is Cohen Macaulay with pdg M = h.

Proof. See Proposition 3.3.3 in BH, or my reading course notes. O
Lemma 3.3. Let M be a finitely generated B—module. Then p € Ass M implies pdg M > ht p.

Proof. Since B is a regular local ring, pdz M = dim B — depthz M and ht p = dim B —dim B/p. Thus pdg M > htp
if and only if depthy M < dim B/p. But if p € Ass M, this inequality holds. (|

Lemma 3.4. Suppose A = B/p is a Cohen Macaulay ring. Then M := Extz(A, B) & A or an unmized height one

ideal.

Proof. Recall an ideal I is unmixed if every member of Assp B/I has the same height. We will prove by induction
on { =dimA = dimB/p = n — r. First suppose { = 0. Then p = mp and so M = Exty(B/m,B) =2 B/m = A.
Now suppose £ > 0. Then p # mp. Let § = ¢/p € Spec A where p C ¢ C mp. We have Mz = Ext%q (Ag, By).
By induction, Mz is a torsion-free Az—module of rank 1. Thus § € Assa M. So Assq M C {(0),m}. Since A is
Cohen Macaulay, depth A = dim A = ¢. Then pdg A = dimB — depthA = dimB — dimA = n — { < dim B.
By the lemma above, M = Ext’z(A, B) is Cohen Macaulay and pdg M = r. Hence depthy M = depthy M =
dimB — pdg M = dim B — r > 0. Therefore m € Ass M. Hence Ass M = {(0)} and M is torsion free. Now
M) = M, = Ext}z(A, B), = Exty (k(p), Bp) = k(p). So ranka M = 1. Thus M = I where I C B is an ideal. If
I = B, then M = A and we are done. So suppose [ is proper. We have the following short exact sequences:

(a)0»p—B—-A—-0

(b) 0—=p—1—1,—0where [, =1=M

(¢)0=I—-B—B/I—0
From (a), pdgp =pdyp—1=r—1. We already have pdg M = r and so from (b) and the Horseshoe Lemma we get
pdp I <r. Then by (c) we have pdz B/I < r+ 1. By the previous lemma, if ¢ € Ass B/I then ht ¢ < pd B/I < r+1.
Therefore I is unmixed of height r + 1. Hence M =2 T = [ /p is unmixed of height 1. ]

Proof of Theorem 3.1. We need only show that A Cohen Macaulay implies A is Gorenstein. Write A = B/p as in
the theorem. By the last lemma, Ext;(A, B) = A or I where I is an unmixed ideal of height 1. If Ext’; (A4, B) & A,
then we are done as wy = Extl;(A4,wp) = Extz(A, B) = A. So suppose Ext; (A, B) 2 I. Recall that height 1 primes
are principal in a UFD. So I is principal which implies I = A. O

4. THE TENSOR PrRODUCT OF CO-COMPLEXES

Let C', D" be two co-complexes. Define (C ®r D) by (C ®g D)™ := @iﬂ':nCi ®gr D7 and define a map 0 on
C ®r D as follows: for c@d € C*® D7, let d(c® d) = dc @ d + (—1)’c ® dd. Note here that 9* = 0.

Facts.

(1) (C®r D) =2 (D®gC) as complexes.
2) C®(D®E)~(C®D)®E.



Definition. Let x = x1,...,x, € R. Define the Cech complex on R with respect to x1,...,x, by

C (z1; R) = 0—R— Ry — 0 whererw— 7
C(z1,.yxn; R) == C(x1,...;Zpn_1; R) ®r C"(xn; R)
= i1 C (2 R)

Example. Lets compute C'(x,y; R) : By the above, we get the sequence
0-ReRLR,0ROR®R, % R, @R, — 0
where f(1®1)—~1®101®1, g1 ®1,0)=(-1)1®1, and (0,1 ® 1) = 1 ® 1. Simplifying this, we get
0-RLR, &R, % Ry —0
where f(1) = (1,1), g(1,0) = —1 and g(0,1) = 1. In general, C"(z; R) looks like
0— 10% — @i Ry, = BicjReye; = — Reyooz,, — 0

where the differentials are the same as the maps in the Koszul co-complex with 1’s in the place of the z}s.

Definition. If M is an R—module, we define C"(z; M) := C"(z; R) @ M. The i*" Cech cohomology of M is
Hi(M) := H(C (z; M)).

We want to show HL(M) = H(iz)(M), that is, the Cech Cohomology and local cohomology for M are the same.
We will start by proving the claim for i = 0 and later show for ¢ > 0.

Lemma 4.1. Let M be an R—module, x = x1,.., 2, € R, I = (2). Then H)(M) = H}(M).

Proof. From the above, C"(z; M) starts out as 0 — M 2 @ M,,. Now

me H)(M) < mekerdy

& T =0in M, for all i
& there exists ¢t > 0 such that x?m =0 for all 4
& there exists t > 0 such that I'm =0
4

m € HY(M).

Proposition 4.2. Suppose 0 - L — M — N — 0 is a short exact sequence of R—modules and x = x4, ...,x, € R.

Then there exists a natural long eract sequence

- — H2(L) — H} (M) — Hy(N) — HPH(L) — -+



Proof. Consider the following commutative diagram with exact rows and columns (the columns are exact as local-

ization is).

0 0 0
0——>L——>®L;, —> ——> Ly .y —> 0
0—> M —>®M,, —> -+ ——> M.y —> 0
0—>N—>&N,, —> -+ —> Ny —> 0

0 0 0

This gives us the short exact sequence of co-complexes: 0 — C*(z; L) — C"(z; M) — C"(z; N) — 0. The long exact
sequence now follows. O
Proposition 4.3. Let M be an R—module and x = x1,...,x, € R. Let y € R. Then there exists a long exact sequence

i i (=1° i

0 1
Proof. Let C" = C'(z; M) and C'(y) = C (z,y; M) = C(z; M) @ C'(y; R). Then C"(y) =C" ® (0 - R — R, — 0).
Hence C'(y)" =C" ' ®r Ry ® C" @ R = C;‘_l @r C™. Consider the following commutative diagram.

0 O;}—l O;}—l @ an C" 0
T
0 cy Cy @0t ——s gntl —— )

This yields the short exact sequence of co-complexes: 0 — CQ[—l] — C"(y) —» C" — 0, which gives the long exact

sequence

— S HIN M)y ———— > H (M) —> Hi{(M) —2> Hi(M), — -

Zz,y z

HIZH(Cy) = HH(C (y)

where 0 is the connecting homomorphism given by the snake lemma applied to the previous diagram. It is clear that
0= (-1 O

Corollary 4.4. Let M be an R—module and x4, ..,x, € R. Suppose some x; acts as a unit on M (that is, M is an
Ry, —module). Then HL(M) =0 for all i.

Proof. For i = 0, it is clear that Hj(M) = H?x)(M) = 0. So suppose i > 0. As C"(z; M) = [®"_,C (z;; R)] ®r M,

we may assume without loss of generality that x,, acts as a unit on M. Let 2’ = z1,...,x,_1. By the proposition,

there exists a long exact sequence - -+ — HE(M) — H;, (M) ASaiiN Hé, (M)y, — -+ . As M is an R, —module, each

module in C"(z'; M) is an R,, —module. Hence the map H} (M) SN H, (M), defined by m — (=1)"% is an

isomorphism for all ¢. Therefore, H;(M) = 0 for all 1. |

Proposition 4.5. Let R be a Noetherian ring, x = x1,...,x, € R. For any injective R—module I, Hé([) =0 for all
i>1.



Proof. As I = ®ERr(R/p), it is enough to show the proposition in the case E = Eg(R/p) for some p € Spec R.

Case 1. x1,..,x, € p. As every element in E is annihilated by a power of p, E,, = 0 for all ¢. Thus
C(x;E)=0—>E—0—0—---.So H)(E)=FE and H.(E) = 0 for all i > 1.
Case 2. There exists z; € p. Then z; acts as a unit on F and hence Hi(E) =0 for all ¢ > 1 by the

corollary.

O

Theorem 4.6. Let R be Noetherian, I = (21, ...,xy), M any R—module. Then there exists a natural isomorphism
Hi(M) = Hj(M) for alli>0.

Proof. We will induct on i. We have already shown the claim for i = 0. So suppose i > 0. Let E = Er(M) and
consider the short exact sequence 0 — M — E — C' — 0. Then there exists a long exact sequence

C— Hi_l(E) e Hé_l(C) _—

im im

“NEB) — H]Y(C) — Hj(M) — Hi(E) =0

P(M) —— Hi(E) =0
I
Y

By the Five Lemma, H} (M) = Hj(M). O
5. LocAL COHOMOLOGY AND ARITHMETIC RANK
Definition. If I is an ideal of R, the arithmetic rank of I, denoted ara(I), is defined by
ara(I) = min{n > 0| there exists a,, ...,a, such that VI =/(ay,...,an)}.
Corollary 5.1. Let I be an ideal of a Noetherian ring R and M an R—module. Then H:(M) = 0 for all i > ara([).
Proof. Let t = ara(I). Then there exists ay, ...,a; € R such that m =+/I. Then
Hj(M) = H. /(M) = H\/@ '

for i > t. O

(M) = H{, (M) = Hy(M) =0

Definition. Let R be a Cohen Macaulay local ring and p a prime of height h. Then p is called a set theoretic

complete intersection if ara(p) = h.
Corollary 5.2. Let R be Cohen Macaulay, ht p = h and Hg"’l(R) # 0. Then p is not a s.t.c.i.

Example. Let R = k[z;;|1<i<2,1<j<3 with char k = 0. Let I = I5((x;;)), the ideal of 2 x 2 minors of the matrix
(z47). Then I is prime of height 2. Hochster proved that H3(R) # 0 and so I is not a s.t.c.i.

