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1 Injective modules over Noetherian rings

Throughout these notes, unless otherwise stated, all rings are commutative with an identity.
Similarly, unless less otherwise stated, by an R-algebra we mean a commutative ring S equipped
with a ring homomorphism R — S, giving a natural R-module structure on S.

Let R be a ring. Recall that an R-module E is injective if the functor Homg(—, F) is exact.

Remark 1.1. Let R be a ring. The following facts were proved in Math 915 except for (b) and
(). (See section 4.2 of Grifo’s notes and the homework.)

(a) (Baer’s Criterion) An R-module E is injective if and only if for every ideal I of R the map
i* : Hompg(R, E) — Homg(I, E) is surjective, where i : I — R is the inclusion map.

(b) An R-module E is injective if and only if Extp(R/I, E) = 0 for all ideals I of R.

(c) (Change of rings) If E is an injective R-module and S an R-algebra then Hompg(S, E) is an
injective S-module.

(d) Every R-module can be embedded in an injective module.

(e) An R-module E is injective if and only if every short exact sequence of R-modules of the
form 0 — E — M — N — 0 splits.

(f) Direct summands of injective modules are injective.

(g) Arbitrary products of injective modules are injective. (Thus, finite direct sums of injectives
are injective. )

(h) If R is Noetherian then arbitrary direct sums of injectives are injective. (Note: The converse
is also true.)

(i) If R is a domain then any torsion-free divisible module is injective.

Proof of (b): Let I be an ideal of R and consider the s.e.s 0 - [ — R — R/I — 0. Applying
Hompg(—, E') we obtain the exact sequence

Hompg(R, E) s Hompg(I, R) — Exth(R/I, E) — 0.

This is a portion of the corresponding long exact sequence on Ext. Note we have a zero on the
right since Ext},(R, E) = 0 (since R is projective). From this exact sequence, we see that 7* is
surjective if and only Extj,(R/I) = 0. The result then follows by applying Baer’s criterion.

Proof of (i): Let M be a torsion-free divisible R-module. Let I be an ideal of R and f: [ — M
a homomorphism. We need to find a homomorphism f : R — M such that f(i) = f(i) for
all ¢ € I. This is trivial if I = 0 so assume [ # 0. Let x € I,  # 0. As M is divisible,
there exists an element w € M such that zu = f(z). Now let i € I be arbitrary. Then
xf(i) = f(xi) = if(x) = izu. As M is torsion-free and = # 0, we obtain f(i) = iu for all i € I.
Now define f : R — M by f(r) = ru for all » € R. It is clear that f extends f. Hence, M is
injective by Baer’s criterion.

Definition 1.2. A containment of R modules L C M is called an essential extension if every
nonzero submodule of M has nonzero intersection with L; equivalently, for all nonzero elements

x of M, Rx N L # 0. The extension is called proper if L # M.



Example 1.3. Let R be a domain and () its field of fractions. Then R C () is an essential
extension.

Remark 1.4. Let L C M C N be R-modules. Then L C N is essential if and only if L C M
and M C N are essential.

Proposition 1.5. Let R be a ring and E an R-module. Then E is injective if and only if there
does not exist a proper essential extension of E.

Proof. Suppose E is injective and £ C M is an essential extension. By Remark [L.I|(e), the
short exact sequence 0 - F — M — M/E — 0 splits, so M = E® M/E. If M/E # 0 then
M/ENE # 0since E C M is essential. (Here we are identifying M/E with a submodule of
M) But this is a contradiction, since M is the direct sum of £ and M/E. Thus, M/E = 0 and
M =F.

Conversely, suppose there does not exist a proper essential extension of F. By Remark
1.1(d), E can be embedded in an injective module I. Consider the following set of submodules
of I:

A={KCI|KnNnE=0}

This set is nonempty (as it contains the zero module) and partially ordered by inclusion. It is
easily seen that Zorn’s Lemma applies here, so let L be a maximal element in A. Consider the
map f : E — I/L given by f(e) = e+ L. Then f is injective since £ N L = 0. Identifying F
with its image (E + L)/L in I/L, we have by the maximality of L that £ C I/L is essential.
(If not, there would be a nonzero submodule N/L of I /L which intersects E trivially. But this
means L C N and N N E = 0, a contradiction.) By assumption, £ = I/L; in other words, the
map f : £ — I/L is an isomorphism. Hence, I = E+ L and ENL = 0. Thus, [ = E® L.
Since [ is injective, so is F.

m

Theorem 1.6. Let R be a ring and M C E an extension of R-modules. The following are
equivalent:

(a) E is a maximal essential extension of M ;
(b) E is a minimal injective module containing M ;
(c) E is injective and essential over M.

Moreover, for each R-module M there exists an E satisfying the equivalent conditions (a), (b),
and (c). Further, any two such modules are isomorphic via an isomorphism fixing M.

Proof. (a) = (c) : It suffices to prove that E is injective. Let £ C L be an essential extension
of R-modules. Then M C L is also essential. Since F is a maximal essential extension of M, we
must have £ = L. Thus, F has no proper essential extension, so F is injective by Proposition
L5l

(¢) = (b) : Suppose E’ is an injective module contained in E and containing M. Since E
is essential over M, F is essential over E’ as well. But as E’ is injective, it has no proper essential
extension by Proposition[1.5] Thus, E’ = F and we have proved F is a minimal injective module
containing M.

(b) = (a) : Consider the set of submodules

A:={L|MCLCE with M C L essential}.



Then A # () as M € A and is partially ordered by inclusion. It is easily seen that Zorn’s lemma
applies, so let L be a maximal element of A.

Claim: L is an injective R-module.

Proof of Claim: By Proposition [1.5] it suffices to show that L has no proper essential
extension. So assume L C K is an essential extension of R-modules. Since F is injective,
there exists a homomorphism ¢ : K — F such that ¢ fixes L. We claim that ¢ is injective. If
ker ¢ # 0 then ker¢ N L # 0 since K is essential over L. So let z € ker¢ N L\ with = # 0.
Then 0 = ¢(x) = x since ¢ fixes L, a contradiction. Thus, ¢ is injective. Now consider the
extensions M C L C ¢(K) C E. As L C K is essential, so is L C ¢(K). (Let ¢(k) # 0 for
some k € K. Then certainly k # 0, so there exists r € R such that rk € L with rk # 0. Hence
ro(k) = o(rk) = rk # 0, as ¢ fixes L.) And since M C L is essential, we have M C ¢(K) is
essential. By maximality of L in A, we conclude that L = ¢(K). As ¢ is injective and fixes
L, we obtain L = ¢"1(L) = ¢1(¢(K)) = K. Thus, we have proved L has no proper essential
extensions.

Since M C L C E and L is injective, we must have F = L by assumption (b). Thus, M C F
is essential. As F is injective, E has no proper essential extensions. Hence, E is a maximal
essential extension of M.

For existence, let M be an R-module and I an injective module containing M. Let E be a
maximal essential extension of M inside E, which exists by Zorn’s Lemma. The Claim in the
proof of (b)) = (a) shows that FE is injective. Thus, M C F satisfies condition (c).

Now suppose M C E and M C E’ satisfy the equivalent conditions. As E’ is injective there
exists a homomorphism f : E — E’ which fixes M. As FE is essential over M, f is injective
by the same argument we used to show ¢ is injective in (b)) = (a). Hence, f(E) = E is
injective and M C f(E) C E'. Since E’ satisfies (b), we must have f(F) = E’. Hence, f is an
isomorphism fixing M.

]

Definition 1.7. Let M be an R-module. Any R-module satisfying the equivalent conditions of
Theorem is called an injective hull or injective envelope of M and is denoted Egr(M).

Example 1.8. Let R be a domain and @ its field of fractions. Then R C (@ is essential and @)
is an injective R-module (Remark [1.1{i)). Thus, @ = Er(R).

Lemma 1.9. Let R be a ring, T an R-algebra, and L and M R-modules.
(a) There exists a homomorphism of T-modules which is natural in L, M, and T
¢ryvr » Homg(L, M) @ g T — Homp (L @p T, M @ T)
fet— f/é/t

where f?@ft(é @t)=fl)@tt foralll e L andt' €T.
(b) If T is flat over R and L is finitely presented as an R-module then ¢y is an isomorphism.

Proof. The proof of part (a) is left as an exercise. One needs to check that all the maps are
well-defined homomorphisms and that maps ¢y make all squares commute when fixing any
two of the three variables.

For part (b), first note that when L = R it is easy to see that ¢ry is an isomorphism.
Since Hompg(—, M) and — ®r T' commute with finite direct sums in a natural way, it follows



that if ¢ and ¢y are isomorphisms, so is ¢opr where C' = A @ B. Thus, ¢y is an
isomorphism for all (finite) n.

Now suppose we have an exact sequence R™ — R™ — L — 0. Then we have a commutative
diagram

0 — Homp(L, M) ® T ——— Hompg(R", M) @3 T ——— Homp(R™, M) @ T

ld)LMIT l@%n MT l@zm MT

0 —— HOHIT(L KRR T,M@R T) E— HOHIT(Rn KRR T,M@R T) e HomR(Rm QR T,M@R T)

The top row is exact since Hompg(—, M) is left exact and — ®g T is exact as T is flat. The
bottom row is exact for the same reason, except the functors are applied in the opposite order.
Since the two vertical maps on the right are isomorphisms, so is the leftmost vertical map by
the five lemma.

O

Lemma 1.10. Let C, be a complex of R-modules and ¥ an ezxact additive functor from the
category of R-modules to the category of S-modules, for some R-algebra S. Then for all i

(a) If F is covariant then F(H;(C,)) = H;(F(C,));
(b) If F is contravariant then F(H;(C,)) = H(F(C,)).
Proof. Exercise. m
Remark 1.11. Let M be an R-module. Then
e Homp(M, —) is exact if and only if M is projective.
e Homp(—, M) is exact if and only if M is injective.
o M ®pr — is exact if and only if M is flat.

Proposition 1.12. Let R be Noetherian, M and N R-modules, and T an R-algebra. If M 1is
finitely generated and T s flat, then

Exty,(M,N)®r T = Exti:(M @z T, N @ T)
for all i.

Proof. Let F, be a free resolution of M. Since M is finitely generated and R is Noetherian,
we can assume that each Fj is a finitely generated, so F; = R™ for some n;. Then F; ®p T =
R" ®@r T = T™, so each module in the complex F, ® T' is a (finitely generated) free T-module.
Since T is flat over R, F, ® T is a free resolution of M ®g T'. Thus, for each i we have
Ext% (M, N) ®@r T = H'(Homg(F,, N)) @ T

=~ H (Hompg(F,, N) @ T)

~ H'(Homp(F, @ T, N @ T))

>~ Exth(M @r T, N @ T),

where the second isomorphism is by Lemma and the third is by Lemma [1.9]



Lemma 1.13. Let R be a Noetherian ring and L C M an essential extension. Then Assg L =
Assp M.

Proof. Clearly Assp L C Assp M. If Assgp M = () then M = L = 0 and so Assp L = (). So assume
Assp M # () and let p € Assg M. Then p = (0 :5 z) for some x € M. Thus, Rz = R/p and thus
Assg Rx = {p}. Since L C M is essential, we know Rz N L # 0, so Assg(Rx N L) # (. But as
Rz NL is asubmodule of both Rx and L, Assgr(RxNL) C (Assg Rx)N(Assg L) = {p}N(Assg L).
Since this intersection must be nonempty, we see that p € Assg L. O

Lemma 1.14. Let R be a Noetherian ring and L C M be an essential extension of R-modules.
Then for any multiplicatively closed set S of R, Ls C Mg is an essential extension of Rg-
modules.

Proof. If Mg = 0 the statement is trivial, as the zero module is an essential extension of itself. So
assume Mg # 0 and let Ag be an arbitrary nonzero submodule of Mg (where A is a submodule
of M). It suffices to prove that AsNLg = (ANL)s # 0. Note that for an arbitrary R-module N,
Ng # 0if and only if Assg, Ng # 0, which is if and only if there exists p € Assg N with p NS # (.
Now as L C M is essential, so is AN L C A. Thus, by Lemma [1.13] Assgp(A N L) = Assp A.
Since Ag # 0, there exists p € Assg A such that pN.S = (). Since p € Assr(AN L), we conclude
that (A N L)S 7& 0. O

Proposition 1.15. Let R be a Noetherian ring and S a multiplicatively closed set.
(a) If E is an injective R-module then Eg is an injective Rg-module. (Note: R = S™'R.)
(b) For any R-module M, Er(M)s = Er,(Ms).

Proof. For part (a), let Is be an ideal of Rg (where [ is an ideal of R). Since E is an injective
R-module, Extp(R/I, E) = 0. Since Rg is a flat R-algebra, we have by Proposition m

EXt}zs(RS/ISa Es) 2 Extp(R/I,E) ®r Rs = 0@ Rg = 0.

Hence, Eg is an injective Rg-module by Remark [L.Ib).
For (b), we have Er(M)g is an injective Rg-module by part (a). Also, since M C Ex(M) is
essential, so is Mg C Er(M)g by Lemma [I.14] Hence, Eg(M)s = Egy(Mg) by Theorem [1.6]
[l

Theorem 1.16. Let R be a Noetherian ring and E and injective module. Then E is indecom-
posable if and only if E = Egr(R/p) for some prime p of R.

Proof. Suppose E is indecomposable and let p € Assg E. Then there exists an injective map
f: R/p— E. Of course, there is also an injective map i : R/p — Er(R/p) (given by inclusion).
Since F is injective there exists a map ¢ : Fr(R/p) — E such that ¢ restricted to R/p is f.
Since f is injective and Er(R/p) is essential over R/p, we have that ¢ is injective: If not, let x
be a nonzero element in ker ¢. Then there exists r € R such that rz # 0 and rz € R/p. Then
f(rx) = ¢(rz) = r¢(z) = 0, contradicting that f is injective. Thus, we have an injective map
¢: Er(R/p) — E. As Eg(R/p) is injective, ¢ splits and E = Er(R/p) & F for some F. Finally,
as F is indecomposable, F' must be zero.

Conversely, let p be a prime ideal and suppose Er(R/p) = Ei1 @ Es. Suppose both Ej
and E, are nonzero. Then, as Fr(R/p) is an essential extension of R/p, J; = E; N R/p and
Jo = E3 N R/p are nonzero submodules (i.e., ideals) of R/p. But in a domain, every pair of
nonzero ideals intersect nontrivially. Thus, J; N Js # 0, contradicting that F; N Ey = 0.

[



Remark 1.17. Let R be a Noetherian ring.
(a) If E is injective and p € Assg E then Er(R/p) is a isomorphic to a direct summand of E.
(b) For any two prime ideals p, q of R, Er(R/p) = Er(R/q) if and only if p = q.

Proof. For part (a), this is exactly what the first part of the proof of Theorem shows
(ignoring the indecomposable hypothesis). For part (2), suppose Er(R/p) = Er(R/q). Then

Assr(R/p) = Assg Er(R/q). But by Lemma Assgr ERr(R/p) = Assg R/p = {p} and
Assgp ERr(R/q) = Assg R/q = {q}. O

Theorem 1.18. Let R be a Noetherian ring. Then any injective module is a direct sum of
indecomposable injective modules.

Proof. Let I be an injective module. If I = 0 then the statement is trivially true (as I is
the sum of an empty set of indecomposable injectives). So assume I # 0. Let X; be the set
of indecomposable injective submodules of I and F a subset of X;. We let Mz denote the
submodule of I generated by all the submodules in F; that is,

My =) A

AeF

We'll call F direct if the sum My =), A is a direct sum; i.e.,

Y A=A

AeF AeF

Now consider the set
A={F C X, | F is direct}.

Since I # 0 there exists a prime p € Asspl. By Remark [1.17(a), Er(R/p) is isomorphic to
a submodule T of I. Thus, {T} € A and consequently A # (. We consider A as a poset by
inclusion. Omne can easily check that Zorn’s lemma applies, since to check whether a sum of
submodules is direct one only needs to consider finitely many submodules at a time. So let F
be a maximal element of A and set L = Mz. We claim that L = I. Since R is Noetherian, L is
injective. Thus, I = L & N for some submodule N of I. If N # 0 then N = N; & N5, where
N1 = ER(R/p) for some p € Assp N (again by Remark [[.17|(a)). Thus, L + Ny = L & N; and
so FU{N;} € A, contradicting the maximality of F. Thus, N =0 and [ = L.

m

Lemma 1.19. Let R be a Noetherian ring and p € Spec R.

(a) Every element of Eg(R/p) is annihilated by a power of p.

(b) Er(R/p) = Eg,(k(p)), where k(p) = Ry/pR,.

Proof. For part (a), let x € Er(R/p), © # 0. Then Assg Rx C Assg Fr(R/p) = Assg R/p =
{p}. Hence, Assg Rx = {p}. Since Rx = R/ Anngz, we have p = y/Anngz (see Grifo’s 905
notes, Theorem 6.50). Hence, z is annihilated by a power of p.

For part (b), let £ = Er(R/p). We will first show the map ¢ : £ — E, given by ¢(e) = ¢
is an isomorphism. Let e € E/ and suppose ¢(e) = § = 0. Then there exists s ¢ p such that
se = 0. But as Assg £ = {p}, every zero-divisor on E is contained in p (cf., Theorem 6.27 of



Grifo’s 905 notes). Hence, s is a non-zero-divisor on E and thus e = 0. This shows ¢ is injective.
Now let ¢ € E,, where s € p. Since Assg Re = {p} (see the proof of (a)) we have that s is
a non-zero-divisor on Re. Then the map f : Re — Re given by f(re) = sre is injective. Let
1 : Re — FE be the inclusion map. As F is injective, there exists a map h : Re — E such that
i =hf. Let ¢ = h(e) Then

e =1i(e) = hf(e) = h(se) = sh(e) = s¢'.

Thus, ¢ = s?el = GT’ = ¢(e'). Hence, ¢ is surjective and Er(R/p) = Er(R/p),.
Applying Proposition [1.15(b) we have that Er(R/p), = Eg,((R/p),) = Eg,(k(p)) since

(R/p)p = R,/pR, = k(p). Hence, Er(R/p) = Er,(k(p)).
]

Lemma 1.20. Let R be a Noetherian ring, I an ideal of R and p € Spec R. Then

Er/(R/p), if I Cp
0, if I & p.

Proof. If I C p, then R/p is an R/I-module. The result then follows from Problem 2 of
Homework # 1. If I ¢ plet s € I, s & pand let f: R/I — Er(R/p) be a homomorphism.
Then for all r € R, sf(7) = f(s7) = f(0) = 0. Since s is a non-zero-divisor on Eg(R/p), f = 0.

