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The Frobenius map

This is joint work with Taran Funk.

Let (R,m, k) be a commutative Noetherian local ring of prime
characteristic p and residue field k .

Let f : R → R be the Frobenius endomorphism; i.e., f (r) = rp for
all r ∈ R.

For a positive integer e let eR denote the ring R viewed as an
R-algebra via f e ; thus, for r ∈ R and s ∈ eR we have

r · s := f e(r)s

= rp
e
s ∈ eR
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Frobenius and projective dimension

Recall the famous theorem:

Theorem (Peskine-Szpiro, 1974)

Let M be a finitely generated module such that pdR M <∞.
Then TorRi (eR,M) = 0 for all i , e > 0.

Corollary (Kunz, 1969)

If R is regular then eR is a flat R-module for all e > 0.
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The Converse

Let M be a finitely generated R-module. Then pdR M <∞ if

TorRi (eR,M) = 0 for all i > 0 and infinitely many e. (Herzog,
1974)

Note: This also proves a strong converse to Kunz’s theorem,
since if eR is flat over R, so is neR for all n ≥ 1.

TorRi (eR,M) = 0 for depthR + 1 consecutive i > 0 and for
some e sufficiently large (Koh-Lee, 1998)

R is Cohen-Macaulay of positive dimension and
TorRi (eR,M) = 0 for dimR consecutive i > 0 for some e
sufficiently large. (Miller, 2001)

R is a complete intersection and TorRi (eR,M) = 0 for some
i > 0 and some e > 0. (Avramov-Miller, 2001).
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Arbitrary modules and flat dimension

What can we say for modules which are not necessarily finitely
generated?

There is an analogue of Peskine-Szpiro:

Let M be an R-module such that fdR M <∞. Then
TorRi (eR,M) = 0 for all i , e > 0. (M-Webb, 2016)

Regarding the converse: fdR M <∞ if

TorRi (eR,M) = 0 for all i > 0 and infinitely many e.
(M-Webb, 2016)

TorRi (eR,M) = 0 for dimR + 1 consecutive i > 0 and
infinitely many e. (Dailey-Iyengar-M, 2017)

R is CM and TorRi (eR,M) = 0 for dimR + 1 consecutive
i > 0 and for some e > logp e(R) (Dailey-Iyengar-M, 2017)
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New results

Q: Can we do better than dimR + 1 consecutive vanishings?

Theorem (Funk-M, 2019)

Suppose dimR > 0. Then an R-module M has finite flat
dimension provided one of the following holds:

TorRi (eR,M) = 0 for dimR consecutive i > 0 and infinitely
many e.

R is CM and TorRi (eR,M) = 0 for dimR consecutive i > 0
and for some e > logp e(R)

R is a complete intersection and TorRi (eR,M) = 0 for some
i > 0 and some e > 0.
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Proof of the CM case

Pass to a faithfully flat extension to reduce to the case R is
F -finite with infinite residue field.

Dualize: Assume ExtiR(eR,M) = 0 for dimR consecutive
i > 0 and for some e > logp e(R) and prove that idR M <∞.

Let J be a minimal injective resolution of M. Let S = eR and
n the maximal ideal of S . Then

HomR(S , J0)→ HomR(S , J1)→ · · · → HomR(S , Jd+1)→ G

is the start of an injective resolution of HomR(S ,M).
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Proof of the CM case

Let x = x1, . . . , xd ∈ S be a minimal reduction of n. Since
pdS S/(x) = d , we have (using adjunction)

HomR(S/(x), Jd))
φ−→ HomR(S/(x), Jd+1)

τ−→ HomS(S/(x),G )

is exact.
Key point: Since pe ≥ e(R) = e(S) = λ(S/(x)), we have

m · S/(x) ⊆ n[p
e ]S/(x) = 0.

Hence, S/(x) ∼= (R/m)` for some `.
By minimality, we have φ = 0. Hence, τ is injective.
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Proof of the CM case

Using induction, one can assume SuppR Jd+1 ⊆ {m}. Thus,
SuppS HomR(S , Jd+1) ⊆ {n}.

Hence, HomR(S , Jd+1)→ G is injective.

By exactness, this implies HomR(S , Jd−1)→ HomR(S , Jd) is
surjective.

Lemma: If f : I → I ′ is a map of injective R-modules and
f∗ : HomR(S , I )→ HomR(S , I ′) is surjective, where S is a f.g.
faithful R-module, then f is surjective.

Hence, Jd−1 → Jd is surjective and idR M <∞.
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SuppS HomR(S , Jd+1) ⊆ {n}.

Hence, HomR(S , Jd+1)→ G is injective.

By exactness, this implies HomR(S , Jd−1)→ HomR(S , Jd) is
surjective.

Lemma: If f : I → I ′ is a map of injective R-modules and
f∗ : HomR(S , I )→ HomR(S , I ′) is surjective, where S is a f.g.
faithful R-module, then f is surjective.

Hence, Jd−1 → Jd is surjective and idR M <∞.

Tom Marley University of Nebraska

Frobenius and homological dimensions



Proof of the CM case

Using induction, one can assume SuppR Jd+1 ⊆ {m}. Thus,
SuppS HomR(S , Jd+1) ⊆ {n}.

Hence, HomR(S , Jd+1)→ G is injective.

By exactness, this implies HomR(S , Jd−1)→ HomR(S , Jd) is
surjective.

Lemma: If f : I → I ′ is a map of injective R-modules and
f∗ : HomR(S , I )→ HomR(S , I ′) is surjective, where S is a f.g.
faithful R-module, then f is surjective.

Hence, Jd−1 → Jd is surjective and idR M <∞.

Tom Marley University of Nebraska

Frobenius and homological dimensions



The End

Thank you!

Tom Marley University of Nebraska

Frobenius and homological dimensions