Lemma 5.3. Let R be a Noetherian ring, I an ideal. For any integer v > 1, there exists f1, ..., fr € I such that for
any prime p with htp <r — 1 we have p D I if and only if p D (f1,.., fr)-

Proof. We will induct on r. If » = 1, choose f; € I\ UP; where the union ranges over all primes with ht p; = 0 and
I ¢ P;. Now suppose r > 1. By induction, we have f1,..., fr—1 € I such that if htp < r — 2 then p D (f1, ..., fr—1) if
and only if p D I. Choose f,. € I\ Up; where now the union ranges over all primes p; minimal over (f1, .., f,—1) with
htp, =r—1and I Z p;.

Claim. (fi,..., fr) works.

Proof. Let p D (f1,..., fr) with htp < r — 1. If htp < r — 2, then we are done by induction. So
suppose htp = r — 1. If p is not minimal over (f1,..., fr—1), then there exists a prime ¢ with
p2q2 (fiyees fro1)- Sohtg < r—2and g O I. If p is minimal over (fi,..., fr—1) then I C p by
choice of f;.



O

Theorem 5.4. Let R be a Noetherian ring of dimension d and I an ideal of R. Then ara(I) < d+ 1. If R is local,
then ara(l) < d.

Proof. By the lemma, there exists fi, ..., fa+1 € I such that for all p € Spec R, p 2 I if and only if p 2 (f1, ..., fat1)-
Hence VI = \/(f1, ..., fay1). If (R,m) is local, we know there exists fi, ..., f¢ € I such that for all p # m we have
p D (f1,.... f4) if and only if p O I. Since m contains both ideals, VT = \/(f1, ..., f4)- |

Theorem 5.5. Let R be a Noetherian ring of dimension d, I an ideal, and M an R—module. Then H:(M) =0 for
all i > d.

Proof. If R is local, then ara(I) < d. Otherwise, let p € Spec R. Then for i > d we have H}(M), HIR (M,) =0
as dim R, < d. Hence H{(M) =0 for all i > d. O

Theorem 5.6 (Change of Rings Principle). Let S be an R—algebra, where R and S are Noetherian. Let I be
an ideal of R and M an S—module. Then Hi(M) = Hig(M) for all i where we consider M as an R—module on the

left hand side and as an S—module on the right hand side.
Proof. Let I = (21, ..., ,)R. Then, consider the Cech complex, we have
Crl;M)=C(z;R) @M =C'(2; R) ®r (S®s M) = C'(2;5) ®s M = Cy(z; M).
Thus Hi(M) = Hi(M) = Hig(M) = Hig(M). O

Corollary 5.7. Let R be a Noetherian ring, I an ideal of R and M a finite R—module. Then H (M) = 0 for all
1> dim M.

Proof. Recall dim M = dim R/ Anng M and M is an R/ Aung M —module. Thus Hi(M) = Hiy(M) where S =
R/ Anng M. Hence H}o(M) =0 for i > dim S. O

Proposition 5.8. Let S be a flat R—algebra with R,S Noetherian. Let I be an ideal of R and M an R—module.
Then H{(M) ®@r S = Hig(M ®pg S) for all i > 0.

Proof. We have

H{(M)®rS = HY(C(z;M))®r S where I = (z)R
>~ HY(C(z;M)®grS) (since S is flat, — @r S is exact)
~ HY(C(zS;M ®gS))
- i ens)
= Hig(M®gS).

O

Corollary 5.9. Let (R,m) local, I an ideal, M a finite R—module. Let R be the m—adic completion of R. Then
Hi{(M)®r R H;R(M ®gr R) & H}R(M) for all i.

Proposition 5.10. Let R be Noetherian, M be an R—module, and I = (z1,...,x,) an ideal. Then Hy (M) =
Mmmxn/zz;l Mz, ..., -

Proof. Recall that H}‘(M) is the homology of @'Mml...fi...zn i My, ..., — 0 where ¢(0,...,w,...,0) = (—1)%w.

Corollary 5.11. Let (R,m) be a Gorenstein local ring and xi,...,xq be a system of parameters for R. Then
ER(R/m) = RIl”'wd/Zi Rwl"'fi'”wd'
Proof. Hé)(R) = H¢(R) = Er(R/m). O

2

Example. Let R = k[z1,...,zq4] for a field k and m = (z1,...,24). Then Eg(R/m) = Ry ..,/ Y. Rayooiiyoomy =

iy
Biy . igenakay gt



6. DIRECT LiMITS AND KOszuL COHOMOLOGY
Theorem 6.1. Let I C R, M an R—module. Then Hi(M) = lii)nExtzé(R/I”,M) for all i.

Proof. First note that Exth(—, M) applied to R/I"*? — R/I"™*' — R/I™ — --- gives the directed system
Exth(R/I", M) — Exth(R/I™', M) — Exth(R/I"2, M) — --- . In the i = 0 case, we have Homp(R/I™, M) =
(0 :ar I™). So limHomp(R/I™, M) = lm(0 :py I™) = Uy(0 1y M) = HY(M). In general, let E be an injective

resolution of M. Then, as lim is exact, we have

lim Exti (R/I™, M) limH*(Hompg(R/I", E"))
H'(lim Hompg(R/I™, E"))
H'(H}(E"))

Hi(M).

1R

Definition. Let x = x1,...,x, € R. Define the Koszul co-complex on R with respect to x as follows:

0 1
n=1: K(;R):= 0-RZR—-0

n>1: K'(E;R) = K (x1,..,2p—1;R) @ K (x,; R)
= K (zis R)
which looks like
0 1—(21,...,Tn) 1 (n) n eir—tx; n
0—R R—R?—... 5 R" —— R—0

This is essentially the same as K.(z; R), the Koszul complex, except it is written as a co-complex and the signs
in the maps differ. If M is an R—module, define the Koszul co-complex on M with respect to z by K'(z; M) =
K'(z; R) ®g M. Then i*" Koszul cohomology on M with respect to z is H'(z; M) = H'(K (z; M)).

Proposition 6.2. Let z = z1,...,x, € R, M an R—module. Then
(1) HO(z; M) = (0 :ar (2)).
(2) H"(z; M) = M/(z)M.
(3) If 1,...,z, is an M—regular sequence, then H'(x; M) = 0 for all i < n.

Definition. Let M = {M,}, N = {N,} be directed systems of R—modules. Define a directed system M Qr N by
MS@Ng

(M &g N)o = My @ Ny and M, @ Ny ——5 Mz ® Nj for a < .
Lemma 6.3. h—H>I(MO< ® Ny) = lim M, @ limNg,.
Definition. Let {C} be a directed system of co-complexzes of R—modules, that is,

-—>C'g 4>Cg+1 Hcg+2 —_—...

- —Cy *)cg“ *)cg” - ...
for a < . Then imC,, is a co-complex:

<= limC? — limC T — limC 2 — -

- e -

Definition. Let C", D" be directed systems of co-complexes of R—modules. Define a directed system C* @p D' by

(C R D)g — Zi+j=n C(ZX & Dgé
(Cer D) =—=Y,,, , Ch® D)



Fact. lim(C" ® D), = (limC,,) ® (imDy,).

Recall for z € R that lim(R L RE RS ...)=R,. As a corollary to this, one can prove lim (M SME5MS
) 2 M,

Definition. Let z = x1,...,x, € R, M an R—module. Define a directed system K (zt; M) as follows:

n=1 K@M)= 0 M —= M 0
z2

0 M M 0
:ES

0 M M 0

n>1 Kz M):= K, . ,2t_;M)®2 K (z!;R)
Theorem 6.4. limK (z'; M) = C"(z; M), the Cech Complex.
—

Proof. We will prove by induction. Let n = 1. Clearly lim(M — M — M = -..) = M. By the Corollary,
lim (M M5 M -.0) 2 M,. One easily checks that the induced map on direct limits is M — M, defined by

m — 5. So suppose n > 1. Then

ImK (2 M) = lm(K (2f,...,25_; M) @r K (2,; R)
= (limK (5, .., ;M) @r (K- (z],; R))

t
t
Tn—1
T1yeeey Tp— 1;M)®C(xn’R)

Theorem 6.5. Let R be Noetherian, I = (z)R, M an R—module. Then Hj(M) = limH" (z*; M).

Proof. As lim is exact,
i

X

=
IR
,i,ié
\&“N N\
i@h

O

Corollary 6.6. Let R be Noetherian, I = (z1,...,xn)R, M an R—module. Then H} (M) = h_n)lM/(xﬁ,,x;)M
where M/(z, ..., xt )M ZrTn M/(xﬁ“, o EFD) M.

rrn

Remark. Let {I,},{J,} be two decreasing chains of ideals. We say the chains are cofinal if for all n there exists
k such that Ji C I, and for all m there exists £ such that I, C J,,.
If {I,} is a descending chain of ideals cofinal with {I™} then

HP (M) = Up(0 :ar I,) = lim Homp(R/I,,, M).

One can show that H}(M) = lim Exty(R/IL,, M).



Theorem 6.7 (Mayer-Vietoris sequence). Let R be a Noetherian ring, I,J C R, M an R—module. Then there

exists a natural long exact sequence

0 — Hyy;(M) — H}(M) & Hj(M) — Hpp (M) — -+ — Hpy (M) — H(M) & Hj (M) — Hj (M) — -

Proof. For all n there exists a short exact sequence
0—R/(I"NJ") - R/I"®R/J" — R/(I"+J") — 0.
Apply Hompg(—, M) to get a long exact sequence
o — Extiy(R/(I" + J™), M) — Extiz(R/I" ® R/J", M) — Extix(R/(I" N J"),M) — ---
This forms a directed system of long exact sequences. Take direct limits. It is enough to show {I"™ 4+ J"} is confinal
with {(I + J)"} and {I™ N J"} is cofinal with {(I N J)"}. We know I + J" C (I + J)" and (I + J)** C I" + J".
Now (INJ)™ C I"NJ™ By the Artin Rees Lemma, there exists k = k(n) such that for all m > k
maJr=rmkiatngry crmkgn.
Therefore, for m > n + k we have

maJrcrraJrcrmThgr eyt c(InJg)n O

Proposition 6.8 (Hartshorne). Let (R,m) be a local ring such that depth R > 2. Then U = Spec R — {m} is

connected.