O

Hompg(R/I, Er(R/p)) = {

[

Proposition 1.21. Let R be a Noetherian ring and I an injective module. Suppose I =
Er(R/p)* @ I', where Egr(R/p) is not a summand of I' (equivalently, p & AssgI'). Then

a = rank;,) Hompg, (k(p), 1)

Consequently, the number of copies of Er(R/p) appearing in any decomposition of I into inde-
composables is uniquely determined. We denote « by pu(p, I).

Proof. Let Er(R/q) be asummand of I’. By assumption, p # q. If p ¢ ¢ then Homg(R/p, Er(R/q)) =
0 by Lemma[1.20] If p C ¢ then (R/q), = 0. Since (R/q), € Er(R/q), is essential, we conclude

that Er(R/q), = 0. Thus, for every summand of Er(R/q) of I' we have Hompg, (k(p), Er(R/q)y) =

0. Thus, Homg, (k(p), 1,) = 0. Hence,

Homp, (k(p), I,) = Homg, (k(p), Er(R/p);)
= Homp(R/p, Er(R/p)),
= Erpp(R/p)y
= By (k(p))*
= k(p)“.

The second isomorphism follows Lemma [I.9] the third isomorphism from Problem 2 of HW #1,
and the fourth by Proposition [1.15, From these isomorphisms, it follows that

ranky, ) Home(k(p), I,) = ranky,,) k(p)® = a.



Proposition 1.22. Let R be a Noetherian ring and L C M R-modules. Then the following are
equivalent:

(a) L C M is essential;
(b) L, C M, is essential for all primes p;

(c) (0:1, pR,) = (0 :ar, pR,) for all primes p.
(d) The natural map Homp, (k(p), L,) — Hompg, (k(p), M,) is an isomorphism for all primes p.

Proof. (a) = (b): This follows by Lemma [1.14]

(b) = (c): It suffices to prove that if R is local ring with maximal ideal m and A C B is
essential then (0 :4 m) = (0 :p m). It is easy to see that (0 :4 m) C (0 :p m) is an essential
extension of R/m-modules. Since R/m is a field, we must have equality.

(c) <= (d): This follows from the natural isomorphism (0 :y, pR,) = Homg, (k(p), N},) for
all R-modules N and prime ideals p.

(¢) = (a): Let A be a nonzero submodule of M and p € Assg A. Then p = (0 : a) for
some a € A. Hence, pR, = (0 :g, ), s0 § € (0 :n, pR,) = (0 :z, pR,). Thus, § = * for some
u € L and s € p. Then x := tu = tsa for some t € p. Note v € L N A since u € L and a € A.
Also, x # 0 since ts € p = (0 :g a).

[

2 Minimal injective resolutions and injective dimension

Definition 2.1. Let R be a ring, M an R-module and I°® an injective resolution of M. Let 0°
denote the differential of I*, where " : I' — I'*'. We say that I* is minimal if I° = Er(M)
and I' 2 Fr(im 0"1) for all ¢ > 0.

Lemma 2.2. Let R be ring and M an R-module. Then M has a minimal injective resolution.

Proof. Let I° = Exr(M) and 0~! : M — I° be the inclusion map. Let C° = coker ! and
I' = ER(C?). Let 8° be the composition I° — CY — I' where the first map is the canonical

projection and the second is the natural inclusion. Then 0 — M 27 10 % 1 i exact. And as
C = imd° we have I' & F(im d°). Continuing in this fashion, we obtain a minimal injective
resolution of M.

O

Proposition 2.3. Let R be Noetherian and M an R-module. Let I® be an injective resolu-
tion of M. Then I°* is munimal if and only if for all p € Spec R and for all © > 0 the map
Homp, (k(p), 1) — Homg, (k(p), I;*") is zero.

Proof. Let 0° be the differential of I°®. Let C° = M and % = im 9! for i > 0. Applying the
left exact functor Homp, (k(p), R, ®r —) to the exact sequence 0 — C* — I' — I'*! we obtain
for all p € Spec R

0 — Homg, (k(p), C’;) — Hompg, (k(p), I;))) — Homp, (k(p), [;“)

is exact. Now, I*® is minimal if and only if I 2 Er(C") for all i. But as I’ is injective, this holds
if and only if C* C I' is essential for each i. By Proposition C' C I' is essential if and only



if the map Hompg, (k(p), C;) — Homg, (k(p), I}) is an isomorphism for all primes p. But from
the exact sequence above, this is equivalent to the maps Hompg, (k(p), I}) — Hompg, (k(p), I;*")
being zero for all p € Spec R.

[

Corollary 2.4. Let R be a Noetherian ring, M an R-module, and I* a minimal injective reso-

lution of M. For any mulitiplicatively closed set S of R, I$ is a minimal injective resolution of
Ms.

Theorem 2.5. Let R be a Noetherian ring, M an R-module, and I*® a minimal injective reso-
lution of M. Then for i > 0 and each p € Spec R we have

w(p, I') = ranky, ) Ext%p(k(p), M,).

Consequently, u(p, I*) does not depend on M or the choice of minimal injective resolution I°.
The number p(p, I') is called the ith Bass number of M with respect to p and is denoted ji;(p, M).

Proof. Using Propositions and
Exty, (k(p), M) = H'(Homg, (k(p), I,))

= Home(k(p)7 ];3)
Thus, p(p, I') = rank) Hompg, (k(p), I}) = ranky,) Exti%p(k:(p), M,). O
Corollary 2.6. Let R be a Noetherian ring and M a finitely generated R-module. Then
wi(p, M) < oo for all i and all p € Spec R.

Proof. This follows from the fact that over a Noetherian ring R, Ext% (A, B) is finitely generated
for all ¢ whenever A and B are finitely generated. (Let F, be a free resolution of A consisting

of finitely generated free modules. Hence for each 1, Hompg(F;, B) is finitely generated. Then
Extyr(A, B) = H'(Homg(F,, B) is isomorphic to a subquotient of Hompg(F;, B).) O

Remark 2.7. Let R be a Noetherian ring and M an R-module. Then pg(p, M) # 0 if and only
if p € Assgp M. This follows from juo(p, M) = ranky,) Hompg, (k(p), M,). Thus, if M is finitely
generated, there are only finitely many primes p such that py(p, M) # 0.

Definition 2.8. Let M be an R-module. Then the injective dimension of M, denoted idr M,
is defined to be the infimum of the lengths of all injective resolutions of M. (Recall that the
length of a resolution I* is sup{n | I" # 0}.)

Proposition 2.9. Let R be a Noetherian ring and M an R-module.
(a) idg M = sup{n | pn(p, M) # 0 for some p € Spec R}.
(b) The length of any minimal injective resolution of M is equal to idg M.

Proof. Observe that by Theorem [2.5 given any minimal injective resolution I*, I"™ # 0 if and
only if p,(p, M) # 0 for some p. Now let r = idg M and let ¢ denote the right-hand side of
the equality. Note that if p,(p, M) # 0 for some n then Ext%(R/p, M) # 0, which implies
r > n. Hence, r > (. If / = oo there is nothing left to show, so assume ¢ < co. Let I°® be a
minimal injective resolution of M. By the observation above, I**! = 0, which means that I* is
an injective resolution of M of length at most ¢. Hence, r < £. This proves (a).
For part (b), again by the observation about, the length of any minimal injective resolution
is ¢ (the right-hand-side of the equality in (a)).
0



We next recall the notion of length and some of its elementary properties. Proofs of these
properties can be found in Atiyah-Macdonald.

Definition 2.10. Let R be a ring. An R-module is called simple if M # 0 and M has no
non-trivial submodules.

Remark 2.11. An R-module M is simple if and only if M = R/m for some maximal ideal m
of R. For, if M is simple and = € M, x # 0, then M = Rz = R/I where I = (0 :g x). Since M

is simple, I must be maximal.

Definition 2.12. Let M be an R-module. A filtration 0 = My C My C My C --- C M,, = M is
called a composition series for M if M;,1/M; is simple for i = 1,...,n. In this case, we say the
length of the composition series is n. If M has a composition series, the length of M, denoted
Ar(M), is defined to be infimum of the lengths of all composition series for M. If M does not
have a composition series, we say M has infinite length; i.e., Ag(M) = co.

Proposition 2.13. Let R be a ring and M an R-module.

(a) If M has a composition series then all composition series for M have the same length.

(b) Every filtration of M can be refined to a composition series.

(¢) If0 - L — M — N — 0 is a short exact sequence then Ag(M) = Ar(L) + Ar(N).

Proof. See Atiyah-Macdonald. m

Definition 2.14. An R-module M is called Artinian if M satisfies the descending chain condi-
tion on submodules. The ring R is said to be Artinian if R is Artinian as an R-module.

Remark 2.15. Let k be a field and V' a k-vector space. The following are equivalent:

(a) V is Noetherian;

(b) V' is Artinian;

(c) rank; V < oc.

Proof. Basic vector space theory. O

Proposition 2.16. Let R be a ring and M an R-module. Then M has finite length if and only
if M is both Artinian and Noetherian.

Proof. If M has finite length then any chain of submodules with proper containments has length
at most Ar(M) (since it can be refined to a composition series). Thus, M satisfies both chain
conditions. Conversely, suppose M is both Noetherian and Artinian. Since M is Noetherian
there exists a maximal proper submodule, say M;. Then let M, be a maximal proper submodule
of My, etc. As M is Artinian, this eventually terminates in a composition series. Hence, M has
finite length. O]

Proposition 2.17. Let R be a Noetherian ring and M a finitely generated R-module. Then M
has finite length if and only if dim M = 0.



Proof. Recall that dim M = dim R/ Anng M. Since the length of M as R-module and as an
R/ Anng M-module are the same, we may assume Anng M = 0 and dim M = dim R. Let p be
a minimal prime of R. Then p is minimal over Anng M and thus p € Assg M. (See Theorem
6.40 of Grifo’s 905 notes.) Then there is an injection of R/p into M, which implies that R/p
has finite length. It suffices to show that every Artinian domain S is a field: let z € S, z # 0.
Then the descending chain (z) D (2?) 2 (2*) D - - - stabilizes, so there exists an n > 0 such that
(z™) = (2"*1). Thus, 2" = 2™ty for some y € S. Canceling 2", we see that z is a unit. Hence,
R/p is a field, so p is maximal. Thus, dim M = dim R = 0.

Conversely, suppose dim M = 0. Again, we may assume Anng M = 0 and thus dim R = 0.
Then R has finitely many prime ideals, say {m,...,m,}, all of which are both maximal and
minimal. Then /(0) = my N --- Nm,. Hence, (my---m,)* = 0 for some s. Thus, 0 is the
product of finitely many maximal ideals. Let 0 = p;---p, where p; are maximal ideals (not
necessarily distinct). For ¢ = 1,... t let I; = p;---p;, and let I; = R for all i < 0. Note I; =0
for i > t. We claim that I, M has finite length for all . This is trivially true when ¢ > t. Assume
1 < t and that I;;1 M has finite length. Consider the exact sequence

All three modules are Noetherian since M is. By assumption [; ;1M has finite length. Note that
piv1 - LM /I, ;1M = 0, since piy11; = Iy, Thus, ;M/1; 1M is a (Noetherian) R/p;;i-vector
space. By Remark I;M /11 M is also Artinian as an R/p;,1-vector space, and hence as an
R-module as well. Thus, I;M/I;11 M has finite length by Proposition [2.16, Now by part (c) of
Proposition we conclude I; M has finite length. This proves the claim. Hence M = IyM
has finite length.

O

Theorem 2.18. Let R be a ring. Then R is Artinian if and only if R is Noetherian and
dim R = 0.

Proof. See Atiyah-Macdonald. m

Remark 2.19. While every Artinian ring is Noetherian, the same cannot be said of modules.
Let R = Z2). Then Q/R is an Artinian R-module which is not Noetherian.

Proposition 2.20. If (R,m) is a local ring containing a field k such that the composition
k— R — R/m is an isomorphism. Then for any R-module M, A\r(M) = ranky M.

Proof. Any chain of R-modules is a chain of k-vector spaces. Thus, if M has infinite length as
an R-module, M has infinite rank as a k-vector space. Suppose Ag(M) =n < co. If n =1 then
M = R/m = k, so ranky M = 1. If n > 1, let M; be a simple submodule of M and consider
the short exact sequence 0 — My — M — M/M; — 0. (This is a s.e.s. as both R-modules
and k-vector spaces.) Then Ag(M/M;) = n — 1. By the (unstated) induction hypothesis,
ranky M/M; =n — 1. Since rank; M; = 1, we conclude rank, M = n. O

Example 2.21. Let R = Ek[x]/(2"), where k is a field and z a variable. Note R is local
with maximal ideal m = (7). Also, the map & — R — R/m is an isomorphism. Hence,
Ar(R) =dim, R=mn as {1,Z,...,2" 1} is a k-basis for R.

Lemma 2.22. Let (R,m) be a local ring with residue field k and M an R-module. Suppose
Ext(k, M) =0 for some i. Then Ext%(L, M) =0 for any finite length module L.



Proof. Let Agr(L) denote the length of L. If Ag(L) = 1 then L = k and the result holds. Suppose
now that Ag(L) > 0 and that the lemma holds for all modules of length less than Ag(L). Then
there exists an exact sequence 0 — k — L — C — 0 such that A\g(C) = Ag(L) — 1. Thus,
Ext’(k,C) = 0. From the long exact sequence

oo = Exth (O, M) — BExtly (L, M) — Ext(k, M) — -

we conclude that Ext’ (L, M) = 0.
[l

Theorem 2.23. Let R be a Noetherian ring and M a finitely generated R-module. Let p C q
be prime ideals and set h = htq/p. If u;(p, M) # 0 for some i then p;yn(q, M) # 0.

Proof. By induction on h, it suffices to prove the case when h = 1. Furthermore, since p;(p, M) =
wi(pRy, M) (use either Corollary or Theorem [2.5)), we may assume (R, m) is local, ¢ = m
and ht m/p = 1. Choose x € m \ p. Note that m is minimal over (p,x), so dim R/(p,x) = 0.
Hence, by Proposition Ar(R/(p,x)) < oo. Since z is a non-zero-divisor on R/p we have
the short exact sequence

0—R/p> R/p— R/(p,x) — 0.

Applying Hompg(—, M) we have the exact sequence
-+ = Extip(R/p, M) = Exty(R/p, M) — Exti'(R/(p,x), M) — - --

Since u;(p, M) # 0 we have Ext',(R/p, M) # 0. Note also that Extz(R/p, M) is finitely gener-
ated (see the proof of Corollary [2.6). Now suppose by way of contradiction that p;1(m, M) = 0.
Then ExtZ!(k, M) = 0, which implies by Lemma m that Ext?'(R/(p,x), M) = 0. Hence,
Ext(R/p, M) = 2 Extl,(R/p, M) which forces Ext’(R/p, M) = 0 by Nakayama’s Lemma. This
is a contradiction.

]

Corollary 2.24. Let (R,m) be a local ring with residue field k and M a finitely generated
R-module. Then
idg M = sup{n | Extj(k, M) # 0}.

Proof. Let r = idgp M and ¢ denote the right-hand-side of the equality. Since Ext%(k, M) = 0
for all © > r, certainly ¢ < r. Suppose ¢ < r. Then by Proposition wi(p, M) # 0 for some
i > ¢ and some p € Spec R. By Theorem [2.23| p;15(m, M) # 0 where h = dim R/p. But this
means Ext5"(k, M) # 0, a contradiction as i 4+ h > £. O

Corollary 2.25. Let R be a Noetherian ring and M a nonzero finitely generated R-module.
Then idp M > dim M.

Proof. Since dimp M = sup{dim M, | p € Spec R} and idg M > idg, M, for all p € Spec R, it
suffices to prove the statement in the case (R, m) is a local ring. Let d = dim M and choose p in
Suppp M = V(Anng M) such that dim R/p = d. Then p € Assg M (cf. Theorem 6.40 of Grifo’s
905 notes). Hence, po(p, M) = dimyy Hompg, (k(p), M,,) # 0. By Theorem , we obtain that
pra(m, M) # 0. Thus, idg M > d by Corollary 2.24]

O



3 Grade and depth

Definition 3.1. Let R be a ring, M an R-module, and x = x1,...,2, € R. We say x is a
reqular sequence on M, or simply an M -sequence, if (xy,...,x,)M # M and x; is regular (i.e.,
a non-zero-divisor) on M/(xy,...,xz;_1)M for each : = 1,...,n. An M-sequence x is called
mazimal if x cannot be extended to a longer M-sequence.

Example 3.2. Let R = k[xq,...,x,] be a polynomial ring over the field k. Then z1,...,z, is
a maximal R-sequence.

Lemma 3.3. Let R be Noetherian and M a finitely generated R-module. Then
(a) The length of every M-sequence is finite.
(b) Every M-sequence can be extended to a maximal M -sequence.

Proof. For part (a), note that if z,...,x, is an M-sequence then
0C (z1)M C (1, 29)M C - C(21,...,20)M

is a strictly ascending chain of submodule of M. For if (zy,...,2)M = (x1,...,2;41)M for
some i, then ;. M C (xy,...,2;)M. As M # (x1,...,x;)M, then z,,1 is a zero-divisor on
M/(xq,...,x;)M, a contradiction. Consequently, as M is Noetherian, this chain must terminate.
Hence, there are no M-sequences of infinite length. The same argument (using ACC) proves (b)
as well.

O
Example 3.4. Let R = k[z,y,z]. Then x,y, z is a maximal R-sequence.

Example 3.5. Let R = k[z,y,2)(zy.) and M = R/(xzy,yz). Then y — z is a maximal M
-sequence. To see this, note that (zy,zz) = (y) N (x, z) is a irredundant primary decomposition
of I. Thus, (y) and (z, z) are the associated primes of M. Since y — z is not in either associated
prime, it is a non-zero-divisor on M. Also, M # (y — z2)M, so y — z is M-regular. Note
that M/(y — 2)M = klz,y, 2|y /(xy, 22,y — 2) = k2, Y|y /(zy, y?). Since (x,y)z = 0 in
klz, Yl /(xy, ¥?), (z,y) consists of zero-divisors on M/(y — z)M. Thus, y — z is a maximal
M-sequence.

Here we summarize some essential facts about primary decompositions for modules, and
then use them to prove Krull’s Intersection Theorem.

Definition 3.6. Let M be an R-module. A submodule @) of M is called primary if Q C M
and for every r € R multiplication by r on M /@) is either injective or nilpotent; i.e., r is either
a non-zero-divisor on M/Q or r"M C @) for some n.

Remark 3.7. Let @ be a primary submodule of M. Then p := /Anng M /@ is a prime ideal
of R. We say that @) is a p-primary submodule of M.

Theorem 3.8. Let R be a Noetherian ring, M a finitely generated R-module and N C M a
submodule. Then there exists primary submodules Q1. ..,Q, such that

o N=QiN---NQy;

e NCQiN---NQiN---Qn fori=1,...,n;



® pi,...,pn are distinct prime ideals, where p; = \/Anng M/Q;.

