A CHANGE OF RINGS RESULT FOR MATLIS REFLEXIVITY

DOUGLAS J. DAILEY AND THOMAS MARLEY

ABSTRACT. Let R be a commutative Noetherian ring and E the minimal injective cogen-
erator of the category of R-modules. An R-module M is (Matlis) reflexive if the natural
evaluation map M— Hompg(Homg(M, E), E) is an isomorphism. We prove that if S is
a multiplicatively closed subset of R and M is an Rs-module which is reflexive as an R-
module, then M is a reflexive Rg-module. The converse holds when S is the complement
of the union of finitely many nonminimal primes of R, but fails in general.

1. INTRODUCTION

Let R be a commutative Noetherian ring and E the minimal injective cogenerator of the
category of R-modules; i.e., E = @,,cp Er(R/m), where A denotes the set of maximal
ideals of R and Er(—) denotes the injective hull. An R-module M is said to be (Matlis)
reflexive if the natural evaluation map M — Homg(Hompg(M, E), E) is an isomorphism.
In [1], the authors assert the following “change of rings” principal for Matlis reflexivity ([1,
Lemma 2]): Let S be a multiplicatively closed subset of R and suppose M is an Rg-module.
Then M is reflexive as an R-module if and only if M is reflexive as an Rg-module. However,
the proof given in [1] is incorrect (see Examples 3.1-3.3) and in fact the “if” part is false in
general (cf. Proposition 3.4). In this note, we prove the following:

Theorem 1.1. Let R be a Noetherian ring, S a multiplicatively closed subset of R, and M
an Rg-module.

(a) If M is reflexive as an R-module then M is reflexive as an Rg-module.
(b) If S = R\ (p1U...Up,) where each p; is a maximal ideal or a nonminimal prime ideal,
then the converse to (a) holds.

2. MAIN RESULTS

Throughout this section R will denote a Noetherian ring and S a multiplicatively closed
subset of R. We let E (or just E if the ring is clear) denote the minimal injective cogener-
ator of the category of R-modules as defined in the introduction. A semilocal ring is said to
be complete if it is complete with respect to the J-adic topology, where J is the Jacobson
radical.

We will make use of the main result of [1]:
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Theorem 2.1. ([1, Theorem 12]) Let R be a Noetherian ring, M an R-module, and I =
Annp M. Then M is reflexive if and only if R/I is a complete semilocal ring and there
exists a finitely generated submodule N of M such that M/N is Artinian.

We remark that the validity of this theorem does not depend on [1, Lemma 2], as the
proof of [1, Theorem 12| uses this lemma only in a special case where it is easily seen to
hold. (See the proof of [1, Theorem 9], which is the only instance [1, Lemma 2] is used
critically.)

Lemma 2.2. ([1, Lemma 1]) Let M be an R-module and I an ideal of R such that IM = 0.
Then M is reflexive as an R-module if and only if M is reflexive as an R/I-module.

Proof. Since Er;; = Homg(R/I, ER), the result follows readily by Hom-tensor adjunction.
O

Lemma 2.3. Let R = Ry X -+ X Ry be a product of Noetherian local Tings. Let M =
My x --- x My be an R-module. Then M is reflexive as an R-module if and only if M; is
reflexive as an R;-module for all i.

Proof. As finite sums and direct summands of reflexive modules are reflexive, it suffices to
prove that M; is reflexive as an R-module if and only if M; is reflexive as an R;-module for
each ¢. But this follows immediately from Lemma 2.2. O

Theorem 2.4. Let S be a multiplicatively closed subset of R and M an Rg-module which
1s reflexive as an R-module. Then M is reflerive as an Rg-module.