Proof. Assume U is disconnected. Then there exist clopen sets V(I) N U # () and V(J) N U # () such that
V)N U)YU V() NU) = U and V(I) N V()N U = 0.

Notice that the first is true if and only if VI N J C Upespec R\ {m}P = v/0 which is if and only if I N J is nilpotent.
The second equality is true if and only if /T + J = m as I and J must be proper. Together with V(I) N U # () and
V(J)NU # 0, we have neighther I nor J is m—primary or nilpotent.
By Mayer-Vietoris,
0 — Hi,;(R) — H}(R) ® H}(R) — Hp;(R) — Hp, 5(R).
Now I+ J =m and depthR > 2, so H}, ;(R) = Hj,; = 0. Also H;(R) = R as I N J is nilpotent. Therefore
R = HY(R)® HY(R). As R is local, R is indecomposable. Say H?(R) = R, which implies H?(R) is generated by a

nonzero-divisor. Thus [ is nilpotent, a contradiction. ([l

7. LoCcAL DUALITY

Lemma 7.1 (Flat Resolution Lemma). Let R be a ring, M, N R—modules and F. a flat resolution of M, that
is, each Fy is a flat R—module and --- — Fy — F| — Fy — M — 0 is ezact. Then Tor®(M,N) = H;(F. @ N) for
all i > 0.

Proof. Induct on i. For i = 0, as — ®pg N is right exact we have F1 g N — Fy®r N — M ®r N — 0 is exact. Thus
Hy(F.®@rN)=M®rN = Tor(lf(M, N). Now suppose i > 0. Let Ky = ker(Fy — M). Then 0 - Ky — Fy - M — 0
is exact. As Fy is flat, Tor(Fy, N) = 0 for all i > 1. Therefore

0 — Torf(M,N) - Kog®@r N — Fy @g N - M @ N — 0

is exact and Tor? (M, N) = Tor? | (Ko, N) for all i > 2.



For i = 1 we have Torf(M, N) = ker(Ko ® N — Fy ® N) but from the diagram

FQ@NHFH@N F0®N
Koy® N
m\
0

where the bottom sequence is exact we have
ker(K0®N—>F0®N) %ker(F1®N/1m(F2®N) —>F0®N) :Hl(Fl ®RN)

For i > 1 use the isomorphism Tor.* (M, N) = Tor!* | (Ko, N) for all i > 2 and the fact that --- — Fy — F} — Ko — 0

is a flat resolution of Kj. O

Theorem 7.2 (Local Duality). Let (R, m) be a complete Cohen Macaulay local ring of dimension d. Then for all
finitely generated R—modules M,

Exth '(M,wg) = H., (M) and Exty " (M,wgr)" = HE (M)
for all i where (—)Y = Hompg(—, Eg(R/m)).
Proof. We will prove the first isomorphism. The second isomorphism follows using Matlis Duality as Ext‘}i{i(M ,WR)
is finitely generated and H! (M) is Artinian.

Let x4, ...,z4 be a system of parameters for R. Then C"(z; R) looks like 0 - R — &Ry, — -+ — Rgy.oz, — 0.
The homology at the i'" place is H{,(R) = H;,(R). As R is Cohen Macaulay, H, (R) = 0 for all i < d. Therefore

0—R— ®R,, = — Ry, — HL(R) = 0
is exact. Hence F. = C"(x; R) is a flat resolution of HZ (R) (by letting F; = C?~%). Now
H!,(M)=H'(C(z; R) ®r M) = Hy_;(F. @ M) = Tor}_,(HZ(R), M).

Computing this Tor using a free resolution G. of M, we see H. (M) = Hy_;(G. ®p HZ

m

(R)). Therefore, for all i, we

have
H(M)Y = Hd (G. ®r H2 (R))V
= =i((G. @ HE(R))Y) as (—)V is exact
= Hd i(Homp(G. ® HE (R )E))
= H Z(HomR(G.,Hd (R)")) by Hom-® adjointness

1

Ext (M, Hi,(R)Y)).

It is enough to show wr = HY (R)V. Note HZ (R)V is finitely generated by Matlis Duality. Since our above isomor-
phism is true for i, we see Ext's (M, H% (R)) = 0 for i > d and all finite R—modules M. Hence Ext’(R/p, H. (R)Y) =
0 for all p € Spec R for i > d which implies u;(p, HL (R)Y) = 0 for all p € Spec R for i > d. Thus idg H% (R)Y < cc.
Also

0 ifo<i<d

R/m ifi=d

Thus depth HZ (R)Y = d and pq(HS(R)Y) = 1. Hence wgr = HE (R)V. O

Exty (R/m, Hy, (R)") = Hy ™' (R/m)" =

Remarks. Let (R,m) be a local ring and M an R—module. Let R denote the m—adic completion of R and
E = Eg(R/m) = E4(R/m).
(1) Homp(M ®g R, E) = Homp(M, E).



Proof. By Hom-® adjointness, Hom s (M ®g R, E) = Hompg(M, HomR(R E)) =2 Hompg(M, E). O

(2) If M is Artinian then M is naturally an R—module and M ®p R =2 M.
(3) If M is a finitely generated R—module H,(M) = H! (M) for all i.

Proof. Note H:nR(M) = H! (M)®p R and H! (M) is Artinian. O

Theorem 7.3 (Version of Local Duality for Non-Complete Rings). Let (R, m) be a d—dimensional Cohen
Macaulay ring which is the homomorphic image of a Gorenstein ring. Let wgr be the canonical module of R. Then
for all finitely generated R—modules M and all i, Ext% *(M,wg)¥ = H: (M).

Proof.

ExtL (M, wg)Y) Hompg(Exth (M, wg), E)

HomR(Ex‘u‘Ii{i(M7 wr) ®g R, E) by Remark 1
HQmR(Ext%_l(M,wR),E) as Wr = wp

H' (M) by the complete case of local duality
H! (M) by Remark 3.

IR 1R

1

O

Remark. Let (R, m) be a local Cohen Macaulay ring which has a canonical module. Let K be a finitely generated
R—module. If hatK = Wi then K = wg.

Proof. See Bruns and Herzog Proposition 3.3.14. |

Proposition 7.4. Let (R,m) be a Cohen Macaulay local ring which has a canonical module. Write R = S/I where
(S,n) is a Gorenstein local ring and ht I = g. Then wr = Ext(R, S).

Proof. By the remark, it is enough to show ExtZ(R,S) ®p R~ wp = HiLR(IA%)V. Thus we may assume R and S are

complete. Now

Ext§(R,S)Y = Homg(Ext§(R,S), Er(k))
= Hompg(Ext(R,S),Homg(R, Es(k)))
= Homg(Ext%(R,S) ®r R, Es(k))
= Homg(Ext%(R,S), Es(k))

= HImS5-9(R) by local duality and as wg = S
= HImE(R) by the chance of rings principal
By Matlis Duality, Ext% (R, S) & HIME(R)Y 2 wp. O

Theorem 7.5 (Chevelley’s Theorem). Let (R,m) be a complete local ring. If I, for n = 1,2, .. are ideals of R
such that I, 2 Inyq for all n and N, I, = 0 then for any n € N there exists s = s(n) € N such that Iy C m™.

Proof. We will prove by contradiction. Assume there exists r € N such that Iy € m” for any s € N. Then
for any n > r, Iy & m™ for all s. Now dim R/m™ = 0 and so R/m™ is Artinian. Thus there exists ¢(n) € N
such that I,y +m" = I, +m" for all s > #(n). Now we may assume t(n) < t(n + 1) for any n > 7. Then
Liny C Iiny +m"™ = Li(q1) +m™. Therefore for any z,, € I;(,) there exists z,, 411 € I;(,41) such that z,, —z, 41 € m".
Start with z, € I;y \ m". Then we have a sequence (x,),>, such that z,, — x,,41 € m™. Clearly, (z,) is a Cauchy
sequence. As R is complete, let x* = lim, .o Tn. NOW @y, Tpq1,... € ly(). As ideals are closed in the m—adic
topology z* € ;) and so 2™ € Ny>r i) = 0.

On the other hand, z,, — . € m" for all n > r. So 2* — 2, € m" (as there exists n > r such that z* — z, € m”

and so (z* — z,) + (xy, — x,) € m"). Thus x, € m", a contradiction. O

Theorem 7.6. Let (R,m) be a local ring and M a finite R—module of dimension s. Then HZ (M) # 0. Hence
dim M = sup{i|H},(M) # 0}.



Proof. Since dim M = dim M and H:

i (M) = H. (M), we may assume R is complete. Let R = S/I where (S,n) is a
complete regular local ring. By the change of rings principle, it is enough to show H2 (M) # 0 where M is considered
as an S—module. Let ¢ = ht Anng M. As S is Cohen Macaulay, there exists x1,..,2, € Anng M which form an
S—sequence. Let T'= S/(x1,...,24). Then (T,n,) is a complete Gorenstein local ring, M is a finite T—module, and
dim M = dimT = S. By the change of rings principle, it is enough to show H;;, (M) # 0 where M is considered as a

T —module. O

Definition. Let (R, m) be a local ring and M «a finitely generated R—module. M is said to be a Buchsbaum module
if and only if for all system of parametersz = x1,...,x. € R for M (that is, r = dim M and A(M/(z)M) < c0),

AM/(z)M) — e (M) = C, a constant

z)

A(M/(x)" M)

Recall ey (M) = limy, -rl, the multiplicity of M with respect to (x).

Note. Since e(,)(M) = AN(M/(z)M) if z is an M —sequence, Cohen Macaulay modules are Buchsbaum.

Theorem 7.7 (Stiickrad-Vogel). If M is a Buchsbaum module of dimension d, then m - H:

m

(M) =0 for all i < d.

The converse, however, does not hold. (There is no known cohomological characterization of Buchsbaum modules).

Note that as H; (M) are Artinian R/m—modules, this means dimp,,, H, (M) < oo for all i < d. This lead to the

following.