The decomposition N = Q1 N---N Q, is called an irredundant primary decomposition
for N C M. The prime ideals pi,...,p, are uniquely determined by N C M and are called
the associated primes of N C M (or more commonly, of M/N). We denote the set of
associated primes of M/N by Assg M/N. Moreover, a prime ideal p € Assg M/N if and only
if p= (N :g x) for some x € M. Additionally, if p; is a minimal associated prime of M /N, the
Qi = ¢~ (N,,) where ¢ : M — M, is the natural localization map.

Proof. See Atiyah-Macdonald. n

Theorem 3.9. (Krull’s Intersection Theorem) Let R be a Noetherian ring, I an ideal, and M
a finitely generated R-module. Then there exist an s € I such that

(1—s) ﬁ "M =0
n=1

Proof. Let N = m I"M. We claim that IN = N. If IN = M, there is nothing to prove.

Suppose IN C ]\2 gnd let IN=0Q:NE2N---NQ, be a primary decomposition of IN C M.
Then for each i, IN C Q;. If N ¢ Q; then I consists of zero-divisors on M/Q;. As Q; is a
primary submodule of M, we must have I"M C (@); for some n. But N C I"M, so N C Q;,
a contradiction. Thus, N C Q1 N---NQ, = IN. Consequently, IN = N. By a homework
exercise, this implies there exists s € I such that (1 —s)N = 0.

m

Definition 3.10. Let R be a ring. The Jacobson radical of R, denoted J(R), is the intersection
of all maximal ideals of R. It is easily seen that if r € J(R) then 1 — r is a unit.

Corollary 3.11. Let R be a Noetherian ring, I C J(R) an ideal, and M a finitely generated
R-module. Then

ﬁ I"M = 0.
n=1

Proof. Apply Krull’s Intersection Theorem and use that 1 — s is a unit for every s € I. O

Proposition 3.12. Let R be Noetherian, M a finitely generated R-module, and x = x1,...,x, €
J(R) an M-sequence. Then any permutation of x is an M -sequence.

Proof. 1t suffices to show that if z,y € J(R) is an M-sequence then so is y, z. First note that
(y,x)M = (x,y)M # M. We next show that y is regular on M: suppose yu = 0 for some
uw € M. Then yu € M so u € xM. Write u = xu; where u; € M. Then 0 = yu = xyuy, so
yu; = 0. Repeating the argument above, we get u; € xM and hence u € (x)?M. Continuing
in this way, we obtain that u € (,.,(z)"M. As (z) € J(R) we have (,.,(z)"M = 0 and
thus v = 0. This shows y is regular on M. Now assume zv € yM for some v € M. Then
xv = yw for some w € M. Since y is regular on M /x M, we obtain that w = xz for some z € M.
Consequently, xv = xyz. As x is regular on M, we then have v = yz € yM. Hence, x is regular
on M/yM.

0



Definition 3.13. Let R be a Noetherian ring, I an ideal of R, and M a finitely generated
R-module such that IM # M. Then the grade of I on M, denote grade; M or grade(I, M), is
defined to be the supremum of the lengths of all M-sequences contained in I.

Remark 3.14. Note that it is not clear from the definition that grade, M < oo. Although
every maximal M-sequence is finite, the supremum of the lengths of such sequences might be
infinite.

Notation (temporary): Let R be a ring and L and M R-modules. Define
g(L, M) :=inf{n | Ext,(L, M) # 0}.
Note that g(L, M) > 0 for all R-modules L and M. (Recall inf ) = o0.)

Proposition 3.15. Let R be a ring, L and M R-modules, and x € R such that xL =0 and x
is regular on M. Then g(L,M/xM) = g(L, M) — 1. Furthermore, if g := g(L, M) < oo then
Ext% (L, M/xM) = Ext%(L, M).

Proof. Let f: L — M be a homomorphism. Then zf(L) = f(xL) = f(0) = 0. As z is regular
on M, we see that f(L) = 0. Hence, Hompg(L, M) = 0 and so g > 0. Now applying Hompg(L, —)
to the s.es. 0 = M 5 M — M/xM — 0 we get the long exact sequence

coo— Extly (L, M) = Extly (L, M) — Ext’(L, M/xM) — Ext (L, M) = - -

Since L = 0 we have z Extiy(L, M) = 0 for all i (cf. Grifo’s 915 notes, Exercise 73(c).) Thus,
for each i we have an exact sequence

0 — Ext’ (L, M) — Ext’(L, M/xM) — ExtZ (L, M) — 0.

Both conclusions follow easily from this sequence.
m

Theorem 3.16. Let R be a Noetherian ring, I an ideal of R, and M a finitely generated R-
module such that IM # M. Let xq,...,x, be a mazimal M-sequence contained in I. Then
r = sup{n | Exty(R/I, M) # 0}. Consequently, all maximal M -sequences contained in I have
the same length and

grade; M = inf{n | Ext}(R/I, M) # 0}.
In particular, grade; M < oo.

Proof. Notice that the right-hand-side is g := g(R/I, M). Suppose r = 0. Since IM # M, it
must be that I consists of zero-divisors on M. Thus, [ is contained in the union of the associated
primes of M (Grifo 905, Theorem 6.27). By the prime avoidance lemma (Grifo 905, Theorem
3.29), I C p for some associated prime p of M. Then the composition R/I — R/p — M
is nonzero. Hence, Homg(R/I, M) = Ext%(R/I,M) # 0 and ¢ = 0 = r. Proceeding by
induction on r, we may assume r > 0 and that the result holds for all finitely generated R-
modules N with /N # N and having a maximal N-sequence of length at most r — 1. Let
N = M/xyM. Then IN # N and s, ...,x, is a maximal N-sequence contained in /. Hence,
r—1=g(R/I,N)=g—1 by Proposition 3.15] Thus, r = g, which completes the proof. H

Corollary 3.17. Let R be a Noetherian ring, I an ideal of R, and M a finitely generated
R-module such that IM # M. If x € I is a reqular element on M, then

gradey ) M/xM = grade; M /xM = grade; M — 1.



Proof. For the first equality, observe that any sequence y in I is an M /xM-sequence if and only
if its image ¥ in I/(z) is an M/xM-sequence. For the second equality, we have by Theorem
and Proposition [3.15

grade; M /xM = g(R/I,M/xM) = g(R/I, M) — 1 = grade; M — 1.
[

Definition 3.18. Let (R,m) be a local ring and M a finitely generated R-module. Then
the depth of M, denoted depth M, is defined to be grade,, M; i.e., the length of the longest
M-sequence from R.

Remark 3.19. Let R be a local ring and M a finitely generated R-module. By Theorem [3.16],
we have

depth M = inf{n | Ext}(R/m, M) # 0}.
Note: By convention, the depth of the zero module is infinity, since inf () = co.

Theorem 3.20. (Ischebeck’s Theorem) Let (R, m) be a local ring and M and N finitely gener-
ated R-modules. Then Exth (M, N) =0 fori < depth N — dim M.

Proof. First, if either module is zero the result trivially holds. So assume M and N are nonzero
and let d = dimM. If d = 0 then M has finite length. Since Exti,(R/m,N) = 0 for all
1 < depth N by Remark , we have Ext’ (M, N) = 0 for all i < depth N by Lemma m
Hence, the result holds for the case d = 0.

Suppose d > 0 and assume the result holds for all finitely generated modules of dimension
less than d. Consider a filtration of M:

O=MyCcMyC---CM,=M

where M;/M;_; = R/p; for some primes py,...,p, of R. (See Grifo 905 :Theorem 6.33.) Note
that each p; contains Anng M, so dim R/p; < d for all j. Hence, if we show Ext%(R/p;, N) =0
for all i < depth N — dim R/p; and all j, then we'll have Exty(M,;/M; 1, N) = 0 for all i <
depth N — d and all j. Using the long exact sequences on Ext arising from the short exact

sequences
0— Mj,1 — Mj — Mj/Mj,1 — O,

we can conclude Ext%(Mj, N) =0 for all i < depth N —d. Since M,, = M, we’ll be done.
Thus, assume M = R/p for some prime p with dim R/p =d > 0. Since p C m, let x € m\ p
and consider the short exact sequence

0— R/p= R/p— R/(p,x) — 0.

Since dim R/(p,r) < d — 1, we have Ext}(R/(p, z), N) =0 for all i < depth N — d + 1 by the
induction hypothesis. Rewriting this, we have Ext'y'(R/(p,z), N) = 0 for all i < depth N — d.
From the long exact sequence on Ext, we have

Exty(R/p, N) = Exty(R/p, N) — Extiy ' (R/(p,z), N).

By Nakayama’s Lemma, we see that Exti(R/p, N) = 0 for all i < depth N — d. This completes

the proof.
O



Corollary 3.21. Let (R, m) be a local ring and M a nonzero finitely generated R-module. Then
depth M < dim R/p for all p € Assg M. In particular, depth M < dim M .

Proof. Let p € Assp M. Then Ext%(R/p, M) = Hompg(R/p, M) # 0. By Theorem [3.20]
depth M < dim R/p. ]

Example 3.22. Let k be a field and R = Ek[xy,...,zq01]/(T1,. .., Za41)(Tar1). Let m =
(1,...,2411)R. Then R, has depth zero and dimension d. To see depth R,, = 0, note that
mzgr1 = 01in R,,, so mR,, consists of zero-divisors. For dim R,,, note that dim k[z1, ..., Z411]m
is a (d 4+ 1)-dimensional domain, so dim k[z1, ..., x4)m/I < d for any nonzero ideal I. Hence,
dim R,,, < d. On the other hand, dim R,,, > dim R,,/(za41) Ry = dim k21, ..., 4], 0y = d.
Thus, dim R, = d.

4 The Koszul complex

Let C and D be chain complexes with differentials 9 and 97, respectively. Recall the definition
of the tensor product complex C' ®g D (see Grifo 915: Remark 6.14): For all n,

(C®rD),= P C,®r D,
pt+g=n
and
0S¢ P(c@d) = 05 () @ d+ (=1)Pc® 9Y (d)

force Cyand d € D, and p+q=n.

For ease of notation, we often suppress the superscripts and subscripts on the differentials so
long as they are clear from the context. For an element c of a complex C', we define the degree
of ¢, denoted |c|, to be p if ¢ € C,,. Thus, the differential of C' ®p D can be expressed as

Acwd) =d(c)@d+ (—=1)c® a(d).

Definition 4.1. Let R be a ring and x = zq,...,x, a sequence of elements in R. We define
the Koszul complexr K(x) of x (on R) inductively as follows: When n = 1, we define K(z) to
be the complex

0—+R=R—0,

where the R on the right is in homological degree 0. Suppose n > 1 and let X' =z, ..., 2,_1.
Assume that K (x’) has been defined. Then we set K(x) := K(x') ®@g K(z,).

Example 4.2. Let R be a ring and z,y elements of R. Let’s find K(z,y) = K(z) ®r K(y). So
K (z,y) is the complex

0—-RLER—-0)®0—RLR-=0).

To track degrees, let’s write K (z) as 0 — K; = Ky — 0 and K(y) as 0 — L, 2 Lo — 0, where
K;,=L;=Rforall i =0,1. Then K(z) ® K(y) has the form

0= Ky ®r L1 2 (Ko ® Ly) @ (K; ®r L) 2 Ko @ Lo — 0.



Using the rule for the differential of a tensor product of complexes, we obtain
Hlel)=r1l-1®y
I(lg,®1,) =0@1+10y=11y
h(lg, ®@1)=2®1-1®0=2®1
H(le)=014+10=0x0.
Now, each K; ® L; = R by virtue of the map sending 1 ® 1 to 1. Under this identification,
the resulting complex is
)
)
0—R

where again the rightmost R is in degree 0.

(v =)

R? s R — 0,

Definition 4.3. Let x be a (finite) sequence of elements of R and M an R-module. Then the
Koszul complex of x on M is defined to be K(x; M) := K(x) ®r M.

Example 4.4. Let R = k[x,y] be a polynomial ring over a field k& and let M = R/(y). Then
using Example [4.2 and that M = k[z], we have K (z,y; M) = K(z,y) ®g R/(y) is isomorphic to

O%k[w]@ﬂc

0 x
ap 2

— kl[z] = 0.

Definition 4.5. Let R be a ring and C' a complex of R-module. Then the shift or suspension
¥ C of C'is the complex defined by (XC); = C;_; and 9¥° = —9¢. Note that H;(XC) = H;_,(C).

Construction 4.6. Let C be a complex of R-modules and € R. Let C(x) denote the complex
C ®r K(z). Note that for all ¢

C(z)i = (Cis1 ®r R) ® (C; ®r R) = C;y @ G,
Let (u,v) € C(x);—1, where u € C;_1 and v € C;. Then
@ (u,v) =DV ul+vel)
=0w) @1+ (-Du@z+ow) @1+ (-1)lv®0
= (9(u),d(v) + (=) zu) € C(x);_1.
There exists chain maps a : C' — C(z) and 5 : C(x) — XC given by
a(v) == (0,v) € C(z);
B(u,v) := (=1)u € (£C);
for u € C;_1 and v € C;. One can easily check that these maps commute with differentials, and
so are indeed chain maps. (Keep in mind that the differential of ¥C is —9“.) Hence, we have
a short exact sequence of complexes
0= 0% 0@ 5 To—o.
This leads to the long exact sequence on homology

S H(C) 2 H(C(2) 2 By (0) 2 1 (C) -

where here we have used the identification H;(XC') with H;_,(C).



Lemma 4.7. The connecting homomorphism §;_1 : H;_1(C) — H;_1(C) in the long ezxact se-
quence above is multiplication by x for all i.

Proof. This is a classic diagram chase argument. Consider the commutative diagram

0 > Cz . Cifl@cz‘ L) Cifl — 0

lac‘ lBC(z) l_ac

0 —— Ci—l — Ci_Q @Ci—l —_— CZ'_Q — 0

Let Z € H; (ZC’) _1(C), where z € C;_; is a cycle. Lift z via 8 to ((—=1)1¥2,0) € C;_; @ C;.
Then 09®)((—1)l2 ) = (0,22) and a™1(0,2z) = zz. (Note: here we are using z is a cycle in
C'.) Hence, §,_1(Z) = Tz = 2Z, where * denotes image in homology.

O

Definition 4.8. Let R be a ring, x = zy,...,x, elements of R and M an R-module. Then
H;(x; M) := H;(K(x; M) is called the ith Koszul homology of M with respect to x.

Proposition 4.9. Let R be a ring, M an R-module, and X = x1,...,x, € R be a sequence of
elements. Let KM = K(x; M).

(a) KM~ M) for all i; in particular, KM =0 fori<0 andi>n.

(b) For all i, 0(KM) C (x)KM,;

(¢) Ho(x; M) = M/(x)M

(4) Ho(x: M) = (0 201 ().

(e) If x is an M-sequence then H;(x; M) =0 fori > 1

Proof. We proceed by induction on n. In the case n = 1, K™ is the complex

0> M2 M—0.

It is clear part (a) holds and that Ho(zy; M) = M /2, M, Hy(x; M) = (0 ;3 21) and O(KM) =
x1 M. If x; is regular on M then H;(z1; M) = 0.

Suppose n > 1 and all parts hold for smaller values. Let X' = z1,...,2,_; and C = K(x'; M).
Note that K™ = C(x,). From Construction |4.6{ we have that KM = C(x,); = C;_; & C;. By

the n — 1 case, we have C;_; = M5 and C; = M< ") for all . Part (a) now follows. We also
have by the n — 1 case that 0°(C;) C (x')C; for all i. From Construction [4.6] we have

A(KM) = 9(C(x):) € ((X)Ciz, (X)Cima +2,Cin) € (x)C(2); = (x) KL,
For the remaining parts, we have by Construction and Lemma[4.7] the long exact sequence
C— HZ'(X/; M) — HZ(X, M) — Hi_l(Xl; M) x_n> Hi_l(X/; M) —

By the induction hypothesis, H,_1(x"; M) = (0 :ps (x')) and Ho(x'; M) = M/(x')M. From the

l.e.s. above, we have the exact sequences

0 = Ho(x; M) = (0207 (X)) 5 (0 s (X))



and
M/(xYM =% M/(x')M — Ho(x; M) — 0.

This proves (b) and (c).
Suppose x is an M-sequence. By induction, we have that H;(x’; M) = 0 for all i > 1. From
the long exact sequence above we obtain H;(x; M) = 0 for ¢ > 2. It also yields the exact sequence

0 — Hy(KM) = M/(xX'YM = M/(x')M.
Since x, is a regular element on M/(x")M we conclude H;(x; M) = 0. O

Remark 4.10. Let R be a Noetherian ring, x = x1,...,x, € R, and M a finitely generated
R-module. Then H;(x; M) is a finitely generated R-module for all i. This is because H;(x; M)
is a subquotient of KM = M <?), which is finite direct sum of copies of M. As M is Noetherian,
so is KM.

The converse of part (d) of Proposition holds in strengthened form under certain condi-
tions:

Theorem 4.11. Let R be a Noetherian ring, M a nonzero finitely generated R-module, and
X =1I1,...,2, € J(R). The following are equivalent:

(a) x is an M-sequence;

(b) Hi(x; M) =0 foralli > 1;

(c) Hi(x; M) = 0.

Proof. From Proposition [1.9) we have (a) implies (b), and the implication (b) to (c) is obvious.
We prove (c) implies (a) by induction on n. Suppose n = 1. Since (0 :py z1) = Hy(z1; M) =0
we have that z; is a non-zero-divisor on M. And as x1M # M by Nakayama’s lemma, we see

that x, is M-regular.
Suppose that n > 1. As in the proof of Proposition [4.9, we have the long exact sequence

v Hy (X M) — Hy(x; M) — Hioy (3 M) 2 Hy_ (X5 M) — -+
where X' = xy,...,z,_1. From the assumption H;(x; M) = 0 we obtain the exact sequence
H,(x'; M) 2% Hy(x'; M) — 0.

Thus, z, H;(x'; M) = Hy(x’; M). Since z,, € J(R) and Hy(x'; M)) is finitely generated by
Remark [4.10] we obtain that H;(x’; M) = 0. By the induction hypothesis, x’ is an M-sequence.

From the exact sequence
0 — Ho(x'; M) =% Ho(x'; M)

we conclude that z,, is a non-zero-divisor on M/(x')M. Since (x)M # M by Nakayama, we
conclude that x is an M-sequence. O]

Corollary 4.12. Let R be a ring and x = x1,...,x, an R-sequence. Then K(X) is a free
resolution of R/(x) of length n. If R is local then K(x) is a minimal free resolution of R/(x).