Proof. By Lemma 2.2, we may assume Anng M = Anng, M = 0. Thus, R is semilocal and
complete by Theorem 2.1. Hence, R = R X - - - X R, where each R; is a complete local ring.
Then Rg = (R1)s, X -+ % (Ry)s, where S; is the image of S under the canonical projection
R—R;. Write M = My X --- X My, where M; = R;M. As M is reflexive as an R-module,
M; is reflexive as an R;-module for all . Thus, it suffices to show that M; is reflexive as an
(R;)s,-module for all i. Hence, we may reduce the proof to the case (R, m) is a complete
local ring with Anng M = 0 by passing to R/ Anng M, if necessary. As M is reflexive as
an R-module, we have by Theorem 2.1 that there exists an exact sequence

0—N—oM—X—0

where N is a finitely generated R-module and X is an Artinian R-module. If SNm = (), then
Rs = R and there is nothing to prove. Otherwise, as Suppp X C {m}, we have Xg = 0.
Hence, M = Ng, a finitely generated Rg-module. To see that M is Rg-reflexive, it suffices to
show that Rg is Artinian (hence semilocal and complete). Since Anng Ng = Anng M = 0,
we have that Anng N = 0. Thus, dim R = dim N. Since M is an Rg-module and SNm # 0,
we have H}, (M) = H}, p (M) = 0 for all i. Further, as X is Artinian, H,(X) = 0 for i > 1.
Thus, from the long exact sequence on local cohomology, we conclude that H{ (N) = 0 for
i > 2. Thus, dim R = dim NV < 1, and hence, dim Rg = 0. Consequently, Rg is Artinian,
and M is a reflexive Rg-module. ]

To prove part (b) of Theorem 1.1, we will need the following result on Henselian local
rings found in [2] (in which the authors credit it to F. Schmidt). As we need a slightly
different version of this result than what is stated in [2] and the proof is short, we include
it for the convenience of the reader:
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Proposition 2.5. ([2, Satz 2.3.11]) Let (R, m) be a local Henselian domain which is not
a field and F the field of fractions of R. Let V be a discrete valuation ring with field of
fractions F'. Then RC V.

Proof. Let k be the residue field of R and ¢ € m. As R is Henselian, for every positive
integer n not divisible by the characteristic of k, the polynomial 2™ — (1+ a) has a root b in
R. Let v be the valuation on F associated to V. Then nv(b) = v(1 4 a). If v(a) < 0 then
v(1+a) < 0 which implies v(b) < —1. Hence, v(1+a) < —n. As n can be arbitrarily large,
this leads to a contradiction. Hence, v(a) > 0 and a € V. Thus, m C V. Now let ¢ € R be
arbitrary. Choose d € m,d # 0. If v(c) < 0 then v(c‘d) < 0 for £ sufficiently large. But this
contradicts that ¢‘d € m C V for every £. Hence v(c) >0 and RC V. O

For a Noetherian ring R, let Min R and Max R denote the set of minimal and maximal
primes of R, respectively. Let T(R) = (Spec R\ Min R) U Max R.

Lemma 2.6. Let R be a Noetherian ring and p € T(R). If R, is Henselian then the natural
map ¢ : R— R, is surjective; i.e., R/ ker p = Ry,.

Proof. By replacing R with R/ ker ¢, we may assume ¢ is injective. Then p contains every
minimal prime of R. Let u € R,u ¢ p. It suffices to prove that the image of w in R/q is
a unit for every minimal prime ¢ of R. Hence, we may assume that R is a domain. (Note
that (R/q), = Rp/qR,, is still Henselian.) If R, is a field, then, as p € T(R), we must have
R is a field (as p must be both minimal and maximal in a domain). So certainly u & p = (0)
is a unit in R. Thus, we may assume R, is not a field. Suppose u is not a unit in R. Then
u € n for some maximal ideal n of R. Now, there exists a discrete valuation ring V' with
same field of fractions as R such that my N R = n ([5, Theorem 6.3.3]). As R, is Henselian,
R, C V by Proposition 2.5. But as u ¢ p, u is a unit in R,, hence in V, contradicting
u€n C my. Thus, v is a unit in R and R = R),. OJ

Proposition 2.7. Let R be a Noetherian ring and S = R\ (p1U---Up,) where p1,...,p, €
T(R). Suppose Rg is complete with respect to its Jacobson radical. Then the natural map
¢ : R— Rg is surjective.