Definition. Let (R, m) be a local ring and M a finitely generated R—module. M is said to be a generalized Cohen
Macaulay module if \(H.,(M)) < oo for all i < dim M.

Remark. Buchsbaum modules are generalized Cohen-Macaulay modules. Let

I(M) := sup {AMM/(x)M) — e(z)(M)}.

zER,s.0.p for M
Theorem 7.8 (Cuong-Schezel-Trun, 1978). Let (R, m) be a local ring and M a finite R—module. TFAE
(1) M is generalized Cohen Macaulay.
(2) I(M) < 0.
Moreover, if either holds then I(M) = Z?:_Ol (dfl)/\(an(M)) for d =dim M.

K2

Definition. A finite R—module M is equidimensional if dim R/p = dim M for allp € Ming M = Ming(R/ Anngr M),
that is, R/ Anng M is equidimensional.

Remark. We always have dim R/p + dim M, < dim M for all p O Anng M. If R is local and catenary, then M is
equidimensional if and only if dim R/p + dim M, = dim M for all p O Anng M.

Lemma 7.9. Let (R,m) be a local ring and N an R—module. Then Anng N = Anng NV.

Proof. Certainly Anng N C Anng Homg(N, E) = Anng NV. Thus Anng NV C Anng NVV. But the natural map
N — NVV is always injective, so Anng NVV C Anng N implies Anng NV C Anng N. a

Theorem 7.10. Let (R, m) be a local ring which is the homomorphic image of a Gorenstein ring. Let M be a finite
R—module. TFAE

(1) M is generalized Cohen Macaulay.
(2) M is equidimensional and M, is Cohen Macaulay for all p € Spec R\ {m}.

Proof. Let R = S/I where (S,n) is a local Gorenstein ring. Then M is an S—module in the natural way. By the
change of rings principle, H! (M) = H! (M) for all i (where M is considered as an S—module on the left hand side
and as an R—module on the right hand side). Therefore, M is generalized Cohen Macaulay as an R—module if and

only if it is as an S—module. Likewise, M is equidimensional as an R—module if and only if it is as an S—module



(since S/ Anng M = R/ Anng M) and M, is Cohen Macaulay for all ¢ € SpecS'\ {m} if and only if M, is Cohen
Macaulay for all p € Spec R\ {m}. Thus we may assume (R, m) is Gorenstein.

Note that as HE (M) is Artinian, A\(H},(M)) < oo if and only if m"H{ (M) = 0 for some n if and only if
m"™ C Anng H! (M) for some n. By local duality, H: (M) = Ext%_i(M, R)V. By the Lemma, Anng Hi M) =
Anng Ext% (M, R). Thus

MHL(M)) < oo < m"C Anng Ext$ (M, R)
& Ext'f{l:(M, R), =0 for all p #m as Ext% *(M, R) is finitely generated
=3 Exth:(Mp, R,)=0forall p# m,p D Anng M.

As R, is Gorenstein, we can use local duality again to say Ext'f:i;i(Mp, R,)V & H;llt%(f)_(d_i)(Mp). Thus (as N =0
if and only if NV = 0), we see E)(‘c‘}{pi(Mp7 R,) =0 if and only if H;‘gf)_d“(Mp) = 0. Thus we arrive at the following

() N(H! (M)) < 00 & H;l_%:imR/p(Mp) =0 for all p # m,p O Anng M.

For (2) = (1), as M, is Cohen Macaulay for all p # m, H;;I_%jim BIP(M,) =0 for all i — dim R/p < dim M, which
implies H;]_%jim R/p(M]D) =0 for all i < dim M by the Remark. Therefore A\(H¢ (M)) < oo for all i < dim M.

For (1) = (2) HZ}:imR/p(Mp) =0 for all 7 < dim M and for all p # m with p O Anng M, or, HZRP(MP) =0 for
all j < dim M — dim R/p and for all p # m with p O Anng M. Since H;lli%n; M”(Mp) # 0, this says that dim M, >
dim M —dim R/p for all p # m,p DO Anng M. Since we always have dim M,, < dim M —dim R/p for all p O Anng M,
we have dim M, = dim M — dim R/p for all p # m,p O Anng M. Thus M is equidimensional and HZZRP (M,) =0 for
all j < dim M,,. So M, is Cohen Macaulay for all p # m. O

Recall that soc(M) := (0 :py m) = {z € M|max = 0}.
Lemma 7.11. Let (R,m) be a local ring and M a finitely generated R—module. Then p(M) = dimpg,, soc(M").

Proof. Since u(M) = p(MY) and MY = MV, we may assume R is complete. Consider 0 — mM — M — L — 0
where (M) = dimy, L for k = R/m. Since 0 — LY — M" is exact and m - LY = 0, dimsoc(M") > dim LY = p(M).
On the other hand, let V = soc(MV). From 0 - V — MY — B — 0 we get MVY — V¥ — 0 is exact. As R is
complete, u(M) = u(MYV) > p(VV) =dim VY = dim V. O

Question: Let (R,m) be a local ring of dimension d and I an ideal of R. When is H¢(R) = 0?
Certainly we need /T # m. Is that enough? The Hartshorne-Lichtenbaum Vanishing Theorem (HLVT) answers
this. A special case of HLVT is the following:
e Let (R,m) be a complete domain of dimension d. Then H¢(R) = 0 if and only if dim R/I > 0 (that is,
VI #m).

We will actually prove a more general version for arbitrary local rings. But first we begin with a very special case.

Proposition 7.12. Let (R, m) be a complete local Gorenstein domain of dimension d. Let p € Spec R with dim R/p =
1. Then H}(R) = 0.

Proof. We first need to show the following claim.
Claim. {P"},>1 and {P(™},,> are cofinal.
Proof. As R is a domain N,,> 1P(™ =0 (Check). By Chevalley’s Theorem for all k there exists n such
that P(™ C mF*. By primary decomposition P* = P N .J, where J,, is primary to m. Therefore
mF C J, for some k and so there exists ¢t >> 0 such that p(t) CmkCJ, We may as well assume
t > n. Then P* = P N J, D P N P® = P®) Thus they are cofinal.
Note that depth R/P(™ > 0 for all n as Assg R/P™ = {P}. Now H&(R) = lii)nExt%(R/P("),R). But by local
duality Ext%(R/P™, R) = HY,(R/P™)Y = 0. Thus H(R) = 0. O



Lemma 7.13. Let R be a Noetherian ring, I an ideal, x € R, and M an R—module. Then there exists a long exact
sequence

o Hiy (M) — Hy(M) — H} (M,) — Hif L (M) — -

Proof. We proved this for Cech Cohomology earlier. O

Proposition 7.14. Let (R,m) be a local ring of dimension d. TFAE

(1) H4(R) = 0 for all ideals I such that diim R/T > 0
(2) Hg(R) =0 for all p € Spec R such that dim R/p = 1.

Proof. Clearly (1) implies (2). So suppose there exists an ideal I such that dim R/I > 0 and HY(R) = 0. Let I be
maximal with respect to this property. By hypothesis, I is not prime of dimension 1. Thus there exists z € R\ I
such that dim R/(I,z) > 0. By the long exact sequence since H{(R) # 0 and H{ (R,) =0 (as dim R, < d), we have
H&z)(R) # 0, a contradiction. O

Proposition 7.15. Let (R,m) be a local ring of dimension d, I C R and M an R—module. Then H&(M) =
HY(R) ®r M. Hence if H{(R) =0 then H}(M) = 0 for all R—modules M.

Proof. As ara(I) < d, let I = \/(x1,...,x4) for some z1,...,24 € R. Then ®;Ry,...,...0y, — Raywy — HE(R) — 0
., — HYR)®r M — 0 is exact. But this implies
H¢(M) = H{R) ®p M. O

is exact. Tensoring with M gives us &My, ...q5,..0y — My,

Corollary 7.16. Let (R,m) be a local ring of dimension d. TFAE

(1) Hf(R)=0
(2) H{M) =0 for all R—modules M.

Let (R, m) be a local ring. Then one of the following holds:

(1) char R =0 and char R/m =0

(2) char R = p and char R/m = p

(3) char R =0 and char R/m = p

(4) char R =p"™,n > 1 and char R/m = p.

If (1) or (2) hold, R is said to have equal characteristic; otherwise, R has unequal characteristic. Note also that
(1) holds if and only if Q@ C R and (2) holds if and only if Z,, C R. Thus R has equal characteristic if and only if R

contains a field.

Definition. Let (R, m) be a complete local ring. A subring K C R is called a coefficient ring for R if

(1) R=K+m
(2) If R has equal characteristic, then K is a field. Otherwise (K,n) is a complete local ring such that n = pK
where p = char R/m.

Note here that R/m = K/n. Also if R is a domain then K is a domain. Hence K is a field or a complete DVR.

In any case, K is a quotient of a complete DVR.
Theorem 7.17 (Cohen). Every complete local ring has a coefficient ring.
Proof. See Matsamura |

Lemma 7.18. Let (R, m) be a complete local ring, K a coefficient ring for R and y1, ..., yq a system of parameters
for R. Let A= K[y1,...,ya]- Then R is a finite A—module.



Proof. First note that A is the image of the ring map ¢ : K[T1,...,Ty] — R defined by T; — y;. Therefore as
K|[Ti,...,T4] is complete and local, so is A. Let n be the maximal ideals of A. Then n = (p,y1,...,ya)A where
p = char R/m (here p may be prime or 0). Clearly n C m. By definition of coefficient ring, A/n = R/m. Therefore
every R—module of finite length has finite length as an A—module. In particular, Ay (R/nR) < oo (as n contains a
system of parameters for R). Choose 21, ...,x, € R such that R/nR = Azy + ... + AZ,.

Claim. R = Az + ... + Az,.
Proof. We have R = Y Az; + nR. Let uw € R. Write uw = > a;02; + u1 for a;0 € A,u; € nft
and iteratively up = > a; ,x2; + upy1 for a;p € n’“,ukH € n*+*1R. Now for each i we have a; =

aio+ a1 + ... converges in A. Then u — Y ;_, a;z; € "Mm*R C Nm* = 0, a contradiction.