Proof. The first statement is clear from parts (a) and(e) of Proposition 1.9, For the second
statement, note that from part (b) of Proposition J(K(x)) C (x)K(x) € mK(x). Hence,
K(x) is minimal (cf. Definition 5.7 and Lemma 5.9 of Grifo’s 915 Notes). O



Corollary 4.13. Let R be a ring, X = x1,...,x, an R-sequence, and M an R-module. Then
for all 7,
H;(x; M) = Tor®(R/(x), M).

Proof. By Corollary 4.12) K(x) is a free resolution of R/(x). Hence,
Torf{(R/(x), M) = H;(K (x) @r M) = H;(K (x; M) = H;(x; M).
[

Proposition 4.14. Let R be a ring, X = x1,...,2, €, and M an R-module. Let Ty,...,T),
be indeterminates and S = R[Th,...,T,]. Let ¢ : S — R be the ring homomorphism given by
o(T;) = z;. Consider M as an S-module via restriction of scalars; i.e., Tyu = x;u for all i and
allw e M. Then for all i,

H,(x; M) = Tor? (S/(T), M).

Proof. First note that H;(x; M) = H;(T; M) for all i. This is because the variables T; act as
the z;’s on M. Since T forms an S-sequence, we have by Corollary that H;(T; M) =
Torf(S/(T), M) for all 4. O

Corollary 4.15. Let R be a ring, x = x1,...,x, € R, and M an R-module. Then (x) H;(x; M) =
0 for alli.

Proof. By Proposition m, Hi(x; M) = Tor?(S/(T), M), where S = R[T},...,T,]. By a
standard fact about Tor, we have T} - Tor? (S/(T), M) = 0 for all j. Hence, z; H;(x; M) =
T; Hi(x, M) = 0 for all j. O
Proposition 4.16. Let R be a ring and X = x1,...,x, € R. Then for any short exact sequence

of R-modules
0LL ML NS0

there is a corresponding long exact sequence on Koszul homology
Proof. Let K = K(x; R). For each i we obtain the commutative diagram

0 — s K,opL —2 v KiopgM —2 4 K,9g N —— 0

l@@l l@@l l{?@ 1

0 —— Ki_1®RLﬁ> Ki_1®RMﬂ> Ki—l®RN—> 0

where the two rows are exact as K; is free (hence flat) for all 7. Since K(x; A) = K ®p A for all
R-modules A, we have a short exact sequence of complexes

0—)K(X;L)%K(X;M)@%K(X;]\U—)O.

Applying Theorem 2.28 of Grifo’s 915 Notes, we obtain the desired long exact sequence.
[

Lemma 4.17. Let (R, m) be a local ring and M a finitely generated R-module with pd, M = t.
Then Ext’y (M, N) # 0 for every nonzero finitely generated R-module N.



Proof. Let F, be a minimal free resolution of M. Let F, be

05 F 2 F = — Fy—0,

where ¢;(F;) C mF;_1. Applying Homg(—, N), we have the complex

Homp(Fy_1, N) 25 Hompg(F,, N) — 0.

It is easy to see that ¢f (Hompg(F;_1, N)) € m Homg(F;, N). Since Hompg(F}, N) = Nrankft £ (),
we see that Ext’ (M, N) = coker ¢; # 0 by Nakayama.
0

Theorem 4.18. Let (R,m) be a local ring and M a nonzero finitely generated R-module of
finite injective dimension. Then idg M = depth R.

Proof. Let p = depth Rand r = idg M. Let x = 1,..., 2, € m be a maximal R-sequence. Then

pdg R/(x) = p by Corollary [4.12] Hence, by Lemma [4.17, we obtain that Exth(R/(x), M) # 0.
Thus, r = idg M > p. Also note depth R/(x) = 0 since x is a maximal R-sequence. Thus,

m € Assg R/(x), so there exists an injection R/m — R/(x). Applying Homg(—, M) to the
resulting short exact sequence,

- = Exth(R/(x), M) — Ext,(R/m, M) — 0,

where we have used that Ext'(A, M) = 0 for all i > r = idg M for all R-modules A. Since
idg M = r, we have Exty(R/m, M) # 0 by Proposition 2.24] Thus, Ext(R/(x), M) # 0, which
implies r < p.

0

5 Cohen-Macaulay rings and modules

We first do a quick review of dimension theory in Noetherian rings:

Theorem 5.1. (Krull’s Principal Ideal Theorem) Let R be a Noetherian ring and p € Spec R
such that p is minimal over an ideal generated by n elements. Then htp < n.

Proof. See Grifo’s 905 notes, Theorem 8.5. m

Proposition 5.2. Let (R, m) be a local ring. Then

dim R = min{n | there exists x1,...,x, € m such that m = /(z1,...,z,) }.
Proof. See Grifo’s 905 notes, Corollary 8.14. [

Definition 5.3. Let (R, m) be a local ring of dimension d. Then any d elements xy,...,2s € m
such that m = \/(x1,...,24) is called a system of parameters for R.

Proposition 5.4. Let (R, m) be a d-dimensional local ring, M a nonzero finitely generated R-
module, and x € m. Then dim M/xM > dim M — 1 with equality if and only if x & p for all
p € Ming M such that dim R/p = dim M.



Proof. Note that \/Anng M/xM = \/(x) + Anng M. (This is left as an exercise.) Thus,
dim M/xM = dim R/((x) + Anng M) = dim R/(Z), where R = R/ Anng M. Since dim M =
dim R and the minimal primes of M correspond to the minimal primes of R, it suffices to prove
the result in the case M = R. Suppose first that € m and that dim R/(z) < dim R—2 = d—2.
Then by Proposition , there exist x1,...,x4_2 € m such that m/(z) =m = \/(T1,...,Ta—2),
where ~ here means image in R/(z). Lifting to R, we get m = /(z,21,...,24-1). But this
means m is minimal over an ideal generated by d — 1 elements, contradicting that dim R =
ht m = d. Hence, dim R/(z) > d — 1. Thus, dim R/(x) is either d or d — 1. Suppose that z € p
where dim R/p = d. Then p = p/(z) € Spec R and dim R/p = dim R/p = d. So dim R/(x) = d.
Conversely, suppose dim R/(x) = d. Then there exists a prime ideal ¢ € Spec R such that
dim R/q = d. Lifting ¢ to a prime p of R containing x, we have dim R/p = dim R/q = d. Thus,
dim R/(x) = d if and only if x € p for some prime p such that dim R/p = d = dim R.

]

Definition 5.5. Let (R, m) be a Noetherian local ring. A finitely generated R-module M is
called Cohen-Macaulay (or CM for short) if M = 0 or depth M = dim M.

Examples 5.6.
e Zero-dimensional local rings are CM. E.g., R = k[z,y|/(2?, xy, v?).

e One-dimensional local domains are CM. E.g., R = Z9) or R = k[z, Y]z, /(2* — y?)

Polynomials rings over a field (localized) are CM; E.g. R = k[z1,...,%a|x)-

Two-dimensional local UFDs are CM. (Exercise)

R = klx,y]/ (2% xy) (localized at (x,y)) is not CM, since depthR = 0 < 1 = dim R.
However, M = R/(x) is a CM R-module.

Proposition 5.7. Let (R, m) be a local ring and M a finitely generated R-module.
(a) If M is CM then dim R/p = dim M for all p € Assg M.
(b) Suppose x is an M-sequence. Then M is CM if and only if M/(x)M is CM.

Proof. Part (a) follows immediately from Corollary and the definition of CM. To prove (b),
it suffices to consider the case x = x, a single element. Suppose M is CM and z is M-regular.
We know depth M /xM = depth M — 1 by Corollary @ Since x is not in any associated prime
of M, we have dim M/xM = dim M — 1 by Proposition [5.4] Thus, depth M/zM = dim M /xM
and M/xM is Cohen-Macaulay. Conversely, assume M /xzM is Cohen-Macaulay, where = is M-
regular. As above, we have depth M /xM = depth M — 1 and dim M/xM = dim M — 1. Hence,
dim M = depth M and M is Cohen-Macaulay.

]
Examples 5.8.

o Let R = klx1,...,%4](x) and f a nonzero element of R (and a nonunit). Then R/(f) is
CM. Such rings are called local hypersurface rings.

o Let R=k[z,y,z]/(z) N (y,z) (localized at (x,y, z)) is not CM. (Why?)



Remark 5.9. Let R be a ring, M an R-module, and x an M-sequence. Let S be a multi-
plicatively closed set of R. If (x)Mg # Mg, then T € Rg is an Mg-sequence. To see this, it

suffices to consider the case x = x is a single element. But if 0 — M = M is exact, then so is

0 — Mg = Mg, as localization is exact.
An important consequence of this remark is:

Lemma 5.10. Let R be a Noetherian ring, I an ideal, and M a finitely generated R-module such
that IM # M. Let S be a multiplicatively closed set of R. If IMg # Mg then grade(ls, Mg) >
grade(I, M).

Proposition 5.11. Let (R, m) be a local ring and M a finitely generated CM R-module. Then
for every p € Suppp M, dim M,, = grade(p, M ). In particular, M, is CM for all p € Spec R.

Proof. Let p € Suppr M. By Lemma we have
dim M, > depth M,, = grade(pR,, M,) > grade(p, M).

Hence, if we show dim M, = grade(p, M) then M, is CM. We'll prove this by induction of
grade(p, M). If grade(p, M) = 0 then p C ¢ for some ¢ € Assg M. By Proposition ,
dim R/q = dim M. Hence ¢, and therefore p, is minimal in Suppy M. Consequently, dim M, =
0. Now suppose grade(p, M) > 0. Let z € p be an M-regular element. By Proposition
b.71 M/xM is a CM R-module and grade(p, M/zM) = grade(p, M) — 1. By the induction
hypothesis, dim(M/z M), = grade(p, M /xM). Since dim(M/xM), = dim M, /x M, = dim M, —
1 by Proposition we obtain that dim M, = grade(p, M) as desired. O

Definition 5.12. Let R be a Noetherian ring. A finitely generated R-module M is called CM
if M,, is CM for all maximal ideals m of R. Equivalently, by the previous proposition, M is CM
if M, is CM for all p € Spec R.

Examples 5.13.
e Artinian rings are CM.
e Polynomial rings over a field are CM (see Theorem below).
e One-dimensional domains (e.g., Z) are CM.

Definition 5.14. Let R be a Noetherian ring. For an ideal I of R, the height of I, denoted
ht I, is defined to the minimum of ht p for all primes p containing 1.

Lemma 5.15. Let R be a Noetherian ring and I a proper ideal. Then gradel < ht .

Proof. Let p be a prime containing I. Then using Corollary and Lemma [5.10| we have
grade I < gradep < grade(pR,, R,) = depth R, < dim R, = ht p.

Since this holds for all primes containing I, we conclude that grade I < ht 1. O]

Theorem 5.16. Let R be a Noetherian ring. Then R is CM if and only if gradel = ht I for
all proper ideals I of R.



Proof. Suppose grade I = ht I for all proper ideals I. Let m be a maximal ideal of R. Then
depth R,,, = grade(mR,,, R,) > gradem = ht m = dim R,),.

Thus, R, is CM, and since m was arbitrary, R is CM.

Now suppose R is CM. Let I # R be an ideal and g = gradel. Let x = z4,...,2, be a
maximal R-sequence contained in I. Then [ consists of zero-divisors on R/(x), so I is contained
in some p € Assg R/(x). Since R/(x)R is CM, Assg R/(x) = Ming R/(x) and so p is minimal
over (x). Thus, ht I < htp < g = grade I.

[

Proposition 5.17. Let (R,m) be a local ring. The following are equivalent:
(a) R is CM;

(b) Every system of parameters for R forms a reqular sequence;

(c) Some system of parameters for R forms a regular sequence.

Proof. (¢) = (a): letxy ..., x4 beans.o.p. for R which forms an R-sequence. Then d = dim R
and depth R > d. Hence, R is CM.

(b) = (¢): a fortiori.

(a) = (b): We use induction on d = dim R. If d = 0 there is nothing to show. Suppose
d > 0 and the implication holds for all CM local rings of dimension less than d. Let x = =1, ..., 24
be an s.o.p. for R. Thus, m is minimal over (z,...,24). Suppose x; is a zero-divisor on R.
Then, as R is CM, z; is in some minimal prime of R and dim R/(z;) = d. But then m/(x;)
is minimal over (T3, ...,Z4) ) (where ~ denotes the image of a in R/(x;)). But this contradicts
KPIT, as htm/(z;) = dim R/(z1) = d. Thus, z; is regular on R and R/(zy) is a d — 1-
dimensional CM local ring by Proposition (a). By the induction hypothesis, 73, ..., T, forms
a regular sequence on R/(x1). Thus, z1,..., 24 is an R-sequence.

O

Theorem 5.18. Let (R,m) be a CM local ring. Then dim R/I 4+ ht I = dim R for any ideal I
of R.

Proof. We first do the case I = p is a prime ideal. Let x = x;,..., 2, be a maximal R-sequence
contained in p. Note that g = gradep = htp. Since p consists of zero-divisors on R/(x), and
R/(x) is CM, dim R/p = dim R/(x) = dim R — ¢, where we have used Proposition for the
last equality. Hence, the formula holds when [ is prime.

Let I be an arbitrary ideal. Let p O I be a prime ideal such that dim R/p = dim R/I. Then

dimR/I +ht] =dimR/p+ht] < dim R/p+ htp = dim R.
Now let p D I such that ht p = ht I. Then
dimR/I +htI =dimR/I +htp > dim R/p+ htp = dim R.
O

Definition 5.19. A Noetherian ring R is called catenary if for any primes p C g of R, every
saturated chain of primes from p to ¢ has the same length, namely ht ¢/p in R/p.



Corollary 5.20. Let R be a Noetherian ring which is the quotient of a CM ring. Then for all
primes p C q of R, htq/p =htq — ht p. In particular, R is catenary.

Proof. We first establish the equality. Let R = S/J where S is a CM ring. Since the primes of
R are in bijective inclusion-preserving correspondence with the primes of S which contain J, it
suffices to show the equality holds for primes in S. So let p C ¢ be primes of S. Since S, is CM,

we have by Theorem that
ht ¢ = dim S, = dim S, /pS, + ht pS, = ht ¢/p + ht p.

To show R is catenary, let p C ¢ be primes and p = py C p1 C --- C p, = ¢ be a saturated
chain; i.e. htp;/p;_y =1 foralli=1,...,n. Thus htp; —htp;,_; =1 for i = 1,...n. Summing
these up, we obtain n = ht ¢ — ht p.

O

Theorem 5.21. Let R be a CM ring and ty, ..., t, indeterminates. Then R[ty,...,t,] is CM.

Proof. 1t suffices to prove the case n = 1. Let n be a maximal ideal of S = R[t] and m = nN R.
Then m is a prime ideal of R and let W = R\ m. Then S,, = (Sw)n, = Rwlt]n, - Note that
Ry is a CM local ring with maximal ideal my,, and ny N Ry, = my,. Thus, to prove S, is CM,
we may assume S = R[t] where (R, m) is a CM local ring and n N R = m. Note that n/mS is a
maximal ideal of S/mS = (R/m)[t], which is a PID. Thus, n = (m, f(t))S, where f € R]t] such
that the leading coefficient of f = f(¢) is a unit in R. Let x1,..., x4 be an s.o.p. for R. Then
Z1,...,Zq, f is an s.0.p. for S,. (It is easy to see that the height of nS is d + 1.) Now, as S,
is a faithfully flat R-algebra, x is an S-sequence by a homework exercise. And as the leading
coefficient of f is a unit in R, f is a non-zero-divisor on R/(x)[t] and hence also on S, /(x)S,.
Thus, x1,...,xz4, f is an S,-sequence and S,, is CM.

0

Definition 5.22. Let R be a ring. An R-algebra S is said to be finite type over R if S =
Rluy, ..., uy,] for some uy, ..., u, € S. Additionally, S is said to be essentially of finite type over
R if S is the localization of an R-algebra of finite type.

Corollary 5.23. Any algebra essentially of finite type over a field or the integers is catenary.

Proof. Let S be such an algebra. Then S is a localization of a quotient of the polynomial ring
klt1,...,t,] for some n, where k is a field or Z. As k is CM, so is k[ty, ..., t,] by Theorem [5.21]
Thus, any quotient of k[tq,...,t,] is catenary by Corollary Noting that localizations of
catenary rings are catenary completes the proof. O

6 Gorenstein rings

Definition 6.1. A Noetherian local ring R is said to be Gorenstein if R has finite injective
dimension as an R-module.

Proposition 6.2. Gorenstein local rings are CM.

Proof. By Theorem and Corollary [2.25] we have depth R = idg R > dim R. Hence, R is
CM. O



Lemma 6.3. Let (R, m) be a local ring and M an R-module of finite length. Let E = Er(R/m).
Then AR(M) = )\R(HOIHR(M, E))

Proof. We proceed by induction on Ag(M). Suppose Ag(M) = 1. Then M = R/m. Then
Hompz(M, E) =2 Homg(R/m,E) = Eg/m(R/m) = R/m. Hence, Ag(Hompg(M, E)) = 1. Now
assume M is a module of finite length n > 0 and that the result holds for all R-modules of
length less than n. Then there exists a short exact sequence

0O—=L—M-—=N-—=0

where Ag(L) = 1 and Ag(N) = n — 1. Applying the exact functor Homg(—, E), we obtain the
exact sequence
0 — Hompg(N, E) — Homg(M, E) — Homg(L, E) — 0.

We have by induction that Ag(N) = Agr(Hompg(N, E)) and Ag(L) = Ag(Homg(L, E)). By the
additivity of length on short exact sequences, we obtain Ag(M) = Agr(Hompg(M, E)).
[l

Definition 6.4. Let (R,m) be a local ring and M an R-module. The socle of M, denoted
Socg M, is defined by
Socg M = (0 :py m) = Hompg(R/m, M).

Note that if M is finitely generated then Socg M is a finite dimensional R/m-vector space.

Proposition 6.5. Let (R,m) be a zero-dimensional local ring. Then R is Gorenstein if and
only if dimpg/,, Socg R = 1.

Proof. Suppose R is a zero-dimensional local Gorenstein ring. Then idg R < oo, so idg R =
depth R < dim R = 0 by Theorem [4.18] Thus, R is injective. As R is indecomposable, we must
have R = Er(R/m). Then

Socg R = Socg Er(R/m) = Homg(R/m, Er(R/m)) = R/m.

Hence, dimpg,, Soc R = 1.

We claim quite generally that for zero-dimensional local rings R is essential over Socg R:
since m" = 0 for some n, we have that for every nonzero element y € R, there exists an ¢ such
that m‘y # 0 but m‘'y = 0. Thus, m‘y N Socg R # 0, proving the claim.