Proof. First, we may assume that p; ¢ |J, 2;pi for all j. Also, by passing to the ring
R/ ker ¢, we may assume ¢ is injective. (We note that if p;,,...,p; are the ideals in
the set {p1,...,pr} containing ker ¢, it is easily seen that (R/ker¢)g = (R/ker ¢)r where
T = R\(p;,U- - -Up;, ). Hence, we may assume each p; contains ker ¢.) As Rg is semilocal and
complete, the map 1 : Rg— R, X --- x R, given by ¢(u) = (¥,...,{) is an isomorphism.
For each i, let p; : R—R,, be the natural map. Since R— Ry is an injection, N; ker p; =
(0). It suffices to prove that u is a unit in R for every u € S. As R, is complete, hence
Henselian, we have that p; is surjective for each ¢ by Lemma 2.6. Thus, u is a unit in
R/ ker p; for every i; i.e., (u) +kerp; = R for i = 1,...,7. Then (u) = (u)+ (N; ker p;) = R.
Hence, u is a unit in R. ]

We now prove part (b) of the Theorem 1.1:

Theorem 2.8. Let R be a Noetherian ring and M a reflevive Rg-module, where S is the
complement in R of the union of finitely many elements of T(R). Then M is reflexive as
an R-module.
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Proof. We may assume M # 0. Let S = R\ (p1U---Up,), where p1,...,p, € T(R) Let I =
Anng M, whence Is = Anng, M. As in the proof of Proposition 2.7, we may assume each
p; contains /. Then by Lemma 2.2, we may reduce to the case Anng M = Anng, M = 0.
Note that this implies the natural map R— Rg is injective. As M is Rg-reflexive, Rg is
complete with respect to its Jacobson radical by Theorem 2.1. By Proposition 2.7, we have
that R =2 Rg and hence M is R-reflexive. ]

3. EXAMPLES

The following examples show that Hompg(Rg, Fr) need not be the minimal injective
cogenerator for the category of Rg-modules, contrary to what is stated in the proof of [1,
Lemma 2]:

Example 3.1. Let (R, m) be a local ring of dimension at least two and p any prime which
is not maximal or minimal. By [3, Lemma 4.1], every element of Spec R, is an associated
prime of the Ry-module Homp(R,, ER). In particular, Homg(R,, Er) % ER,.

Example 3.2. ([3, p. 127]) Let R be a local domain such that the completion of R has
a nonminimal prime contracting to (0) in R. Let @ be the field of fractions of R. Then
Homp(Q, ER) is not Artinian.

Example 3.3. Let R be a Noetherian domain which is not local. Let m # n be maximal
ideals of R. By a slight modification of the proof of [3, Lemma 4.1], one obtains that (0) is
an associated prime of Hompg(R,,, Er(R/n)), which is a direct summand of Hompg (R, ER).
Hence, Hompg(R,,, Er) # ER,, .

We now show that the converse to part (a) of Theorem 1.1 does not hold in general. Let
R be a domain and @ its field of fractions. Of course, @Q is reflexive as a @ = Rg)-module.
But as the following theorem shows, @ is rarely a reflexive R-module.

Proposition 3.4. Let R be a Noetherian domain and @ the field of fractions of R. Then
Q is a reflexive R-module if and only if R is a complete local domain of dimension at most
one.

Proof. We first suppose R is a one-dimensional complete local domain with maximal ideal
m. Let E = Er(R/m). By [4, Theorem 2.5], Hompg(Q, F) = (. Since the evaluation map
of the Matlis double dual is always injective, we obtain that @— Homg(Hompg(Q, F), E)
is an isomorphism.

Conversely, suppose @ is a reflexive R-module. By Theorem 2.1, R is a complete semilocal
domain, hence local. It suffices to prove that dim R < 1. Again by Theorem 2.1, there exists
a finitely generated R-submodule N of @ such that @Q/N is Artinian. Since Anng N = 0,
dim R = dim N. Thus, it suffices to prove that HE (N) = 0 for i > 2. But this follows
readily from the facts that H: (Q) = 0 for all i and H: (Q/N) = 0 for i > 1 (as Q/N is
Artinian). O
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