Proposition 7.19. Let (R,m) be a complete local domain of dimension d and I an ideal of R. TFAE

(1) H{(R)#0
(2) dim R/I = 0.

Proof (due to Huneke and Brodmann, independently in 1994). The content of the proof is that (2) implies (1). By

Proposition 7.14, it is enough to show Hg(R) = 0 for any p € Spec R such that dim R/p = 1. Let K be a coefficient

ring for R. As R is a domain, K is a field or a complete DVR with uniformizing parameter ¢ where ¢ = char R/m.
Let p € Spec R with dim R/p = 1. As ara(l) < d, we know there exists 1, ...,xq € R such that p = \/(z1, ..., 2q)-

Furthermore, we may choose 1, .., z4 with the following properties.

(1) @1,...,24—1 form part of a system of parameters for R as htp =d — 1.

(2) If K is not a field and ¢ € p, then 21 = q as R is a domain.

(3) If K is not a field and ¢ ¢ p, then x1,...,z4-1,¢ is a system of parameters for R (as v/(p,q) = m, we may
choose Z7, ...,Tg—1 € p = (p+ ¢)/q to form a system of parameters for R/q).

If K is either a field or ¢ € p, choose y € R such that x1,...,24_1,y is a system of parameters for R. If ¢ & p, let
y=q. By (3) z1,...,24—1,y is a system of parameters for R.

Let A = K[z1,...,x4-1,y].- Then (as remarked in the previous lemma) A is a complete local domain as R is a
domain and R is a finite A—module. Thus dim A = dim R = d.

Claim. A is a complete regular local ring.
Proof. First suppose K is a field. Then A = K[T1,...,Ty]/I where T1, ..., T, are indeterminates. As
K|[Ty,...,T,] is a d—dimensional complete regular local ring and dim A = d, I = 0.
Now suppose K is not a field. Then ¢ € A. Hence A = K[xa,...,xq-1,y] if 21 = g or A =
[x1, ..., zqa—1] if y = ¢. In either case, A & K[T1,...,tq4]/I. Again K[T1,...,Ty4] is a complete regular

local ring of dimension d and so I = 0.
Now let B = A[zq]. Then A C B C R.

Claim. B is a complete local Gorenstein domain and R is a finite B—module.

Proof. As R is a finite A—module, R is certainly a finite B—module. Clearly B is Noetherian (as A
is). Since R is a domain, so is B. As R is integral over B, any maximal ideal of B is contracted from
R. As R is local, B must be also.

To see B is complete, first note that as B is a finite A—module and A is complete, B is complete
as an A—module. Let m4, mp represent the maximal ideals of A and B respectively. As B/A is
integral, v/maB = mp. Therefore m’, C m4B for some b. Hence, the m4 and mp—adic topologies
on B are equivalent and so B is complete.

Finally, B = A[zq4) = A[T]/I where T is an indeterminate and I is a prime ideal. Since we know

B is local, B = Alt]ar/In where M = (ma, T)A[T]. Now A is a regular local ring of dimension d



and so A[T],s is a regular local ring of dimension d + 1. Since B is a domain of dimension d, I}/ is

a height 1 prime of A[T]y; and hence principal (since a RLR is a UFD).
Now let @ = P N B. Since R/p is integral over B/Q, dim B/Q = 1. By Proposition 7.12, H%(B) = 0. Since
P=\/(x1,..,2q) and 21, ....,xq € B, Q = \/(x1,...,24)B (by the lying over theorem). Thus by change of rings and
Proposition 7.15, we have

Hy(R)=H{,,  orR) =H,  .opR) =H, .. 5(B)@s R=Hj(B)®s R=0.

O

Remarks. The proof given also shows that if (R,m) is a complete local domain of dimension d then there exists a

complete regular local ring A of dimension d such that R is a finite A—module.

8. HARTSHORNE-LICTENBAUM VANISHING THEOREM

Theorem 8.1 (Hartshorne-Lichtenbaum Vanishing Theorem, 1968). Let (R, m) be a local ring of dimension d and
I an ideal of R. TFAFE

(1) H{(R)=0

(2) dim R/(IR+p) > 0 for all p € Spec R such that dim R/p = d.

(3) H{(M) =0 for all R—modules M.

Proof. We have already shown the equivalence of 1 and 3 (as a corollary to Proposition 7.15). We will show the
equivalence of 1 and 2. Suppose H}(R) = 0. Let p € Spec R such that dim R/p = d. Then H(dHHp)/p(R/p) %
H¢(R) ®r R/p = 0. By Proposition 7.19, we see dim R/(IR + p) > 0.

For the other direction suppose H¢(R) # 0. Then H?R(IA%) # 0 as R is a faithfully flat R—module. Let J be an
ideal of R maximal with respect to the property that H?R(R/J) #0. Then dim R/J = d. Let p € ASSR(R/J) such
that dim R/p = d. Then we have an exact sequence

0= R/p L RIT—R/(J,x)—0

where ¢(1) =T # 0. Then
H?R(R/P) - H?R(R/J) - H?R(R/(J,a:))

#0 =0

and so H?R(R/p) # 0 by exactness, a contradiction. O

History. Originally, Lichtenbaum conjectured a geometric analogue of this vanishing theorem for sheaf cohomol-
ogy. Grothendieck proved this conjecture in 1961 (nevertheless, it became known as “Lichtenbaum’s Theorem”).

Hartshorne proved this local vanishing theorem in 1968. Lichtenbaum’s Theorem follows readily from Hartshorne’s.

Theorem 8.2 (Faltings, 1979). Let (R,m) be a complete local domain of dimension d and I an ideal such that
ara(l) < d— 2. Then Spec(R/I) — {m/I} is connected.

Proof. (due to J. Rung) Let U = Spec(R/I)\ {m/I} 2 V(I)\ {m}. Suppose U is disconnected. This means there

exist ideals J, K D I in R such that

(1) JNK C VT (and so VI N K =)
2) VJ+K=m
(3) VJ #m and VK # m (that is, dim R/.J,dim R/K > 0)

By the Mayer-Vietoris sequence, we have

HI i (R) — HY ' (R) & H{Z'(R) — Hi i (R) — HY ;(R) — H}(R) & Hi:(R).



Now HI L(R) = 0 as VJNK = VT and ara(I) < d — 2. Thus 0 — H%(R) — H4(R) @ HL(R) is exact. Since
HZ (R) # 0 we have either H}(R) # 0 or H&(R) # 0. But dim R/J > 0 and dim R/K > 0, a contradiction to the
HLVT. |

This theorem has the following geometric consequence.

Theorem 8.3 (Fulton-Hansen, 1979). Let K be an algebraically closed field and X,Y irreductible projective varieties
in PY. Suppose dim X + dimY > n. Then X NY is connected.

Idea of Proof. Use reduction to the diagonal: K(X xY) = K(X)®xg K(Y) 2 K[Xo, ..., Xn, Yo, ..., Yo /I(X) + I(Y)
has dimension > n + 2. Now mod out by {X; — Y;}I_, and use Falting’s result. g

Question. Let (R, m) be a complete local domain, I C R. When is H!'(R) = 0 and H{(R) = 0 for d = dim R? One
might guess it is if and only if dim R/I > 1. But this is false, as shown by the following example of Hartshorne.

Example. Let R = k[z,y,u,v]/(zu — yv), where k is a field. Then R is a three-dimensional complete Gorenstein
domain (in fact, it is a hypersurface). Let I = (z,y)R. Then R/I = k[u,v] and so I is a prime of dimension 2. If the
conjecture were true, then H?(R) = 0. We know H3}(R) = 0 as u(I) = 2. Let J = (u,v)R. Consider the short exact
sequence 0 — J — R — R/J — 0. Then --- — H2(R) — H?(R/J) — H3(J) = 0 is exact (H3(J) =0 as p(I) = 2).
But H#(R/J) = H(QHJ)/J(R/J) = an/J(R/J) # 0 as dim R/J = 2. So H#(R) # 0.

Note that in this example ht I = ht J = 1 but ht(I + J) = ht(m) = 3. If R is a regular local ring, we always have
ht(p + q) < ht p+ ht ¢ for all p,q € Spec R. Thus there is reason to believe the conjecture may hold for regular local

rings.

Theorem 8.4 (Peskine-Szpiro in charp > 0 (1973) and Ogus in char 0 (1973)). Let (R,m) be a complete regular
local Ting containing a field. Suppose R/m is algebraically closed. Let I be an ideal of R. TFAE

(1) H{ '(R) = H{(R) =0

(2) dim R/p > 1 for allp € Min R/I and Spec(R/I)\ {m/I} is connected.

Further improvements of the theorem have been given by Huneke and Lyubeznik.

Theorem 8.5 (Sharp, 1981). Let (R, m) be a local ring, I an ideal of R and M a finite R—module of dimension n.
Then H} (M) is Artinian.

Proof. As R — Ris faithfully flat, if H;‘R(M) — H}(M)®g R has DCC, then H} (M) has DCC. Thus we may assume
R is complete. By the change of rings principle, we may pass to the ring R/ Anng M and so assume Anng M = 0
and dim R = dim M = n.
Let R = S/L where S is a complete regular local ring. Let ¢ = ht L and z1,...,x4 € L an S—sequence. Let
B =S5/(z) and J = L/(z). Then R = B/J where dim R = dim B = n and B is a complete Gorenstein ring. Now M
can be considered as a B—module. Thus it is enough to show H}5z (M) is Artinian.
Claim. H}(B) is Artinian for any ideal J.
Proof. An injective resolution for B looks like
0 n
0—-B— @& Ep(B/p)—---— Eg(B/m)—0.
ht p=0
We know Ep(B/m) is Artinian. Thus Hompg(B/J, E) is Artinian. Now H%}(B) is a quotient of this
module and is hence Artinian.
Now we have secen H} (M) = H}(B) ®p M as n = dim B. As H}(B) is Artinian, it is enough to show N ®p M is
Artinian if N is Artinian and M is finitely generated. By Matlis Duality, it is enough to show (N ®p M)V is finitely
generated. But (N @ M)V = Homp(N ®p M, E) = Homp (M, NV) is finitely generated as NV is. O



8.1. An application of HLVT.

Definition. Let (R, m) be a local ring, M an R—module and E = Er(R/m). A coassociated prime of M is an
associated prime of MY = Hompg (M, E). That is, Coass(M) = Ass(M").