Given that dimg Socg R = 1, we have Socg R = R/m. Then we have the diagram

Er(R/m)

NN
i >~
~h
g
N

0 —— R/m —= 5 R

|

0

where h restricted to Socg R = R/m is i (inclusion). Since i is injective and the inclusion
R/m = Socg R C R is essential, we must have h is injective. But since Ag(R) = Ag(Er(R/m))
by Lemma [6.3] we obtain that A is an isomorphism. Hence, R is an injective R-module and R

is Gorenstein.
O



Examples 6.6. The examples below follow by computing the socle dimension. (Here, k is an
arbitrary field.)

e k is Gorenstein.

e k[x]/(2%) is Gorenstein.

o k[z,y]/(z% v?®) is Gorenstein.

o klx,y]/(2? zy,y?) is not Gorenstein.
e 7/(4) is Gorenstein.

2 22 qy,xz, y2) is Gorenstein.
) b )

i k[ZL‘7 Y, Z]/(xZ - yZ)x
Proposition 6.7. If R is a local Gorenstein ring and p € Spec R then R, is Gorenstein.

Proof. By either Proposition [I.15] or using Corollary [2.4] together with Proposition [2.9] we have
idg, R, < idr R. Hence, R, is Gorenstein. O

Definition 6.8. A Noetherian ring R is called Gorenstein if R, is a Gorenstein local ring for
all maximal ideals m. By the previous proposition, this is equivalent to R, being Gorenstein for
all primes p of R.

Lemma 6.9. Let S be a ring and {F;}i~0 a set of additive functors on the category of S-modules
such that the following hold:

o F9(—) is naturally equivalent to the functor Homg(—, N) for some S-module N ;
e [''(P) =0 for all i > 0 and projective S-modules P;

e For any short exact sequence of S-modules 0 - A — B — C' — 0 there is a long exact
sequence (which is natural on the category of short exact sequences of S-modules)

o= F'Y(C) = FY(B) = F'(A) — F''Y(C) — - -

Then for each i > 0, F'(—) is naturally equivalent to Exts(—, N).

Proof. This is a straightforward exercise, using the fact the Extsy(—, N) also satisfies the three
properties above. O

Theorem 6.10. Let R be a ring, M and N R-modules, and x € R such that x is reqular on
both R and N, and xM = 0. Let S = R/(x). Then

(a) Hompg(M,N) =0, and
(b) Extl(M, N) is naturally isomorphic to Exty (M, N/zN) for alli > 1.

Proof. For part (a), let f : M — N be an R-homomorphism. Then 0 = f(0) = f(zM) =
zf(M) C N. As x is regular on N, we see that f = 0.
For part (b), for i > 0 let F'(—) := Ext%'(—, N). Consider the exact sequence

0= N5 N-—= N/aN — 0.



Then for any S-module M we have (using part (a)):

0 — Hompg(M, N/xN) — Exth(M,N) = Extp(M, N) — -
Since 2M = 0, we have z Ext}(M, N) = 0. Thus,

Fo(M) = Exty,(M, N) = Homg(M, N/xN) = Homg(M, N/xN)

and the isomorphisms are natural. Now let P be a projective S-module. We wish to show that
Fi(P) = Ext{*(P,N) = 0 for alli > 1. Since P is direct summand of a free S-module, it suffices
to prove this when P = @;¢;S is a free S-module. But since S = R/(x) and x is R-regular,

0-PrRS>PR—0

i€l i€l

is a free resolution of P as an R-module. Hence, Ext{%(P, N)=0forall j >2.
Finally, let 0 - A — B — C' — 0 be a short exact sequence of S-modules. As Homg(A, N) =
Hompg (B, N) = Homg(C, N) = 0 by part (a), we have a natural long exact sequence

0 — Exty(C, N) — Extp(B, N) — Exth(A, N) — Ext5(C,N) — --- .
Thus, we have a natural long exact sequence
0— F°%(C) — F°(B) — F°(A) = FY(C) — --- .
Hence, by Lemma [6.9] we have for i > 1 that
Extl (M, N) = F'"'(M) = Ext ' (M, N/zN),

and these isomorphisms are natural.
m

Theorem 6.11. Let (R, m) be a Noetherian local ring, M a finitely generated R-module, and
x € m a reqular element on R and M. Then

idR/(I) M/:EM = idRM —1.
Proof. Recall from Corollary that

idgr M = sup{n | Extj(k, M) # 0}.

But by Theorem [6.10} for all i > 1, Extly(k, M) =2 Extg/;R(k, M /xM). The result now follows.
[

Corollary 6.12. Let (R,m) be a Noetherian local ring and x a reqular sequence on R. Then R
is Gorenstein if and only if R/(x) is Gorenstein.

Proof. 1t suffices to prove the result in the case x = x1, a regular sequence of length 1. But
by Theorem [6.11} idg R < oo if and only if idg/,gr R/xR < oo. Thus, the result follows by the
definition of Gorenstein. O

Definition 6.13. Let (R, m, k) be a CM local ring of dimension d. The CM type of R, denoted
r(R), is defined to be dimy Ext4(k, R).



Proposition 6.14. Let (R,m, k) be a CM local ring. Then:
(a) If x € R is a reqular element then r(R) = r(R/(x)).

(b) For any s.o.p. x of R, r(R) = dimy Soc R/(x).

(¢) R is Gorenstein if and only r(R) = 1.

Proof. Note that by Theorem |6.10] Extc}l{/(:ﬁ)(k, R/(z)) = Exth(k, R). Part (a) follows read-
ily. For (b), recall that any s.o.p. in a CM local ring generates an R-sequence. Hence, us-
ing part (a) and induction, we obtain r(R) = r(R/(x)). Since dimR/(x) = 0,7(R/(x)) =
dimy Hompg(k, R/(x)) = dimy Soc R/(x).

Finally, let x be an s.o.p. for R. By Corollary [6.12] R is Gorenstein and only if R/(x) is
Gorenstein. As R/(x) is zero-dimensional, by Proposition [6.5] R/(x) is Gorenstein if and only
if dimy Soc R/(x) = 1, which is if and only if (R) = 1 by part (b).

m
Corollary 6.15. Let (R, m, k) be a local ring. Then the following are equivalent:

(a) R is Gorenstein.
(b) pi(p, R) = 0inep for all i and p € Spec R. (Here, 6;; is the Kronecker delta function.)

Proof. Let d = dim R. Assume (b) holds. Then clearly p;(p, R) = 0 for ¢ > d for all p € Spec R.
Hence, idg R < d by Proposition 2.9(b). Hence R is Gorenstein.

Now suppose R is Gorenstein. As R is CM, depth R = d, so Exti(k, R) = 0 for all i < d
by Remark [3.19] Since idg R = depth R = d by Theorem [4.18 we have Ext’(k, R) = 0 for all
i > d. Thus, p;(m,R) =0 for all i # d. Since r(R) = 1, uq(m, R) = 1. This establishes (b) in
the case p = m. But for any p € Spec R, u;(p, R) = p;(pR,, R,) (by Theorem and R, is
Gorenstein. Thus, as pR, is the maximal ideal of R,, we have by the maximal ideal case that
,U/i(p7 R) = 0; ht p-

O

Corollary 6.16. Let R be a local Gorenstein ring. Then a minimal injective resolution of R
has the form

0— &P En(R/p) = € Er(R/p) == & Er(R/p) = Er(R/m)— 0.

ht p=0 ht p=1 ht p=d—1
Proof. This follows from Corollary and Theorem [2.5] [
Proposition 6.17. Let R be a Gorenstein ring and x an indeterminate. Then R[x] is Goren-
stein.
Proof. Homework exercise. O]

7 Regular local rings and modules of finite projective
dimension

Definition 7.1. Let (R, m, k) be a local ring. Then the embedding dimension of R, denoted
edim R, is defined to be the least number of elements needed to generate m; i.e., edim R =
rank; m/m? (by Nakayama).



Remark 7.2. For any local ring R we have edim R > dim R by Krull’s Principal Ideal Theorem.
Lemma 7.3. Let (R, m,k) be a local ring and I C m an ideal. Then
edim R/I = edim R — dimy I /I N'm?.
In particular, for x € m, edim R/(x) > edim R — 1 with equality if and only if x & m?>.
Proof. Let n = m/I be the maximal ideal of R/I. Then n/n* = m/(m?* + I). Thus,

edim R/I = dimy, n/n?
= dimgm/(m* + 1)
= dimy m/m? — dimg(m?* + I)/m?
= edim R — dimy, I /I N'm?>.

If [ = (x), then I/I N'm? = kT where T is the image of x in I/I N'm?. Hence, dimy, [/I Nm? =
dimy, k7 < 1, with equality if and only if T # 0, i.e., z &€ m?. O

Example 7.4. Let R = k[z,y, 2](2,y,.)- Since edim R > dim R = 3, we see that edim R = 3 as
the maximal ideal is 3-generated. Now let S = R/(zy — 2%, 2%z +y*, 22 — yz?). Then edim S = 3
by the above lemma. What about R/(zy — 22,y + z23)?

Definition 7.5. Let (R, m, k) be a local ring. Then R is said to be a regular local ring (or
RLR, short) if edim R = dim R. If m = (x4, ...,x4) where d = dim R, then x1,..., x4 is called
a reqular system of parameters.

Examples 7.6. The following are examples of regular local rings:
e Any field
* Ly
o Z[z](2.0)
o klzy,...,24)(x), Where k is any field

o k[[x1,...,x4]] (formal power series over the field k)



Proposition 7.7. Regular local rings are domains.

Proof. Let (R, m) be a regular local ring. We use induction on d = dim R to show R is a domain.
Suppose d = 0. Then m = 0; i.e., R is a field. Next, assume d = 1. Then m = (x) for some
x € m. Let p be a minimal prime of R. Let a € p. Then a = rz for some r € R. Asrxz € p
and x € p, we must have r € p. Hence, a € zp. As a € p is arbitrary, we have p = xp. By
Nakayama’s lemma, p = 0 and thus R is a domain.

Now suppose d > 1. By prime avoidance, choose # € m \ m? and such that x & p for
any p € Min R. Then edim R/(z) = edim R — 1 and dim R/(z) = dim R — 1 by Lemma
and Proposition . Thus R/(z) is a regular local ring of dimension d — 1. By the induction
hypothesis, we have R/(x) is a domain and hence (z) is a (non-minimal) prime ideal of R. Let
p C# (x) be a minimal prime of R. Repeating the argument from the d = 1 case, we get p = xp,
so p = 0. Thus, R is a domain. O

Corollary 7.8. Let (R,m) be a regular local ring and x € m \ {0}. Then R/(x) is reqular if
and only if v & m2.

Proof. Let d = dim R = edim R and suppose € m \ m?. Then, as R is a domain and z # 0,
dim R/(xz) = d — 1. Also, edim R/(z) = d — 1 by Lemma [7.3] Hence, R/(z) is regular. Now
suppose € m? and x # 0. Then edim R/(z) = edim R = dim R by Lemma . However, as R
is a domain and x # 0, dim R/(z) = d — 1. Thus, R/(x) is not regular. O

Example 7.9. Let R = k[z,y|/(z?, ry) localized at (x,y). Let m = (z,y)R. Then z € m \ m?
and R/(x) = k[y](,) is a RLR. However, R is not a RLR.

Corollary 7.10. Let R be an RLR and xy,...,x4 a regular system of parameters. Then
(x1,...,2;) is a prime ideal of height i for each i =1,...,d.

Proof. We use induction on i to show (z1,...,x;) is a prime ideal. As in the proof of the
previous proposition, we have edim R/(x;) < d — 1 < dim R/(z1), so R/(z1) is a RLR, hence
a domain. Thus, (z7) is a prime ideal. Suppose i > 1. Then R/(z1) is a RLR and Z3,..., 7,
a regular system of parameters for R/(x;). Hence, (Zz,...,7;) is a prime ideal of R/(x;1) (by
the induction hypothesis on 7). Lifting to R, we see that (z1,...,z;) is a prime ideal of R. The
height of (z1,...,2;) is at most i by KPIT. On the other hand, the chain of primes

0) S (z1) G (z1,22) © - C (1, 20)

shows that the height of (xy,...,z;) is at least i. ]
Proposition 7.11. Regular local rings are Gorenstein.

Proof. Let x = x1,...,x4 be a regular system of parameters. As R is a domain, z; is a regular
element on R. As (1) is a prime ideal by the previous corollary, we have x5 is regular on R/(z1).
Continuing in this fashion, we conclude that x is a regular sequence on R. Thus, depth R = d

and R is CM. Since x = z1, ..., x4 is a regular sequence, we have r(R) = r(R/(x)) by Proposition
6.14. Since m = (x), Socg R/(x) = R/m, which is a one-dimensional R/m-vector space. Thus,
r(R) =1 and R is Gorenstein by Proposition [6.14] O

We now arrive at a key question that proved perplexing for ring theorists in the 1950s:
Localization Question: Suppose R is a RLR and p € Spec R. Must R, be a RLR?

The solution to this question resulted in the “homological revolution” in commutative algebra.
We first need several results on modules of finite projective dimension.



Definition 7.12. Let R be a ring and M an R-module. Then the projective dimension of M,
denoted pdy M, is defined to be the supremum of the lengths of all projective resolutions of M.
(Recall that the length of a resolution P, is sup{n | P, # 0}.)

Lemma 7.13. Let R be a ring N an R-module andn > 0 an integer. Suppose Exto(R/I,N) =0
for all wdeals I of R and v > n. Then idg N < n.

Proof. We use induction on n. If n = 0, the result follows from Remark (b) Suppose n > 0
and the result holds for all integers less than n. If idg NV = 0 there is nothing to prove. Suppose
idg N > 0. Let E = Exr(N) and C' = E/N. Consider the exact sequence

0—>N—->FE—-C—0.
Let I be an ideal and apply Homg(R/I,—) to the above sequence:
s = Extly (R/LE) — Extly '(R/I,C) — Exty(R/I,N) = Exty(R/I,E) — -+ .

We have Ext’(R/I,N) = 0 for all i > n, where n > 0. As E is injective, Ext}?l(R/I, E) =0 for
all i —1 > 0, so certainly for all i — 1 >n — 1> 0. Thus, Ext;'(R/I,C) & Ext%(R/I,N) =0
for all i —1 > n — 1. By the induction hypothesis, we obtain idg C' < n — 1. Hence, idg N < n.

[

Lemma 7.14. Let R be a ring M an R-module and n > 0 an integer. Suppose Extﬁé(M, N)=0
for all R-modules N and i > n. Then pdyp M < n.

Proof. The proof is similar to the proof of Lemma [7.13| where here we use that M is projective
if and only if Exty(M, N) = 0 for all i > 0 and R-modules N. O

Lemma 7.15. Let R be a ring and 0 — L — M — N — 0 be a short exact sequence of R-
modules. Then

(a) If any two of L, M and N have finite projective dimension, so does the third.
(b) If pdg N > pdp M, then pdp L = pdy N — 1.

Proof. Part (a) follows readily from Lemma and the long exact sequence on Extj(—, B) for
an arbitrary R-module B. For part (b), let £ = pdy L, m = pdy M, and n = pdz N. As we are
assuming, n > m, we must have m < oco. If n = oo then ¢ = oo by part (a), and so (b) holds.
Assume n < co. Then Ext (N, B) = Exth(M, B) =0 for all i > n — 1 and all R-modules B
(here we are using n — 1 > m). From the l.e.s. on Ext}(—, B), we obtain that Ext’ (L, B) = 0
for all i > n —1 and all B, so pdp L < n — 1. Since pdy N = n, there exists an R-module C
such that Extz (N, C) # 0. Since Ext,(M,C) = 0, we have from the le.s.

Ext% (L, C) — Exth(N,C) — 0

is exact. Hence, Ext}y '(L,C) # 0 and pdgy L = n — 1.

An important consequence of this lemma is the following:

Proposition 7.16. Let R be a ring, M an R-module and n = 0 an integer. The following
conditions are equivalent:



(a) pdg M < n;

(b) Given any ezxact sequence

O
R - RN - RRANY NN
such that P; is projective for each i, we have ker 0,,_1 is projective.

Proof. (b) == (a): By the existence of projective resolutions one can construct an exact
sequence as in (b) for any n > 0. Let P, = ker 0,_;. Then

O—-PFP,—-FP1——=>F—0

is a projective resolution of M of length at most n.
(a) = (b): Let K; =kerd;_4 for i =1,...,n and set Ky = M. We wish to show that K,
is projective. Observe we have short exact sequences

0—)Ki—>Pi_1—>Ki_1—>0

for i = 1,...,n. Suppose K;_; is projective for some 1 < i < n. Then the map P,_; — K;_
splits and P;_; = K; & K;_;. Hence, K; is projective. Repeating this argument, we obtain that
K; is projective for all j > ¢ — 1, and in particular K, is projective. Assume now that K;_;
is not projective for all 1 < ¢ < n. Then pdp K;—1 > pdp P, = 0 for all 1 < ¢ < n. By part
(b) of Lemma [7.15], we have pd; K; = pdg K;—1 — 1 for i = 1,...,n. From this we obtain that
pdp K; =pdp Kg—iforalli =1,...,n. In particular, pdy K,, = pdp Ky —n < 0, and so K, is
projective.

0
Theorem 7.17. Let R be a ring and n = 0 an integer. The following conditions are equivalent:
(a) pdg R/I < n for every ideal I of R;
(b) pdg M < n for every R-module M;
(c) idg N < n for all R-modules N;
(d) Ext(M,N) =0 for alli > n and all R-modules M and N.

Proof. (a) = (c): Let N be an R-module. By assumption (a), pdg R/I < n for all ideals [
of R. Thus, Ext%(R/I, N) =0 for all i > n. Hence, by Lemma ﬁ, idg N < n.
(¢) = (d): Trivial.
(d) = (b): This follows from Lemma [7.14]
(b) = (a): Trivial.
[l

Definition 7.18. Let R be a ring. Then the global dimension of R, denoted gl-dim R, is defined
to be the least integer n (if it exists) such that R satisfies any of the equivalent conditions for
n in Theorem [7.17} If such an n does exist, R is said to have finite global dimension.

Theorem 7.19. Let (R,m) be a local ring. The following conditions are equivalent for an
mteger n.:



(a) R has global dimension n;

(b) dek =n;
(c) idg k = n.

Proof. (a) = (b): By (a), we have pdp k < n. Suppose pdz k < n. Then Tor?(k, R/I) =0
for all i > n — 1 and all ideals I, and hence pdy R/I < n — 1. This implies gl-dimR < n —1, a
contradiction.

(b) = (c): Since pdy k = n, Exty(k, k) = 0 for all i > n and Ext’(k, k) # 0 by Proposition
7.22] Then idg k = n by Corollary

(c) = (a): First, since idgk = n, we have Ext},(k, k) # 0 by Corollary 2.24, Thus,
gl-dim R > n. On the other hand, for all ideals I of R we have Ext’%(R/I,k) = 0 for all i > n,
which implies pd; R/I < n by Proposition m Thus, gl-dim R < n by Theorem m O]

For local rings, we have the concept of a minimal projective resolutions for finitely generated
modules:

Definition 7.20. Let (R, m) be a local ring and M a finitely generated R-module. A projective
resolution P, of M is said to be minimal if 0;(P;) C mP;_; for all i > 1.