Remarks.

(1) Let (R,m) be a local ring, M a finitely generated R—module, N any R—module. Then we have that
AssHomp(M, N) = Supp M N Ass N.

Proof. Recall that p € AssHomp(M, N)

Homp (k(p), Homp (M, N),) # 0

, (k(p),

Homp, (k(p), Homg, (M, Np)) # 0
Hompg, (k(p) ®r, Man ) #0
Hompg, (k(p)*Mr), N,) # 0
Hompg, (k(p), Np)* M) # 0

p € Ass N and pu(M,) # 0.

toe 0O

]

(2) Let (R,m) be a Noetherian local ring, M a finitely generated R—module, N any R—module. Then
Coass(M ®r N) = Supp M N Coass N.

Proof.
Coass(M @g N) = Ass((M ®g N)V)
= AssHomp(M ®g N, E)
= AssHompg(M,Homg(N, E))
= AssHomp(M,NV)
= SuppM N Ass NV = Supp M N Coass N.

Recall. Let R be a local ring of dimension d, I C R, and M an R—module. Then H¢(M) = M ®r H¢(R).

HLVT. If (R,m) is a complete local ring of dimension d, I C R, then H¢(R) # 0 if and only if /T + p = m for some
p € Spec R such that dim R/p = d.

Lemma 8.6. Let (R,m) be a complete local ring, I C R, and M a finitely generated R—module of dimension n.
Then
Coass H} (M) = {p 2 Anng M|dim R/p =n and /I +p=m}

Proof. By the change of rings principle, we may assume dim M = dim R and Anng M = 0. Notice
Coass Hi' (M) = Coass(M ®g Hf' (R)) = Supp M N Coass H' (R) = Coass H'(R)

as Annp M = 0. We may assume 7(R) # 0 as otherwise both sets in the theorem would be empty by HLVT. Let
q € Coass H}(R). Then g € Coass(R/q ® H}(R)) = Supp R/q N H}(R). Therefore R/q ®p Hy (R) = H}(R/q) # 0.
So dim R/q = n and /T + ¢ =m by HLVT.

Let g € Spec R such that dim R/q = n and /T +q = m. Hence R/q ®g H}(R) = H{}, . (R/q) # 0 by HLVT.
Let p € Coass(R/q® H}(R)) = Supp R/q N Coass H}(R). So p O ¢q and p € Coass H}(R). But we have shown that
if p € Coass H} (R) then p is minimal. Thus p = q. O

Remark. Let (R, m) be a complete local ring, M, N R—modules with M finitely generated and N Artinian. Then
Ext’ (M, N)V = Tor (M,NVY).



Proof. If F. is a free resolution of NV, then FV is an injective resolution of NVV = N. Then

Tor®(M,NV)V = H;(M ®gF)Y

— H(MerF)Y)
Hi(Homg(M ®@r F., E))
Hi(Hompg(M, FY)

Ext% (M, N).

Il

1%

O

Definition. Let (R, m) be a local ring, I C R, and N an R—module. N is I—cofinite if Supp N C V(I) and
Exto(R/I, N) is finitely generated for all i.

Lemma 8.7. Let (R,m) be a local ring and R the m—adic completion of R, I C R and M an R—module. Then
Hi(M) is I—cofinite if and only if H;R(M @r R) is IR—cofinite.

Proof. Ext%(R/I, Hi(M)) ®r R = Ext%(]%/ﬂ%, H;R(M ®r R)). Tt is enough to show N @ R is finitely generated
if and only if N is finitely generated. Of course, this has already been shown. O

Theorem 8.8 (Delfino-Marley, 1997). Let (R, m) be a Noetherian local ring, I C R, M a finitely generated R—module
of dimension n. Then H*(M) is I—cofinite. In fact, Exth(R/I, H}(M)) has finite length for all i.

Proof. By Lemma 8.7, we may assume (R,m) is complete. As H7 (M) is Artinian, H?(M)V is finitely generated.
Therefore Coass Hy' (M) is a finite set, say Coass Hf (M) = {p1, ..., px }- Then Supp H} (M) = V(p1 N--- N pg). Now
Exto(R/I, HP(M)) has finite length if and only if Ext(R/I, H}(M))Y has finite length which is if and only if
Torl(R/I, H}(M)Y) has finite length. As Tor®(R/I, H}(M)V) is a finitely generated R—module, it is enough to

show its support is {m}. Now suppose
Tor;' (R/1, H} (M)") € V(I) NSupp Hf (M)Y = V(I)NV(p1 0+~ Np) = V(I +prN---Npg) = {m}
as /I + p; = m for all 7. O

9. GRADED LocaL COHOMOLOGY

Let R = &R, be a Z—graded ring, x € R a homogeneous element and M a graded R—module. Note that M, is
a graded R— and R,—module, where deg 7% = degm — ndegx. Recall an R—homomorphism f : M — N of graded
R—modules is said to be (homogeneous) of degree 0 if f(M,) C N, for all n. The kernel and image of degree 0
homomorphisms are graded submodules of M and N, respectively.

Now, if M is a graded R—module and z = 1, ...,z, € R is a sequence of homogeneous elements, then it is easy
to see that all the maps in the Cech complex C" (z; M) are degree 0 (In the n=1 case, we have 0 - M — M, — 0

m
T.
every homogenous ideal has a homogeneous set of generators, we get that for all i Hi(M) is a graded R—module for

defined by m +— Proceed by induction). Therefore, the homology modules H i (M) are graded R—modules. Since
every homogeneous ideal I of R and graded R—module M.

From now on, when we say R is a “graded ring,” let us assume R is N—graded. Then R is a Noetherian graded ring
if and only if Ry is Noetherian and R = Rg[x1, ..., 5] where z1, ..., , are homogeneous elements in R, = @,50R,.
If the z; can be chosen such that degz; = 1 for all 7, we say that R is a standard graded ring. Note that the
homogeneous maximal ideals of R are of the form (mg, R+)R where mg is a maximal ideal of Ry. Thus R has a
unique homogeneous maximal ideal if and only if Ry is local. We call such graded rings *local (where *local implies
Noetherian).

Proposition 9.1. Let (R,m) be a *local ring and M a finitely generated graded R—module. Then
(1) H: (M), =0 for alln >> 0 and for all i.



(2) HE (M), is an Artinian Ro—module for all i and for all n.

Proof. Note that as every element of Hy, (M) is annihilated by a power of m, H},(M) = H} p (M,y,) for all i. In
the local case, we showed H o (M,y,) is Artinian. Thus H}, (M) is an Artinian R—module. Let H} (M), :=
@p>eHE (M)y,. Then HE (M)>, is a graded R—module and H! (M)>; 2 H. (M)>¢41 2 -+ . By DCC, H: (M)>; =
Hi (M)>¢qq for all ¢ >> 0. Thus H. (M) =0 for all t >> 0.

For 2, suppose H! (M), = No 2 N; 2 Ny D --- is a descending chain of Ry—submodules of H (M),. Then
RNy 2 RNy O RNy D --- is a desending chain of R—submodules of H{ (M). Hence, RN; = RN, for t >> 0.
Therefore

Ny = RN, N H! (M),, = RN; 1 N H: (M),, = N¢y1

for t >> 0. Hence H! (M), is an Artinian Rop—module. O
Corollary 9.2. Suppose in the above proposition that Ry is Artinian. Then Ar,(HE,(M)y) < oo for all i,n.
Proof. An Artinian module over an Artinian ring has finite length. O

Definition. Let (R,m) be a *local Cohen Macaulay standard graded ring. The a—invariant of R is defined by
a(R) = sup{n|H% (R),, # 0} for d = dim R.

Example. Let R = k[z1, ..., 24 for a field k. Then we have seen
HU(R) & Ep(Rjm) = Ry, oy | 3 Rayoag = @icokal - alf
Thus a(R) = —d.

Proposition 9.3. Let (R,m) be a *local Cohen Macaulay standard graded ring. Suppose x € R is a homogeneous
non-zerodivisor on R. Then a(R/(x)) = a(R) + deg x.

Proof. Consider the exact sequence 0 — R(—k) = R — R/(x) — 0 (where k = degz). Then we have
0 — Hy ' (R/(x)) — Hy,(R(=k)) = H;,(R) = 0

is exact. These are degree 0 maps and so 0 — HI Y(R/(z)), — H%(R)n_x — HZ(R), — 0 is exact. Now
HE YR/ (2))n # 0 if n = a(R/(x)). Therefore HY, (R)a(r/(z))—k # 0 and a(R) > a(R/(x)) — k.

As HEYR/(2))n = 0 for n > a(R/(z)), HL(R)n—r = HZ(R), is injective for all n > a(R/(x)). But every
element in HZ(R) is annihilated by a power of x. Thus H%(R), = 0 for all n > a(R/(x)) — k. Thus a(R) =
a(R/(z)) — k. O

Theorem 9.4. Let (R, m) be a Cohen Macaulay *local standard graded ring such that Ry is Artinian. Then a(R) >
—dim R with equality if and only if R = Ry[Th, ..., Ta).

Proof. Assume R/m is infinite (else tensor with R[T],,z[7]). Note that as Ry is Artinian, m = \/K =+/RiR. Let
n = pir,(R1). Choose minimal generators 1, ..., Z, for Ry such that x1, ..., 24 is an R—regular sequence. (We can do
this as R is Cohen Macaulay. Choose 21 € Ry \ moRy Upy U---Up, where {p;} = Ass(R)). Induct on d.

If d =0, H),(R) = R and so a(R) > 0. Now a(R) = 0 if and only if R = Ry. Suppose d > 0. Then a(R) =
a(R/(x1))— 1> —-d+1—1=—d. Write R = Ry[Th,...,T]/I where Ty, ..., T, are indeterminates and n = upg,(Ry).
Now a(R/(Ty) = a(R) +1 = —d + 1. Thus R/(Ty) = R/(I,T1) = Ro[Tz, ..., T;,]. Thus n — 1 = d — 1 by induction.

We need to show I = 0. We have I C (T3). If I # 0, then there exists f ¢ (1) such that fT7 € I (else 77 C I).
But this means T} is a zerodivisor in R, a contradiction. Thus I = 0. O

The a—invariant is closely related to the Castelnuovo-Mumford regularity of R.

Definition. Let (R,m) be a *local standard graded ring of dimension d such that Ry is Artinian. Define a;(R) :=
sup{n|H.,(R), # 0} fori=0,...,d (set a;,(R) = —oo if H.,(R) = 0). The Castelnuovo-Mumford regularity of



R is
reg(R) := max{a;(R) +ili =0,...,d}.
One can prove that reg(R) > 0 with equality if and only if R = Ry[T1, ..., T4).

Definition. Let R be a *local standard graded ring such that Ry is Artinian and M a finitely generated graded
R—module. As each M, is a finitely generated Ro—module, Ar,(M,) < oo for all n. Define the Hilbert function
of M by Hpyr(n) := Ar,(My,).

Example.

(1) Let R = k[z1, ..., xq4] for a field k. Then Hg(n) = ("jﬁ;l), the number of monomials of degree n in x1, ..., 74.

(2) Let R = k[z,y]/(23, 2y). Then Hr(0) =1, Hr(1) = 2, Hr(2) = 2, Hr(3) = 1, and Hr(n) = 1 for all n > 3.

Theorem 9.5. Let (R, m) be a *local standard graded ring such that Ro is Artinian and M is a finitely generated
R—module of dimension n. Then there exists a unique polynomial P, (x) € Qlx] such that Py,(n) = H,(n) for
n >> 0. P, (z) is the Hilbert polynomzial of M.

Proof. See Atiyah and Macdonald. O
Definition. Let f :Z — Z be a function. Define A :Z — Z by A(f)(n) = f(n) — f(n—1).
Remark. Let f,g:Z — Z be a function. Then A(f) = A(g) if and only if f — ¢ is a constant.

Definition. Let (R, m) be a *local standard graded ring such that Ry is Artinian and M is a finitely generated graded
R—module. Define xp(n) := > oo g(=1)'A(HE,(M),,). Note the sum is finite and xp(n) = 0 for n >> 0. In fact,
xm(n) =0 for n > max{ag(M),...,aq(M)} where d = dim M.

Lemma 9.6. Let (R,m) be a *local standard graded ring such that Ry is Artinian and0 - A —- B — C — 0 is a
short exact sequence of finitely generated graded R—modules with degree 0 maps. Then

(1) Hg(n) = Ha(n) + Hc(n) for alln

(2) Py(x) = Pale) + Polz)

(3) xB(n) = xa(n) + xc(n) for alln
Proof. (1) Follows from the exactness of 0 — A, — B,, — C,, — 0 for all n.

(2) We have a long exact sequence with degree 0 maps --- — H! (A) — H. (B) — H{ (C) — -+ . So --+ —

H! (A), — H! (B), — H (C), — --- is exact for all n. Use the additivity of .
(|

Theorem 9.7. Let (R,m) be a *local standard graded ring such that Ry is Artinian and M a finitely generated
graded R—module. Then Hyr(n) — Py(n) = xa(n) for all n.

Proof. Let R = Rg[z1,...,zs], where z1,...,2s € Ry. Induct on s. For s = 0, R = Ry and A(M) < oo. Thus
M,, = 0 for n >> 0 which implies Py;(n) = 0 for all n. So HJ,(M) = M and H! (M) = 0 for all i > 0. Therefore

m
xXu(n) = x(My) = Hp(n).
Suppose s > 0. Consider the exact sequence 0 — K — M(—1) 2% M — C — 0 of graded R—modules and degree
0 maps. By the lemma,

A(Hu(n) = Py(n)) = Hyr(n)Hayr(n — 1) — Pag(n) + Py (n — 1) = Ho(n) — Po(n) — (Hk (n) — Pk (n)).
Now z,K =0 =2,C, so K and C are R/x;R—modules. By induction on s,
A(Hy(n) = Pu(n)) = xo(n) = xx (n) = xm(n) = xm(n —1) = Alxa(n)).

By the remark, Hy(n) — Prp(n) = xp(n) + C. But xar(n) =0 for n >> 0 and Hy(n) — Ppy(n) = 0 for n >> 0.
Thus C' = 0. O



Corollary 9.8. Let (R,m) be a Cohen Macaulay *local standard graded ring such that Ry is Artinian. Then
a(R) = min{n € Z|Pr(n) # Hr(n)}.

Proof. Hr(n) — Pr(n) = (=1)*A(Hg,(R))- O

Question. Let (R, m) be a local ring, M a finitely generated R—module and I C R. When is H¢(M) finitely generated?

Certainly it is when ¢ = 0. However, not always.

Remark. H:(M) is a finitely generated R—module if and only if H}R(]\Zf) is a finitely generated R—module.

Proposition 9.9. Let (R, m) be a local ring and M a finitely generated R—module of dimension n > 0. Then H (M)

is not finitely generated.
Proof. If it were, then H)} (M) ® R/m # 0. But H,(M) ® R/m) = H» (M/mM) =0 as dimM/mM =0<n. O

Proposition 9.10. Let R be a Noetherian ring, I C R, and M a finitely generated R—module. TFAFE

(1) HY(M) is finitely generated for all i < t.
(2) I C\/Aung Hi(M) for all i < t, that is, there exists k such that I"HY(M) =0 for all i < t.

Proof. Note that 1 implies 2 is clear as every element in Ht(M) is killed by a power of I. So we need to show 2 implies
1. We will induct on t. The t = 0 case is clear so assume ¢ > 0. Let L = HY(M) and N = M/L. Then HY(L) = L
and Hi(L) = 0 for all i > 1. Therefore, from the long exact sequence --- — H¥(L) — H{(M) — H:(N) — --- we
get HY(N) =0 and H{(N) =2 H:{(M) for all i > 1. Hence we may assume depth; M > 0.

Let x € I such that x € T is a non-zerodivisor on M. By assumption, there exists k such that z*H}(M) = 0
for all i < t. As 2¥ is a non-zerodivisor on M, replace z* by z. From 0 — M % M — M/zM — 0, we get

L HEY M) — HEY(M/zM) — HY(M) 2 HY(M). By induction, Hi(M) is finitely generated for all i <t — 1.
Also, as I"Hi(M) = 0 for all i < ¢ and

0 — H;™ (M) — Hy ' (M/2M) — Hi(M) — 0

is exact for all 4 < ¢, I?*Hi™(M/xM) = 0 for all i < t. Therefore H:™*(M/xM) is finitely generated, which implies
HY(M) is finitely generated. Thus the finite generation of H#(M) is related to the annihilation of H¥(M). O

Theorem 9.11 (Faltings, 1978). Let (R, m) be a local ring which is the homomorphic image of a regular local ring.
Let M be a finitely generated R—module and J C I two ideals of R. Set s = miny s{depth M, +ht(I 4+ p)/p}. Then

(1) J € \/Anng Hi(M) for alli <s
(2) J Z /Anngr H;(M).

Note here we define depth M,, = oo if M, = 0 and min () = co. As a corollary, we get the following result.

Theorem 9.12 (Grothendieck, SGAII, 1968). Let (R, m) be a local ring which is the quotient of a reqular local ring.
Let M be a finitely generated R—module and I C R. Set s = miny,»;{depth M, +ht(I+p)/p}. Then Hi(M) is finitely
generated for all i < s and Hj (M) is not finitely generated.

Proof. Set J = I in Falting’s Theorem and use the proposition. O

Lemma 9.13. Let (R,m) be a local ring which is the quotient of a Gorenstein ring. Let M be a finitely generated
R—modules and J C R an ideal. Then J C \/Anng H:, (M) if and only if for allp 2 J H;}}c:m R/p(Mp) =0.

Proof. Let R =T/I where (T, n) is a Gorenstein local ring. Let K C T such that K/I = J. Then by the change of

rings principle J C y/Anng H (M) if and only if K C /Anny H: (M). Also, if ¢ 2 I, ¢ 2 K, then H;;fimT/q(Mq) ~
Hifdim R/p

R, (M,) where p =q/I.If ¢ 2 I, then M, = 0. Hence, we may assume (R, m) is a Gorenstein local ring.



Now J C y/Anng H? (M)
& JC/AmgExt (M, R)Y
< JC \/AnnR Ext% (M, R)
& forall p 2 J,Extf (M, Rp) =0

& forallp 2 J Hyp ™ " (M,) =0 and d — dim R, = dim R/p.

]

Proposition 9.14. Let (R, m) be a local ring which is the quotient of a Gorenstein ring. Let M be a finitely generated
R—module and J C R an ideal. Let s = min,» {depth M, + dim R/p}. Then J C \/Anng H! (M) for alli < s and

J & \/Anng Hs,(M).
Proof. By the lemma, J C \/Anng Hi (M) for all i < t

VN H;;fimR/p(Mp) =0forallp? Ji<t
&  forallp2 J,t —dim R/p < depth M,
&t <s.

O

Lemma 9.15. Let (R,m) be a Cohen Macaulay local ring, M a finitely generated R—module, I C R. Suppose there
exists p € Spec R such that M, is free. Then there exists s € R\ p such that sH:(M) =0 for all i < ht I.