Remark 7.21. Let (R, m) be a local ring. By Grifo’s 915 notes, we know that every finitely
generated module has a minimal projective (in fact, free) resolution (Lemma 5.9) and that the
length of any minimal projective resolution is the projective dimension of the module (Theorem
5.18).

Proposition 7.22. Let (R, m, k) be a local ring and M a finitely generated R-module. Then

pdp M = sup{n | Tor(k, M) # 0}
= sup{n | Extk(M, k) # 0}.

Proof. Let F, be a minimal free resolution of M. Then k ®p F, is a complex with zero differ-
entials. Hence, for all ¢

TOI‘?(]C,M) = Hl(k} ®R F.) =k ®R E o~ k.rankFi.

Hence, sup{n | Tor®(k, M) # 0} = sup{n | F,, # 0}, which is pdy M. Similarly, Homg(F,, k) is
a complex with zero differentials, so

Extly (M, k) = H'(Homp(F,, k)) = Homp(F;, k) = k=<5,
O

Proposition 7.23. Let R be a ring, M and N finitely generated R-modules, and v € R such
that tN =0 and x is R- and M -reqular. Then for all v > 0,

Extiy(M, N) = Extl . (M/zM,N).

Proof. We first claim that Tor(M, R/(z)) = 0 for all i > 1. Note that 0 -+ R = R — 0 is a
free resolution of R/(z). Hence, Tor®(M, R/(x)) = 0 for all i > 2. To compute Tor{"(M, R/(x)),
apply M ®p — to the resolution of R/(x) above:

0> M3 M-—0.



Thus, Torf (M, R/(z)) = (0 :p; ) = 0 since x is M-regular.

Now, let F, be a free resolution of M. Then H;(F, ®x R/(x)) & Tor (M, R/(x)) = 0 for
i > 1 by the claim above. Also, Hy(F, ®r R/(z)) = M ®r R/(x) = M/xM. Since F; ®r R/(x)
is a free R/(x)-module for all 7, we obtain that F, @z R/(z) is a free R/(x)-resolution of M /xM.
Then using Hom-tensor adjointness along with x N = 0, we have

Exth(M, N) = H'(Hompg(F,, N))
=~ H'(Homg(F.,, Hompg, ) (R/(7), N)
=~ H'(Homp,(;)(Fe ®r R/(x), N)
o~ Ext’é/(m)(M/xM, N).

]

Proposition 7.24. Let (R,m) be a local ring and M a nonzero finitely generated R-module.
Let x € m be R-regular and M -reqular. Then

Proof. Using Propositions and we have

b M = sup{n | Bxtp(M, k) £ 0}
= sup{n | Exty, ., (M/zM, k) # 0}

]

Theorem 7.25. (Auslander-Buchsbaum formula) Let (R, m) be a local ring and M a finitely
generated R-module of finite projective dimension. Then

pdr M + depth M = depth R.

Proof. We proceed by induction on depth R. Suppose depth R = 0. Suppose n = pdy M > 0
and let F, be a minimal free resolution of M. Consider the tail end of the resolution:

0 F, S —--.

Since depth R = 0, Socg R = (0 :g m) # 0 and hence Socg F,, # 0. Since 0(F},,) C mF,,_; one
easily checks that 0(Socg F},) € m(Socg F,,_1) = 0, contradicting the injectivity of 0.

Suppose depth R > 0. If pdy M = 0 then M is free and depth M = depth R. Therefore,
the formula holds. Assume by way of (double) induction that pdy M > 0. If depth M > 0
one can choose (by prime avoidance) z € R which is both R-regular and M-regular. Then
depth M/xM = depth M — 1, depth R/(x) = depth R — 1 and pdp,,) M/xM = pdp M by
Proposition Thus, using the induction hypothesis, we have

pdp M + depth M = pdp,) M/xM + depth M/xM + 1 = depth R/(x) + 1 = depth R,

which is what we wanted to show.

Now assume depth M = 0 (but still in the case depth R > 0 and pdz M > 0). Consider
the short exact sequence 0 - K — F — M — 0, where F' is a finitely generated free R-
module. Then pdy K = pdy M — 1 by Lemma Let z € R be an R-regular element.



Then z is F-regular and hence also K-regular as K C F. Thus, pdg K' = pdg @, K/zK,
depth R/(z) = depth R — 1, and depth K/xK = depth K — 1. Applying Homg(R/m, —) to the
s.e.s. above and using that Hompg(k, F') = 0, we have

0 — Homp(k, M) — Extg(k, K)

is exact. Since Homp(k, M) # 0 (as depth M = 0) we have Extk(k, M) # 0, so depth K = 1.
Thus, since depth K > 0, we have

pdy M +depth M =pdpy M =pdp K + 1 =pdy K 4 depth K = depth R.
O

Theorem 7.26. (Auslander-Buchsbaum-Serre Theorem) Let (R, m, k) be a local ring of dimen-
sion d. The following conditions are equivalent:

(a) R is a regular local ring;
(b) pdgk < oo;
(c) gl-dim R =d.

Proof. (a) = (c): Let x = z1,..., x4 be aregular system of parameters. Since R is Gorenstein
(and hence CM), z1, ..., x4 is an R-sequence. Thus, the Koszul complex K (x) is a minimal free
resolution of R/(x) = R/m by Corollary [4.12 which implies pdz k& = d. By Theorem [7.19]
gl-dim R = d.

(¢) = (b): Immediate from the definition of global dimension.

(b) = (a): We proceed by induction on d. If d = 0 then depth R = 0. Thus, by
the Auslander-Buchsbaum formula, pd R/m = 0, i.e., R/m is a free R-module. But since
m - R/m = 0 and the annihilator of any nonzero free module is 0, we must have m = 0. Thus,
R is a field, which is a regular local ring.

Suppose d > 0. Note we must have depth R > 0. Otherwise, by the argument in the
preceding paragraph, pdy R/m = 0 and R is a field, contradicting that d > 0. Thus, m ¢
Assp R. By prime avoidance, we can choose x* € m \ m? such that z is not in any associated
prime of R. Hence, x is a minimal generator for m and a regular element on R. Therefore,
dim R/(x) = d — 1 and edim R = edim R — 1. If we show that pdg,.) R/m < oo, then R/(z)
is regular and thus R is regular. From the exact sequence 0 — m/(z) — R/(z) — R/m — 0,
it suffices to show that pdp,,ym/(z) < co. Since z is regular on both R and m, we have by
Propositionthat pdp/ym/xm =pdym = pdp R/m—1 < oo (see Lemma for the last
equality). Since (z) D xm, we have a natural surjection f : m/xm — m/(x). We claim this map
splits. Let 21, ..., xs be a minimal generating set for m, where x; = . Then m/(x) is generated
over R/(x) by xa,...,xs. Define g : m/(z) — m/xm by g(>_,rix; + (x)) = > _,rix; +xm
(using coset notation). To show g is well-defined, suppose Y, rz; + (x) = 0+ (x). Then
2;2 r;x; = rx. Since xq,...,Ts is a minimal generating set for m, we must have r; € m.
Hence, > ,rix; € am, so (> _,rix; + (x)) = 0+ xm. Thus, g is well-defined. It is easily
seen that fg = id, /). As f splits, m/am = m/(x) @ T for some R/(x)-module T. Since
Torf/(x)(k, m/xm) = Torf/(x)(k:,m/(x)) @ Torf/(x)(k:,T) for all 4, we see that pdp,ym/(z) <
pdg/ ) m /xm < oo by Proposition W This proves the claim and finishes the proof.

O

We can now finally answer the localization question:



Corollary 7.27. Let (R,m) be a regular local ring and p € Spec R. Then R, is a RLR.
Proof. Let d = dim R and p € Spec R. By Theorem [7.26] gl-dim R = d and so pdz R/p < d.

As localization is exact, if P, is a projective resolution of R/p, then (F,), is a projective R,-

resolution of (R/p), = k(p). Thus, pdg k(p) < d < co and R, is a RLR by Theorem [7.26| [

Definition 7.28. A Noetherian ring R is said to be regular if R,, is a regular local ring for all
maximal ideals m of R (equivalently, for all prime ideals p of R.

Example 7.29. The following are examples of regular rings:
o 7
e Q x Q (exercise). Hence, regular rings are not necessarily domains.

e Any ring of algebraic integers; i.e., the integral closure of Z in a finite field extension of Q
(proof later).

o klxy,...,z,| and Z[xq,...,x,], where k is a field and xq,...,z, are indeterminates (see

below).

e There exist regular rings of infinite Krull dimension (Nagata).
Proposition 7.30. Let R be a reqular ring and x an indeterminate. Then R|x] is reqular.

Proof. Homework exercise. O

8 Serre’s conditions and normal rings

Definition 8.1. Let R be a Noetherian ring and n > 0 an integer. The ring R is said to satisfy
S, if depth R, > min{n, dim R, } for all p € Spec R. R is said to satisfy R,, if R, is a regular local
ring for all primes p with dim R, < n. The conditions S,, and R,, are called Serre’s conditions.

Remark 8.2. Let R be a Noetherian ring.

(a) R satisfies S,, (respectively, R,) for all n if and only R is Cohen-Macaulay (respectively,
regular).

(b) R satisfies S; if and only if Assg R = Ming R.
(c) R satisfies Ry if and only if R, is a field for all p € Min R.
Proposition 8.3. A Noetherian ring R is reduced if and only if R satisfies S1 and Ry.

Proof. Suppose R is reduced. Then (0) is the intersection of all primes of R, and hence the
intersection of all the minimal primes: p; N ---Np, = 0 where Ming R = {p1,...,p,}. This is
an irredundant primary decomposition for 0 (or more properly, R = R/(0)). Thus, Ming R =
Assg R and R satisfies S;. Since p; R, = R,, for all i # j and using that localization commutes
with finite intersections, we obtain

piRpi :lepim...ﬂpiRpi ﬂmanpl
— (0)R,,.



Thus, R, is a field and R satisfies Ry.

Conversely, suppose R satisfies S; and Ry. Thus, Ming R = Assg R and R, is a field for
all p € Ming R. Suppose r € R is nilpotent, say ™ = 0. Let p € Ming R. As R, is a field,
= 0in R, Thus, there exists s € R\ p such that sr = 0. Hence, (0 :g r) ¢ p for all
p € Ming R = Assg R. By prime avoidance, this implies there exists z € (0 :g r) which is a
non-zero-divisor on R. Since zr = 0 we conclude r = 0. Hence, R is reduced.

]

Definition 8.4. Let R be a ring and W C R the set of all non-zero-divisors of R. The ring Ry,
is called the total quotient ring or total ring of fractions of R and is denoted TQ(R).

The total quotient ring is a natural generalization of the ring of fractions of a domain. Note
that the map R — Ry is injective, so one can consider R as a subring of TQ(R). Note that if

R is Noetherian, W = R\ U .
pEAssp R
Remark 8.5. If R= Ry x -+ X R,, then TQ(R) = TQ(R;) x --- x TQ(R,).
Proof. Exercise. O

Let R C S be rings. Recall that the set of elements of S which are integral over R forms
a subring of S, called the integral closure of R in S. It is straightforward to show that if T is
the integral closure of R in S, and W is any multiplicatively closed subset of R, then Ty is the
integral closure of Ry, in Sy .

Recall that a domain R is called normal if it is integrally closed in its field of fractions (cf.
Grifo 905 notes, Definition 1.28). By the preceeding paragraph, if R is a normal domain, so is
Ry, for any multiplicatively closed set W of R. The following definition generalizes this notion
to (Noetherian) reduced rings:

Definition 8.6. A Noetherian ring R is called normal if R is reduced and integrally closed in

TQ(R).

Theorem 8.7. Let R be a Noetherian ring. The following are equivalent:
(a) R is normal.

(b) R is isomorphic to a direct product of finitely many normal domains.
(¢) R, is a normal domain for all p € Spec R.

(d) R,, is normal for all maximal ideals m of R.

Moreover, if any of these conditions hold then R/p is normal for all p € Ming R and

R~ [ R/p

peEMin R

Proof. (¢) = (d) is a fortiori.

(d) = (a): Since R,, is reduced for all maximal ideals m, we know that R, satisfies S;
and Ry for all m. But since these conditions are defined locally at every prime, and as every
prime is contained in a maximal ideal, we have that R satisfies S; and Ry. Hence, R is reduced.
Now let = € TQ(R) be integral over R and let m be a maximal ideal of R. Since § € R,, is a



non-zero-divisor on R, we have that = = 7/% € TQ(R,,). Further, = and is integral over R,
using the same equation demonstrating the integrality of = over R. Since R,, is normal, we have
~ = ¢ for some a € R and s € R\ m. Then there exists ¢t € R\ m such that trs = twa. Hence,
ts € ((w):gr). Asts &€ m, ((w) :gr) ¢ m. Since m was arbitrary, this implies ((w) :g 7) = R.
Hence, r = bw and = = % for some b € R. Thus, R is integrally closed in TQ(R).

(a) = (b): Since R is reduced, we have Assg R = Ming R by Proposition Let
Ming R = {p1,...,pn}. Then TQ(R) = Ry where W:R\Upi. Note that Spec Ry =

i=1
{(p1)w,---,(pn)w} and each (p;)w is both minimal and maximal. Also, as R is reduced, (p;)w N
N (pp)w = (p1N---Npy)w = 0. Finally, note that as (p;)w is maximal in Ry, we have
Rw/(pi)w = (R/p)w = TQ(R/p;) for all i. By the Chinese Remainder Theorem, we have

Ry = (R/(p10---Npn))w
= Rw/((p1)w 0=+ 0 (Pn)w)
= Rw/(pr)w N -0 Ry /(pn)w
= TQ(R/p1) x -~ NTQ(R/pn).

The image of R in TQ(R) = Ry = TQ(R/p1) x -+ x TQ(R/p,) under this isomorphism
is R(1,...,1) = {(7,...,7) | » € R}. Let ¢ = (0,...,1,...,0) where the 1 sits in the ith
component. Since €? —e; = 0, we see that e; € TQ(R) is integral over R(1,...,1) for each i. As
R = R(1,...,1) is integrally closed in Ry, we conclude that each e¢; € R = R(1,...,1). Thus,

R~ R(1,...,1)
= Rey X --- X Re,
=R/p1 X -+ X R/p.

Since R is integrally closed in Ry, each R/p; is integrally closed in TQ(R/p;). Thus, R is
isomorphic to a direct product of finitely many normal domains. (We’ve also proved that (a)
implies the final statement.)
(b) = (c¢): Suppose R = Ry X --- x R, where each R; is a normal domain. It is clear that
R is reduced. For each i, let p; = {(r1,...,7) € R | r; =0}. Then Ming R = {p1,...,p,} and
R/p; = R;, which is normal for each i.
[

Example 8.8. Let R = k[z,y]/(xy). Note that R is reduced and Min R = {zR,yR}. Also
observe that R/zR = k[y] and R/yR = k[x] are both normal domains. However, R is not
normal since R, ) is not a domain.

Proposition 8.9. Let (R,m) be a one-dimensional local domain. The following are conditions
are equivalent:

(a) R is normal.
(b) m = (x) for some x € m; i.e., R is a RLR.
(c) There exists an x € m such that every ideal is equal to (™) for some n = 0.

Proof. (a) = (b): Let x € m \ m?. We claim m = (z). Since R is one-dimensional and
x # 0, we must have dim R/(x) = 0. Hence, m € Assg R/(x), so m = ((x) : y) for some



y € R. If y & m then y is a unit and m = (x). So we may assume y € m. Hence, ym C zm.
Thus, in TQ(R), £m C m. As m is a finitely generated R-submodule of TQ(R), we see (by the
determinant trick) that ¥ is integral over R. As R is normal, this implies £ € R, i.e., y € ().
But then m = ((x) : y) = R, a contradiction.

(b) = (c¢): Let I be a nonzero ideal of R. Since R is local and Noetherian, we have
N,m™ = 0 by Krull’s Intersection Theorem. Thus, there exists an n such that I C m"™ but
I gZ m™1t. Since m = (z), then I C m™ = (2"). Choose y € I ¢ m™*t = (2"1). Then
y=rz". If r € m = (), then y € m"*!, a contradiction. Hence, r € m, so r is a unit. Thus,
" =r~'y € I. Hence, I = (z").

(¢) = (b): Condition (c) implies that R is a PID, and PIDs are integrally closed in their
fraction fields.

O

Definition 8.10. A domain R is called a Dedekind domain if R is Noetherian, one-dimensional,
and normal.

Examples 8.11. The following are examples of Dedekind domains:
e Any PID which is not a field

e Any ring of algebraic integers; e.g., Z[v/d] if d = 3 (mod 4) or Z[%a] if d =1 (mod 4).
In particular, Z[v/—5] is a Dedekind domain but not a PID. (See Dummit-Foote.)

Remark 8.12. Any Dedekind domain is a regular ring

Proof. Let R be a Dedekind domain and p a prime ideal of R. If ht p = 0 then p = 0 and R, is
a field, hence regular. If ht p = 1 then R, is one-dimensional, Noetherian and normal, so R, is
a RLR by Proposition [8.9 m

Theorem 8.13. Let R be a Noetherian ring. Then R is normal if and only if R satisfies So
and Ry.

Proof. Suppose R is normal. Then R is reduced and so satisfies S; and Ry. Let p € Spec R be
a height one prime. Then R, is a normal, Noetherian, one-dimensional domain, so Rz, is a RLR
by Proposition Thus R satisfies Ry. To prove R satisfies So, it suffices to prove it locally at
every prime. Let p € Spec R. If htp < 1 then R, is a RLR (which is CM) and so R, satisfies
S,, for all n. Suppose htp > 2. Then R, is a normal domain of dimension at least two. Reset
notation by replacing R, with R and pR, with m. We wish to show that depth R > 2. Suppose
not. Then, as R is a domain, we must have depth R = 1. Let u € m be a nonzero element.
Then depth R/(u) = depth R — 1 = 0. Thus m € Assg R/(u). Hence, m = ((u) :g y) for some
y € R. Consequently, ym C (u) and so ym = u(ym :g u). If (ym :g u) = R then u = yt
for some ¢t € m. Then m = ((yt) :r y) = (t), contradicting that htm > 2 (by KPIT). Thus,
((u) :r y) € m. This implies ym C um. In TQ(R), we have £m C m. By the determinant
trick, we conclude that £ is integral over R, and so £ € R as R is normal Thus y = ru for some
r € R. But then m = (( ):rYy) = ((u) :gru) = R, ‘a contradiction. Thus, depth R > 2.
Conversely, suppose R satisfies Sy and R;. Then R is reduced by Proposition [8.3] Let
~ € TQ(R) be integral over R. Let p be a prime and ¢, : TQ(R) — TQ(R,) the composition

TQ(R) = Rw — (Rp>¥ — TQ(R,).