Proof. There exists exact sequences 0 - C — FF - T — 0and 0 - T — M — D — 0 such that F' is a finitely
generated free R—module and C, = D, = 0. Choose s ¢ p such that sC = sD = 0. Then sH:(C) = sHi(D) = 0
for all i. Now we have long exact sequences -+ — HH(T) — H}(M) — H{(D) — --- and --- — HY(F) — H{(T) —
HiY(C) — --- . As R is Cohen Macaulay, Hi(F) = ®@H}(R) = 0 for all i < ht I. Thus sH}(T) = 0 for all i < ht I.
Hence s?H%(M) =0 for all i < ht I. O

Proof of part 1 of Falting’s Theorem. This proofis due to M. Brodmann in 1983. Set s(J, I, M) := miny,» s {depth M,+
ht(I +p)/p}. We use induction on dim R/I to prove there exists k such that J*H:(M) = 0 for all i < s = s(J, I, M).

The case dim R/I = 0 is taken care of by Proposition 9.14. So assume dim R/ > 0. We make a series of reductions.

Reduction 1. We may assume R is a regular local ring.

Proof. Write R = T//L where T is a regular local ring. Let I’, J’ be ideals of T such that I'/L =T
and J'/L = J. Then, as noted in the lemma preceding Proposition 9.14, s(J', I', M) = s(J,1, M)
and H% (M) = Hi{(M) for all i. O

Reduction 2. We may assume s(J, I, M) < co.

Proof. s(J,I,M) = oo if and only if M, = 0 for all p 2 J, that is, J C v/Anng M, which implies
there exists k such that JEH!(M) = 0 for all i. O

Reduction 3. We may assume depth; M > 0.

Proof. Let N = M/HY(M). Note N # 0 else J*M = 0 for some k, which implies s(J,I, M) = cc.
Then, as HY(M), = 0 for all p 2 J, M, & N, for all p 2 J. Therefore s(J,I,M) = s(J,I,N).
Furthermore, as remarked before, depth; N > 0. From 0 — HY(M) — M — N — 0 we get

- — HY{HY(M)) — H{(M) — H{(N) — --- . If we know the theorem for N, then J*H{(N) =0
for all i < s = s(J,I,M). As J*HY(M) = 0 for some ¢, J'H{(HY(M)) = 0 for all i. Therefore
JAHRHY(M) =0 for all i < s. O

Reduction 4. We may assume J O Anng M.



Proof. By the change of rings principle, H:(M) = H}R/ Anng (M) = Hi{ annp v (M) for all i.
Also, as Anng M C Anng Hi(M) for all i, we have J C \/Anng Hi(M) if and only if J +
Annp M C \/m Finally, if p 2 Anng M then depth M,, = co. Hence s(J + Anng M, I +
Anng M, M) = s(J,I,M). O

Claim 1. s(J,I, M) < ht I. Furthermore, if s(J,I, M) = ht I then Anngp M = 0.

Proof. Let g be a prime minimal over I such that ht g =htI =h. As I O J O Anng M, ¢q contains a
prime p which is minimal over Anng M. Then p € Assg M and so p 2 J as depth ; M > 0. Therefore,
s(J, I, M) < depth M,, + ht(I + p)/p <htg/p < h.

If we have equality, then (as R is a domain), p = 0. Therefore Anng M = 0. O

Case 1. Assume s := s(J,I,M) = htI =: h. By the claim, Aung M = 0. Let U = {p € Spec R|M,, is free}. Then
U # 0 as M) is free and U is open. Let U = Spec R — V(L), for L C R. Let v := {p € MinR/L|p 2 J}.
Case la. I' = (). Then p 2 J, which implies p 2 L and M, is free. By Lemma 9.15, for all p 2 J there exists
S, & p such that s,Hy(M) =0 for all i < h = s. Let A = ({sp}pps)R. Then AH}(M) = 0 for all i < s.
Furthermore, J C /A for if ¢ € Spec R with ¢ O A then ¢ D J (else sq € A, 54 & q). Therefore there exists
k such that J¥H(M) =0 for all i < s.
Case 1b. T'# (. Let T’ = {p1, ..., ps} and let {qi, ..., ¢} be the minimal primes of height h.
Claim 2. N_ip; ¢ Ul_,q;.

Proof. Suppose not. Then p; C ¢; for some j. Then M, is not free as p; € U. By Auslander-
Buchsbaum, this means depth M, M dim R,,. Therefore as p; 2 J

s < depth M,,, + ht(I + p;)/p;M dim R,,, + ht ¢;/p; = ht ¢; = h,
a contradiction. O

So chose z € N{_;p; \ Ul_,q;. Note that dim R/(I,z) < dim R/I as € U!_,q; and if p 2 J and = & p, then
M, is free (else, p O L implies p D p; for some i, a contradiction as = € p;).
Claim 3. J C y/Anng Hj (M,) for all i < s = h.

Proof. Tt is enough to show J, C /Anng, H}z (M) for all i < h. Now for all p,, € Spec(Ry),
Py 2 Jp and so (My),, = M, is free. Thus by the same argument in Case la there exists k
such that JYHj (M,) =0 for all i < ht(I,) = h. O

Claim 4. J C \/Amg H{; (M) for all i < s.

Proof. Note that as ht(((I,z) + p)/p) > ht(({ + p)/p) for all p, s’ = s(J, (I, z), M) > s. As
dim R/(I,z) < dim R/, we have the claim by induction. O

Now we have the long exact sequence - -~ — H{; (M) — H}(M) — Hj (M) — -+ . So case 1 follows from
claims 3 and 4.
Case 2. s < h. We use induction on s — h > 0 (the case s — h = 0 is case 1. Let F' be a finitely generated R—module
such that 0 - K — F — M — 0 is exact.

Claim 5. s = s(J,I,K) > s.

Proof. Let p € Spec R with p 2 J. If M, is free, then K, is free. Thus depth K, + ht((I + p)/p) =
dim R,+ht((I+p)/p) = ht(I+p) > ht I > s. If M, is not free, then pd K, = pd M, —1. By Auslander
Buchsbaum, depth K,, = depth M, + 1. Thus depth K, + ht((I 4+ p)/p) > depth M, +ht(({ +p)/p) >
s. O



Thus h — s’ < h — s (note that depth; K > 0 and Anng K = 0 as K C F and R is a domain and so claim 1 still
holds). By induction, J C \/Anng Hi(K) for all i < s’ (hence for i +1 < s). As R is a regular local ring, Hj(F) = 0
for all i < h(> s). From the long exact sequence --- — Hi(F) — Hij(M) — Hi'(K), we get J C /Anng Hi(M)
for all ¢ < s. ]

Proof of part 2 of Falting’s Theorem. Let s(J,I, M) = min,z{depth M, +ht((I + p)/p)}. We will show that if s =
s(J,I, M) < oo then J ¢ \/m for some i < s. As in the proof of part 1, we may replace M by M/HY(M)
and assume depth ; M > 0. Induct on s. Note that if p 2 J then ht((+p)/p) > 1. Thus s > 1. So first suppose s = 1.
Choose p 2 J such that 1 = depth M, + ht((I +p)/p). Then depth M,, = 0 and ht((I + p)/p) = 1. Then p € Assp M
and so there exists an exact sequence 0 — R/p — M — N — 0. Therefore, 0 — HY(N) — H}(R/p) — HL(M) is
exact.

Suppose J C \/Anng H} (M). As HY(N) is finitely generated, J C I C y/Anng HY(N). Thus H C \/Anng H} (R/p).
Asht((I+p)/p) =1, choose ¢ D I+p such that ht ¢/p = 1. Then J, C \/AnnR H}q (Rq/pq)- Let A = R, /p, with max-
imal ideal n. Then A is a one-dimensional local domain. As p 2 J, \/*]117 = \/Iin = n. Hence n = \/Anng H]}(A)
which implies H!(A) is finitely generated, a contradiction.

Now suppose s > 1. Choose p Z J such that s = depth M, + ht((I +p)/p). Let ¢ be a prime which contains I + p
such that ht(q/p) = ht((I + p)/p). Let y € J \ p and consider the set I' = {Q € SpecRp C Q C q,y € Q}. Asp e,
we see I' # ). Choose @ € I’ maximal. Clearly Q 2 J.

Claim 1. htq¢/Q = 1.

Proof. Clearly ¢ C Q as y € J C I C g. Suppose ht(¢/Q) > 1. By prime avoidance and Krull’s
principle ideal theorem, there exists @1 C ¢ such that y € @1 and ht(Q1/Q) > 0. But then @Q; € T,

contradiction to maximality. |
Claim 2. s = depth M, + ht((I + Q)/Q).
Proof. By definition of s we have s = depth M, + ht((I + p)/p) < depth Mg + ht(( + Q)/Q). Also,

depth Mg + ht((I + Q)/Q) depth Mg + ht(q/Q)

depth M, + ht(Q/p) + ht(q/Q)(x)
depth M,, + ht(q/p)

depth M, + ht((I + p)/p).
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(*) To see this inequality, we need to show that if (R,m) is local and M a finitely generated
R—module and p € Spec R then depth M < depth M, + dim R/p. But this follows from Ischebeck’s
Theorem (Mats, Theorem 17.1). O

By Claim 1, ¢ is minimal over I + @ and ht(¢/Q) = 1. Replace @ by P (so we may assume ht((I + p)/p) = 1).
It is enough to show J; ¢ 4/ Annéq (M,) for some ¢ < s. Therefore, localize at ¢ and assume ¢ = m. Hence
s = depth M, + dim R/p = depth M, + 1.

Claim 8. p contains a non-zerodivisor.

Proof. If not, p is contained in an associated prime of M. As dimR/p = 1 and depth; M > 0,
p € Assp M. Then depth M, = 0 and s = 1, a contradiction as s > 1. ]

Now let € p be a non-zerodivisor on M. Then 0 — M 25— M/xM — 0 is exact. Note that s’ = s(J, I, M/zM) <
s — 1 as depth(M/zM), = depth M,, — 1. Therefore, for some i < s — 1, J ¢ /Anng Hi(M/zM). From --- —
Hi{(M) — Hi(M/a2M) — H (M) — --- we see that J € \/Anng Hi(M) for some i < s. O