Then ¢,(L) = ;L/ll is integral over R, for any prime p (by applying ¢, to the equation
of integral dependence for =.) If p has height one, then R, is normal and so ¢,(%) € R,;

r

ie, £ = %in R, for some s € R\ p. Thus, there exists s’ € R\ p such that s'sr = s'wa.
Thus, ((w) :g 7) ¢ p for all height one primes p. We claim that ((w) :g ) = R. Suppose
((w) :g r) € m for some maximal ideal m of R. Then w € m, w is a regular element of R,,,
and (wR,, :gr,, 7) # Rn. Note that (wR,, :g,, r) consists of zero-divisors on R,,/wR,, (since
r & wR,,), and so (wR,, :g,, r) must be contained in an associated prime pR,, of R,,/wR,,.
Then 0 = depth R,/wR,, = depth R, — 1, so depth R, = 1. As R satisfies S, we must have
htp = 1. But then ((w) :g ) C p, which is a contradiction. Hence, ((w) :g r) = R, which
implies = € R. Thus, R is integrally closed in TQ(R) and hence normal. O]

Theorem 8.14. (Jacobian criterion for hypersurfaces) Let k be a perfect field and f € k[, ..., x,]
a nonzero polynomial. Let J; = (6‘9—{1, %, cee %), called the Jacobian ideal of f. Let R =

klzy,...,2,]/(f) and p € Spec R. Then R, is a RLR if and only if p B J¢R.
Proof. See Matsumura’s Commutative Ring Theory, Theorem 30.10. m
Example 8.15. Let k be a perfect field and R = k[z,y, 2]/(2* + yz). Then R is normal.

Proof. First note that k[x,y, 2] is CM and x?+y2 is a non-zero-divisor. Thus, R = k[z,y, 2]/ (z*+
yz) is CM. Hence, R satisfies S,, for all n. Let f = 2? — yz. Then J; = (22,y,2). Let p be
a prime of Spec R. If p O J;R then p O (y,2)R and since in R, 2? = —yz € p, we see that p
also contains z. (This argument allows for k to have characteristic 2, in which case 2z = 0.)
Thus, by the Jacobian criterion for hypersurfaces, R, is a RLR unless p = (x,y, 2) R. Note that
(x,y,z)R has height two. Thus, for all primes p of height at most one, R, is a RLR. Thus, R
satisfies Ry and so R is normal by Theorem [8.13] O

We recall the following characterization of unique factorization domains (UFDs) from Dummit-
Foote:

Proposition 8.16. Let D be a domain. Then D is a UFD if and only if the following conditions
are satisfied:

e D satisfies the ascending chain condition on principal ideals.
e FEvery irreducible element of D is prime (i.e., generates a prime ideal).

Of course, Noetherian domains satisfy the first condition automatically. We can restate the
second condition also in the Noetherian context:

Proposition 8.17. Let R be a Noetherian domain. Then R is a UFD if and only if every height
one prime is principal.

Proof. Suppose R is a UFD and let p be a height one prime. As p # 0, p contains a nonzero
(and non-unit) element f. Since f is the product of irreducibles and p is prime, p must contain
some irreducible element 7. As R is a UFD, (7) is a prime ideal. As R is a domain, ht(7) > 1.
But since (7) C p and ht p = 1, we must have p = (7).

Conversely, suppose every height one prime of R is principal. Let # € R be an irreducible
element and let p be a prime minimal over (7). By assumption, p = (d) for some d € R. Then
7 = cd for some ¢ € R. As 7 is irrreducible and d is a nonunit, we must have ¢ is a unit. Thus,
p = (m) and hence 7 is a prime element. By Proposition , we see that R is a UFD.

[



Remark 8.18. Let R be a UFD and F' it’s field of fractions and let f(z), g(x) € R[z]. Suppose
the ged of the coefficient of f is a unit (i.e., f is primitive). If f divides g in F'[x] then f divides
g in Rzx].

Proof. This follows easily from Gauss’ Lemma (Dummit-Foote, Proposition 5 of Section 9.3). [

The following two results are true without the Noetherian hypothesis. We prove them in the
Noetherian case to illustrate the utility of Proposition

Corollary 8.19. Let R be a Noetherian UFD and x4, . . ., x, indeterminates. Then R[x1, ..., x,]
is a UFD.

Proof. Tt suffices to prove the case n = 1. Let P be a height one prime of R[x]. By Proposition
8.17], it suffices to prove P is principal. Let PN R = ¢q. Suppose ¢ # 0. Then ht¢ > 1. Note
that gR[z| is a prime ideal contained in P. Then

1 <htg<htgR[z] <htP =1.

Thus, ht¢ = 1 and P = ¢R[z]|. Since R is a Noetherian UFD, ¢ = (a) for some a € R. Then
P = aR|[z] is principal.

Suppose ¢ = 0. Let W = R\ {0}. Then Ry = F, the fraction field of R. Then Py is a
height one prime ideal of Ry [z] = F[z]. Since F[z] is a PID, Py = (f) for some polynomial f
in F[z]. We multiplying by a nonzero constant in F', we can assume f € P and the ged of the
coefficients of f is a unit. We claim that P = fR[z]. One containment is clear. Suppose g € P.
Then f divides g in F[z]. By the remark above, f divides g in R[z]. Thus, g € fR][z]. ]

Corollary 8.20. Let R be a Noetherian UFD. Then R is normal.

Proof. Tt suffices to show that R satisfies So and R;. Since all height one primes are principal, it
follows immediately that R satisfies R;. Since R is a domain, it is clear that R satisfies S;. So
let p € Spec R be a prime of height at least two. Then p necessarily contains a height one prime
q, which is principal, say ¢ = (f). Clearly, f € pR, is a regular element and R,/fR, = R,/qR,
is a domain, but not a field (since pR, 2 ¢R,). Thus, depth R,/fR, > 1, hence depth R, > 2.
Thus, R satisfies S,. O

Definition 8.21. A finitely generated R-module M is called stably free it M & F = G for some
finitely generated free R-modules F' and G.

Clearly, every f.g. free module is stably free and every stably free module is projective. In
the local case, every f.g. projective is free, so all three concepts coincide. In general, however,
there exists stably free modules which are not free, and projective modules which are not stably
free. We'll give an example of the latter after we prove a few results. Here is an example of the
former:

Example 8.22. Let S = R[X,Y, Z]/(X? +Y? + Z? — 1). By the Jacobian Criteria (Theorem
, R is a regular ring (in fact, a regular domain). Consider the homomorphism f : S — S*
given by f(s) = (sx, sy, sz), where I am using z,y and z to denote the images of X, Y, and Z
in S. Note that this map splits: Let g : S — S be given by g(u,v,w) = ur + vy + wz. It is
easily checked that gf = idg, since 22 + 4%+ 22 = 1in S. Let P denote the cokernel of f. Then
by the splitting lemma, P ¢ S = S3, so P is stably free. However, by a result from differential
geometry (about combing the hair on a sphere), P is not free.



Definition 8.23. Let R be a ring and M an R-module. A finite free resolution (FFR) for M is
a finite complex F, of finitely generated free R-modules

O—-F—>FK 41— —=F—=>F—0

which is exact except in degree zero and Hy(F,) = M. In other words, an FFR for M is a
finite projective resolution of M in which all the projective modules in the resolution are finitely
generated free R-modules.

Of course, if a f.g. module has an FFR, then it is of finite projective dimension. The converse
true over a local ring. However, not all f.g. projectives have FFRs, as we’ll see.

Proposition 8.24. Let R be a Noetherian ring. A finitely generated projective module is stably
free if and only if it has an FFR.

Proof. Suppose P is stably free. Then P & F = G for some f.g. free R-modules F' and . This
isomorphism yields the exact sequence 0 — ' — G — P — 0, so P has an FFR. Conversely,
let P be a f.g. projective which has an FFR. We’ll use induction on the length n of an FFR
for P. The case n = 0 is trivial (P is free), so suppose n = 1. Then there exists an exact
sequence 0 — Fy; — Fy — P — 0 for some f.g. free R-modules Fy and F;. As P is projective,
this sequence splits, so Fy = F; @ P, which shows that P is stably free. Suppose n > 1 and the
result holds for projectives with FFRs of length less than n. Then there exists an exact sequence

0= F,—=Fpq—- 2 F > F—P—0,

where F; are f.g. free modules. Let C' = im0y. As 0 = C — Fy — P — 0 is exact and P is
projective, we have that C'is projective and P & C = Fy. We also see from the exact sequence
above that C has an FF'R of length n — 1. By the induction hypothesis, C' is stably free, say
CPHG = F for some f.g. free R-modules F' and G. Let F' = Fy@® G, which is a f.g. free R-module.
Then F''=FydGEZPHCHGE =P F, demonstrating that P is stably free.

O

Let A be an n x n matrix with entries from a commutative ring R. For i,j € {1,...n}, the
ijth cofactor of A is defined to be b;; := (—1)"*7 det(A,;;), where A;; is the matrix obtained from
A by deleting the ith row and jth column of A. The adjoint of A, denoted adj A, is defined to
be the matrix (b;;)T. The adjoint theorem states that

(adj A)A = A(adj A) = det(A) 1, .

Lemma 8.25. Let R be a commutative ring and A an n X n matrix with entries from R. Then
multiplication by A induces an injective map on R™ if and only if det(A) is a non-zero-divisor

on R.

Proof. Suppose first that d = det(A) is a non-zero-divisor on R. Then certainly multiplication
by d1I, on R" is injective. Hence, multiplication by (adj A)A, and therefore by A, is injective.
Conversely, by way of contradiction suppose that ¢4 is injective but d = det(A) is a zero-
divisor. Let w € R\ {0} such that dw = 0. Let T be the prime subring of R (so either Z or
Zyy, for some m) and S the subring of R formed by adjoining all the entries of A and w to T.
Then S is Noetherian, multiplication by A is injective on S™, and d is a zero-divisor in S. Thus,
we may assume R is Noetherian. We’ll use induction on the number of rows n of A. When
n = 1 the assumptions clearly result in a contradiction. Suppose n > 1. As d is a zero-divisor,



d € p for some p € Assg R. Localizing at p, we may assume R is local with maximal ideal m
and depth R = 0. Let u be a nonzero element of (0 :p m). If every entry of A is in m, then
A(ul,) = 0, contradicting that multiplication by A is injective. Hence, some entry of A is a
unit. Then using elementary row and column operations there exists invertible matrices P and

Q such that
10
PAQ = (O B)

where B is an (n — 1) X (n — 1) matrix. Note that as P and @ are invertible, multiplication by
PAQ), and hence B, is injective. Also, det(B) = det(P) det(A) det(Q). Since det(P) and det(Q)
are units and det(A) is a zero-divisor, det(B) is a zero-divisor. But this contradicts the n — 1
case.

]

Definition 8.26. Let R be a ring and P a finitely generated projective R-module. We say that
P has rank r (or sometimes constant rank r) if P, = R! for all maximal ideals m of R.

Remark 8.27. We note that not all finitely generated projective modules have a rank. For
example, let R = Q x Q. There are two maximal ideals, [; = Q x 0 and I, =0 x Q. Both are
projective, as I; & I, = R. Then I1R;, = R;, but I; R, = 0. However, it is easy to see that
stably free projectives have a rank: if P @ R" = R® then P, = R;" for all maximal ideals m.

Theorem 8.28. Let R be a ring and I a stably free ideal of R. Then I is free.

Proof. The result is trivially true if I = 0, so assume I # 0. Then for at least one maximal
ideal m of R, I,, # 0. As I is projective, I, is free and nonzero, hence I, = R,,. And since
stably free modules have constant rank, we have that I, = R, for all prime ideals p. Hence, our
assumption that I is nonzero and stably free implies 7 @ R"! = R" for some n > 1. As I C R,
we can consider I @ R"! as a submodule of R ® R"™! = R". Let ey,...,e, be a basis for R"
where e; is the basis for the first copy of R (the one I sits in) and es, ..., e, a basis for R""L.
Let ¢ : R — R"™ be the composition of

R" S TR < R

Let A be the matrix representing ¢ with respect to the basis {es,...,e,}. Since 1 is injective,
d = det(A) is a non-zero-divisor. Let b; be the first column of adj(A). Then Ab; = de;, where
we are identifying e; with the first column of I,,. Since es, ..., e, are in the image of ¥, let
by, ..., b, be column vectors of R" such that Ab; = e; for j > 2. Let B be the n x n matrix
whose ith column is b;. Then AB = (g IO ) Note det(A) det(B) = d = det(A). Since det(A)
n-1

is a non-zero-divisor, we see that det(B) = 1. Thus, B is invertible and multiplication by B
on R" is an isomorphism. Hence, the image of AB equals the image of A, which is 7 @ R 1.
However, the image of AB is (d) ® R"!, which means I @& R"™! = (d) ® R"~! as submodules of
R@® R"'. Hence, I = (d). As d is a non-zero-divisor, I = (d) = R.

O

Example 8.29. Let R be a Dedekind domain which is not a PID (e.g., R = Z[v/—5]). Let I
be a non-principal ideal. Then I is projective but not stably free. (Recall that every ideal in a
Dedekind domain is projective as they are locally principal.) For, if I is stably free, then by the
above theorem [ is free and hence principal. In particular, such an [ is an example of a finitely
generated module of finite projective dimension that does not have an FFR, by Proposition [8.24]



Lemma 8.30. Let R be a semilocal ring (not necessarily Noetherian) and M a finitely generated
projective R-module of constant rank. Then M is free.

Proof. Let my, ..., mg be the maximal ideals of R. As M is projective of constant rank, there
exists an 7 such that M, = Ry for all i. Let J = J(R) = m;N---Nm, Then R/J is a
zero-dimensional semilocal ring. By the Chinese Remainder Theorem,

R/J = R/my X --- x R/mg, and
M/JM = M/mM x --- x M/m M.

As M,,, = Ry, for each i, we have

Hence, M/JM = (R/m;)" x -+ x (R/ms)" = (R/J)". In particular, M/JM is generated by r
elements. Hence, by Nakayama’s Lemma, M is generated by r elements, say uq,...,us. Define
f: R — M by f(e;) = u;, where {eq,...,e,} is a basis for R". Clearly, f is surjective. Let
K =ker f. As M,,, = Ry, , f localized at m; is an isomorphism (again, by NAK), so K,,, = 0.
Since K is locally zero at every maximal ideal, we see that K = 0. Hence, f is an isomorphism
and M is free.

O

Lemma 8.31. Let R be a Noetherian ring and P a rank one stably free R-module. Then P is
tsomorphic to an ideal of R.

Proof. Let W be the set of non-zero-divisors of R and Ry, the total quotient ring of R. Let
¢1, - - -, qs be the maximal associated primes of R, i.e., the maximal elements of Assg R. (Here is
where the Noetherian hypothesis is used.) Then W = R\ p; U---Ups. Thus, pyRw, ..., psRw
are the maximal ideals of Ry,. Hence, Ry is semilocal. For ease of notation, let m; = p; Ry .
Since P is rank one stably free R-module, P, = R, for all primes ¢ of R. Hence, for each i
we have (Pw)m, = Py, = R, = (Rw)m,. Thus, Py is a rank one stably free module over Ry,
which is semilocal. By Proposition [8.30, we have that Py = Ry . Consider the composition of
R-module homomorphisms

PL Py S Ry

Note that as P is isomorphic to a submodule of a free module (every projective is), the elements
of W are non-zero-divisors on P. Hence, the map ¢ above is injective. Thus, P is isomorphic
to an R-submodule M of Ry,. As P is finitely generated, so is M; say M = R;—ll + -+ R
for some r1,...,r; € R and wq,...,w; € W. Let w = wiwsy---w;. As w is a nonzerodivisor,
P = M = wM, where wM is an R-submodule of R, i.e., an ideal of R. O

We can now strengthen Theorem to all rank one stably free modules:
Theorem 8.32. Let R be a ring and P a rank one stably free R-module. Then P is free.

Proof. Suppose P ® R"~! = R™. Then there exists a split exact sequence
0= R % R > P—0.

As the sequence splits, there exist p : R* — R"! such that p¢ = idzn—1. Choose bases for R"~!
and R"™ and let A and B be the matrices representing ¢ and p with respect to these bases. Let



T be the prime subring of R and S be the subring of R obtained by adjoining all the entries of
A and B to T. Then S is Noetherian. Let 7 : S" ! — S™ be given by multiplication by A and
let () = coker . Thus, we have an exact sequence

0> S 158" 50Q—0.

Now let 7 : S™ — S™"~! be given by multiplication by B. Then 77 = idg»—1 since BA = I,,;.
Thus, the exact sequence above splits. Hence, Q @ S™ ! = S", which means ) is a rank one
stably free S-module. Since S is Noetherian, we have by Lemma that @) is isomorphic to
an ideal. By Theorem we conclude that @ = S. If we apply the functor (—) ®s R to the
split exact sequence 0 — S™ ' 5 S™ — @ — 0 it stays exact. As both 7 and ¢ are represented
by the matrix A, we have 7 ® idg = ¢. Hence,

0 RS R 5 QesR—0

is exact. By the Five Lemma, we see that Q ®¢s R = P. As () = S, we obtain that P = R.
]

Here are a couple additional significant results (among many) about projective modules:

e (Quillen-Suslin Theorem, mid-1970s) Let R = k[xy,...,z,] where k is field. Then every
projective R-module is free.

e (Bass, early 1960s) Suppose R is a Noetherian ring with no nontrivial idempotents (e.g.,
R is local or a domain). Then every non-finitely generated projective R-module is free.

Back to UFDs: To prove regular local rings are UFDs, we’ll need the following lemma:

Lemma 8.33. Let R be a Noetherian domain and © a prime element of R. If R is a UFD,
then so is R.

Proof. Tt suffices to prove that every height one prime of R is principal. Let p be such a
prime. If m € p, then since (7) is a height one prime, we have p = (7). Assume 7 & p.
Then, as R, is a UFD, pR, = aR, for some a € R. Consider the nonempty set of ideals
A ={aR|a € R and pR, = aR,} and choose a maximal element bR € A. Note that b & (7),
else bR C %R € A. AspR, N R =p we have b € p. Let ¢ € p. Then in R;, ¢ = b for some
r € Rand n > 0. Thus in R we have "¢ = rb. Hence, rb € (7). As (m) is prime and b & (),
r € (m). This yields 7"~ 'c¢ = r'b where ' = £ € R. Continuing in this fashion, we obtain that
¢ € (b). Thus, p = (b).

O

Theorem 8.34. (Auslander-Buchsbaum, 1959) Any reqular local ring is a UFD.

Proof. Let (R, m) be a regular local ring. We’ll proceed by induction on d = dim R. If d < 1
then R is a field or a PID and the result holds. So assume d > 1. Let x € m \ m?. Then R/(x)
is a regular local ring, and thus a domain. Hence z is a prime element of R. By Lemma [8.33]
it suffices to prove R, is a UFD. Let p, be a height one prime of R,, where p € Spec R with
x&p. p, ¢ qu, then (py),, = Ry. If pp, C g, then (p,),, = pR,. As R, is a RLR of dimension
smaller than d, R, is a UFD. Hence, pR, is principal and therefore isomorphic to R,. Thus, p,
is locally free, which implies p, is a projective R,-module. Now, as R is a regular local ring, p
has an FFR over R. Localizing this FFR at x gives an FFR for p, over R,. By Proposition [8.24]
we obtain that p, is stably free. By Theorem [8.28, we have that p, is free, and hence principal.
Thus, every height one prime of R, is principal and so R, is a UFD. O



9 C(Canonical modules

To introduce canonical modules, we first prove the following special case of Matlis duality:

Proposition 9.1. Let (R, m, k) be an Artinian local ring and E := Egr(k). Let (—)¥ denote the
contravariant (and ezxact) functor Homg(—, E). Then for any finitely generated R-module M
the natural evaluation homomorphism ¢y - M — MYV is an isomorphism.

Proof. We first establish the isomorphism in the case M has length one; i.e. M = R/m = k.
Consider ¢ : k — kVV and let a € ker¢. Let f : k — FE be an embedding of Kk = R/m into
its injective hull (over R). Then 0 = ¢x(a)(f) = f(a). As f is injective, a = 0. Hence, ¢y is
injective. By Lemma [6.3] Agp(k) = Ar(k¥) = Ar(kY). Thus, Ag(coker ¢y) = 0 and ¢y is an
isomorphism.

Suppose now that Ag(M) > 1. Then there exists a s.e.s. 0 - L — M — N — 0 such that
Ar(L) and Ag(N) are less than Ag(M). Since evaluation homomorphisms are natural and (—)¥
is exact, we obtain the commutative diagram

0 > 0

> L > M > N
l¢L l¢M l@v
0O — LY —— M"Y —— NVY —— 0

By induction, ¢ and ¢y are isomorphisms. Thus ¢, is an isomorphism by the Five Lemma.
O

We’d like to generalize this duality to local rings of higher dimension. One direction (Matlis
duality) utilizes the same “dualizing module” (F) over complete local rings. This is an extremely
useful duality, but note that RV = E is not a finitely generated module if the dimension of R
is positive. There is another generalization of this duality over Cohen-Macaulay local rings
(satisfying a mild condition) which uses a finitely generated module to do the dualizing, called
the canonical module. This type of duality is best seen at the level of complexes, but we can
prove a very pleasing duality on the module level if we restrict to CM modules.

Definition 9.2. A finitely generated module M over a local ring R is called mazimal Cohen-
Macaulay (MCM) if depth M = dim R; i.e., M is a CM module of maximal possible dimension.
If M is an MCM module, its type, denoted (M), is pq(m, M) where d = dim R.

Example 9.3. Let R = k[[z,y]]/(2? zy). Then R/(x) is an MCM for R as depth R/(x) =
1 = dim R. By a direct calculation of Ext}(k, R/(x)) one can show the type of R/(z) (as an
R-module) is 1. Note in this example R is not CM.

Definition 9.4. Let (R, m) be a d-dimensional CM local ring. A finitely generated R-module
C is called a canonical module for R if p;(m, C) = 0,4, where 0;; is the Kronecker delta. Equiv-
alently, C'is an MCM of type 1 and finite injective dimension.

Remark 9.5. It is a consequence of the New Intersection Theorem that if R has a nonzero
finitely generated module of finite injective dimension, then R is CM. Thus, for a local ring to
possess a canonical module of the type defined above, R must be CM.

Examples 9.6. Let (R, m, k) be a local ring.

(a) R is Gorenstein if and only if R is a canonical module for R (Proposition [6.14)).



(b) If R is Artinian then Eg(k) is a canonical module for R.

We’ll need a few results on maximal Cohen-Macaulay modules. An important one is this: if
x € Risregular and M is an MCM, then x is M-regular. This follows since dim R/p = dim R for
all p € Assgp M (Proposition [5.7). Since M/xM is an MCM R/(x)-module, one can strengthen
this statement to say that any R-sequence is an M-sequence.

Proposition 9.7. Let (R,m,k) be a CM local ring. Suppose M and N are MCMs such that
Extpr(M,N) =0 for alli > 0. Then

(a) Homg(M, N) is MCM;
(b) For any R-sequence x = x1,...,xs, we have

(i) Homp(M,N) ®r R/(x) = Homp/x) (M/(x)M,N/(x)N), and
(1) EXtZR/(x)(M/(X)M, N/(x)N) =0 for all i > 0.

Proof. We'll use induction on d = dim R. In the case d = 0 there is nothing to prove. (Every
module is MCM and there are no R-sequences.) Suppose d > 0. Let x be any regular element
on R. By the comments above, = is both M-regular and N-regular, and hence M/xzM and
N/xN are MCM R/(x)-modules. Note Hompg(M /xM, N) = Hompg(M,Homg(R/(x),N)) = 0.
Applying Homg(—, N) to the exact sequence 0 — M 5 M — M/xM — 0 and using that
Ext’ (M, N) = 0 for i > 0, we obtain that

0 — Hompg(M, N) & Homp(M, N) — Extyp(M/xM, N) — 0,

and Ext’ (M /xM, N) = 0 for all i > 2. This gives us that x is a regular element on Homg (M, N)
and that Homg(M, N) ®r R/(z) = Extp(M/xM, N). By Theorem we have

Homp)()(M/xM, N/xN) = Exty(M/xM,N) = Homg(M, N) ®g R/(z),

and for all ¢ > 1 4 '
Exty ) (M/2M, N/xN) = Extiy'(M/xM,N) = 0.

Thus, M = M/xM and N = N/xN satisfy the hypotheses of the theorem over R = R/(x),
which is of dimension d — 1 < d. Hence (a) and (b) must hold for M and N . In particular,
Homz(M, N) = Hompg(M, N)/xHomgz(M, N) is maximal CM over R. As x is regular on
Hompg(M, N) we obtain that Homgz(M,N) is MCM over R, which proves (a). For (b), let
X = x1,...,%s be any R-sequence. We've proved (i) and (ii) hold when s = 1. By induction, we
have (i) and (ii) hold for the R-sequence 75, ...,T;, M and N. But this then shows that (i) and
(ii) hold for x, M, and N.

[

A maximal CM module of finite injective dimension has even nicer properties:

Proposition 9.8. Let (R,m,k) be a CM local ring. Let C be an MCM of finite injective
dimension. Let M be a (nonzero) finitely generated CM module of dimension t. Then

1. Bxth(M,C) =0 fori#d—t.

2. Ext§ (M, C) is nonzero and CM of dimension t.



Proof. By Theorem , we have Exth(M,C) = 0 for i < d —t. We use induction on ¢ to
prove Ext’(M,C) =0 for i > d —t. If t = 0, then M has finite length. By Corollary and
Theorem , we have Exth(k, M) = 0 for i > d. By Lemma m, Exth(M,C) = 0 for all
i > d. Suppose t > 0. Let z € m be M-regular. Then M/zM is a CM module of dimension
t — 1. Applying Hompg(—, C) to the short exact sequence 0 — M = M — M/xM — 0, we have
for all j an exact sequence

Extp(M, O) = Extp(M, C) — Ext™ (M/2M, C).

By induction, we have Ext ' (M/zM,C) = 0 for all j+1 >d — (t—1), or j > d —t. By
Nakayama, we obtain Ext’,(M,C) = 0 for all j > d — t. This proves (i).

To prove (ii), we again use induction on ¢. Assume ¢t = 0. Then M has finite length.
Thus, Ext%(M, C) has finite length since it is finitely generated and is locally zero at all primes
p # m. Hence Ext%h(M,C) is CM of dimension zero. It remains to show Ext%h(M,C) # 0.
Suppose Ag(M) = 1. Then M = R/m = k. But Ext%(k,C) # 0 since depth C' = d. Suppose
Ar(M) > 1. Then there exists an exact sequence 0 — k — M — N — 0. We then obtain an

exact sequence
Exth(M, C) — Exth(k,C) — ExtE™(N, C).

But Ext™ (N, C) = 0 as idg C = d, so Ext%(M,C) # 0. This proves (ii) in the case t = 0. Now
suppose t > 0. Let x € m be an M-regular element. Then M /xM is a CM module of dimension
t — 1. Applying Hompg(—, C') to the usual exact sequence, we obtain the s.e.s.

0 — Ext% (M, C) 5 Ext& (M, C) — Ext& D (M/zM, C) — 0,

where here we are using part (i) to get Exth(M/zM,C) = 0 for j # d — (t — 1). Thus, = is
a regular element on A = Ext% (M, C) and A/zA = Ext;l%_(t_l)(M/xM, (). By the induction
hypothesis, we know A/z A is a nonzero CM module of dimension ¢—1. Hence, A = Ext% (M, O)

is nonzero CM of dimension d — ¢. This completes the proof of (ii).
O

Lemma 9.9. Let (R,m,k) be a local ring, M and N finitely generated R-modules, and X =
x1,...,%xs an N-sequence. Let ¢ : M — N be a homomorphism. If the induced map ¢ :
M/(x)M — N/(x)N is an isomorphism, then so is ¢.

Proof. Tt suffices to prove this in the case s = 1. Surjectivity of ¢ follows easily from Nakayama’s
lemma. Let m € ker¢. Then ¢(m) € N, thus m € M. Write m = xm, for some my; € M.
Then 0 = ¢(m) = ¢(xmy) = xp(my). As x is N-regular, we conclude ¢(m;) = 0. Repeating the
same argument for m;, we obtain m; = xms for some my € M. Hence, m = 2*my € 22M. By
induction, we see that m € 2" M for all n, which implies m = 0 by Krull’s intersection theorem.
Thus, ¢ is injective. [

Lemma 9.10. Let (R, m) be a d-dimensional CM local ring and C' a finitely generated R-module.
Let x = x1,...,x5 be an R-sequence and a C-sequence. Then C s a canonical module for R if

and only if C/(x)C is a canonical module for R/(x).

Proof. 1t suffices to prove the statement in the case s = 1. Clearly, C'is an MCM R-module if and
only if M/xzM is an MCM R/(z)-module. By Theorem|[6.11] idg/() C/2C = idg C —1, so idr C
is finite if and only if idg/ ;) C/xC' is finite. And by Theorem [6.10, dimy Exth7(x)(k, C/zC) =
dimy, Ext%(k, ©'), and so C has type 1 if and only if C'//zC has type 1. O




Theorem 9.11. Let (R, m, k) be a CM local ring and suppose C' and D are canonical modules
for R. Then C = D and the map m¢ : R — Hompg(C, C) given by o (r) = p, is an isomorphism,
where (., 18 multiplication by r.

Proof. We proceed by induction on d = dim R. Suppose d = 0 and C' a canonical module for
R. As C is a finitely generated injective module and Spec R = {m}, C = Ex(k)" for some t.
As C has type 1, we have that ¢ = 1. Thus, C' = Eg(k) and all canonical modules for R are
isomorphic. By Proposition , R = RV = Hompg(FE, F). Thus, any element which annihilates
E also annihilates R, and hence is zero. Consequently, 7z : R — Hompg(E, F) is injective. Since
A(R) = AM(RYY) = MHompg(E, E)), we conclude that 7 is an isomorphism.

Now assume d = dim R > 0 and let x € m be a regular element on R. By Lemma [9.10]
C/xzC and D/xD are canonical modules for R/(x). By induction, C'/zC = D/xD. By part
(a) of Proposition we have Ext’%(C, D) = 0 for all i > 0. Thus, by Proposition and the
induction hypothesis, we obtain

Homp(C, D)/ Homp(C, D) = Hompg)()(C/zC, D/zD) = Homp, ) (C/xC, C/zC) = R/(x).

By Nakayama’s lemma, we see that Hompg(C, D) is cyclic. Let ¢ : C' — D be a cyclic gener-
ator. Then ¢ ®@r R/(x) corresponds (under the second isomorphism above) to a generator for
Hompg(C/2C,C/zC). But by the third isomorphism (and the induction hypothesis), this gen-
erator has the form p, for some generator r of R/(x). But any generator for R must be a unit,
which means i, is an isomorphism. Consequently, ¢ ®r R/(z) is also an isomorphism (this is an
elementary exercise, as the second isomorphism is induced by an isomorphism D/zD — C'/zC').
By Lemma , we conclude that ¢ is an isomorphism. Finally, consider ¢ : R — Hompg(C, C).
Then 7¢/c is the composition

R/(z) 229, Homp(C, C) @p R/(x) = Homp(w)(C/2C, C/zC).

Thus, ¢ ®r R/(z) is an isomorphism, and hence 7¢ is an isomorphism by Lemma
]

As a consequence of Theorem [9.11] we can speak of the canonical module for R (assuming
one exists), as it is unique up to isomorphism. We’ll denote the canonical module by wg.

Corollary 9.12. Let (R,m, k) be a CM local ring. The following are equivalent:
(a) R is Gorenstein.
(b) R has a canonical module and wr = R.

Proof. We've already noted that if R is Gorenstein then R is a canonical module. Conversely,
if R is a canonical module then R has finite injective dimension, hence Gorenstein. O]

Proposition 9.13. Let (R,m,k) be a CM local ring which possesses a canoncal module wg.
Then

(a) Anngwgr = (0).
(b) Suppywr = Spec R.

(¢) For any R-sequence X, Wr/x) = wr/(X)wr.



(d) For any p € Spec R, wg, = (Wg)p-

Proof. Since R = Hompg(wgr,wr), we see that Anngwr C Anng R = (0), which proves (a). Part
(b) is an immediate consequence of (a). Part (c) is a restatement of Lemma [9.10]

For part (d), let p € Spec R. Since idgr wr < 0o we have idg,(wr), < 0o since localization of
injective modules are injective (cf. Proposition[1.15]). By Proposition[5.11] we have that (wg), is
a CM R,-module. As Anng, (wr), = (Anngwg), = (0) by part (a), we have dim(wg), = dim R,,.
Hence, (wg), is a MCM for R,. It remains to show that the type of (wg), as R,-module is 1. Let
r be the type of (wg)p, i.e. r = dimy,) Extﬁ;ip(k(p), (wr)p), where t = dim R,,. Since R is CM, we
have gradep = ht p. Let x be a maximal R-sequence in p. Then the image of x in R, is a system
of parameters (and still a regular sequence). For ease of notation, let S = R,/(x)R,, M =
(wr)p/(X)(wr)p, and Eg = Eg(k(p)). As x is a regular sequence on (wg), we have by Theorem
that r = dimy) Homp (k(p), M). Note also that idg M < oo by Theorem . Since
dim S = 0 we have idg M = 0, and so M = E7. On the other hand, by part (c) we know that
wr/(x)wg is a canonical module for R/(x). Hence Hompg/(x)(wr)/(X)wr, wr/(X)wr) = R/(x).
As dim S = 0 we have by Matlis duality (Proposition that

Comparing ranks, we conclude that » = 1. This completes the proof of (d).
]

Corollary 9.14. Let (R, m, k) be a CM local ring which possesses a canonical module wg. Then

Mz’(ﬂwR) = 5iht(p)-

Proof. Recall from the definition of a canonical module (Definition [9.4)) that p;(m,wg) = dig
where d = dim R = htm. Let p € Spec R. Since (wg), is a canonical module for R, by the
previous result, we have y;(p, wr) = pi(pRy, (Wr)p) = Ointp- O

Proposition 9.15. Let (R,m,k) be a CM local ring which has a canonical module wg. The
following are equivalent:

(a) wg is isomorphic to an ideal of R;
(b) R, is Gorenstein for all p € Ming R. (In this case, R is said to be generically Gorenstein. )

Proof. (a) = (b) : Suppose wr = I where [ is an ideal of R. Let p € Ming R. By Proposition
9.13, (wr)p = wr, = Eg, (k(p)). As (wr), = I, C R, we have

Ar, (Er, (K(p)) = Ar,(Ip) < Ag,(1p) = Ar, (ER, (K(p)),

where the last equality follows from Lemma Thus, Ag,(I,) = Ag,(R,), which implies
I, = R,. Thus, wg, = R, and hence R, is Gorenstein.



Conversely, assume R is generically Gorenstein. Let W be the set of non-zero-divisors on R.
Then Ry is an Artinian local ring and Spec Ry = {pw | p € Ming R}. Let p € Ming R. As R,
is Gorenstein, ((wWr)w)py, = (Wr)p = Ry = (Rw)py, - Thus, (wg)w is a projective Ry-module
of constant rank one. By Lemma m (wr)w = Ry . As any non-zero-divisor on R is a non-
zero-divisor on wg (as wg is MCM), the localization map wg — (wg)w is injective. Composing
with the isomorphism (wgr)w — Ry, we see that wg is isomorphic to a finitely generated R-
submodule of Ry,. But any finitely generated R-submodule of Ry, is isomorphic to an ideal of
R (by multiplying by a suitable element of W to clear denominators).

O

Theorem 9.16. Let (S,n, k) be a Gorenstein local ring and I an ideal of S such that R := S/I
is CM. Let t = dim S — dim R. Then wgr = ExtL (R, S). In particular, any CM local ring which
1s the quotient of a Gorenstein ring possesses a canonical module.

Proof. Let x = z1,...,2, € I be an S-sequence, where g = gradel. Let S = S/(x) and
I = I/(x). Then S is a Gorenstein local ring and R = S/I. Note, as S is Gorenstein,
dimR =dim S/l =dimS —ht I =dimS — g = dim S. Also, by Theoremm

Ext§(R, S) = Ext3(R, S) = Homg(R, 5).

Thus, it suffices to show that Homg(R,g) is a canonical module for R. Resetting notation, we
may assume that dim R = dim S. Note that R is an MCM S-module. Let y = y1,...,yq4 be a
maximal S-sequence, where d = dim S = dim R. Then y is also an R-sequence. Since S has
finite injective dimension, we have Ext4(R,S) = 0 for i > 0 by Proposition . Consequently,
by Proposition , C := Homg(R,S) is an MCM S-module, and thus an MCM R-module.
By Lemma [9.10} it suffices to prove C//(y)C is a canonical module for R/(y)R. Again by
Proposition , we have C'/(y)C = Homg,y)(R/(y)R,S/(y)). Note that S/(y) is a zero-
dimensional Gorenstein local ring. So resetting notation again, it suffices to prove that if S is
a zero-dimensional Gorenstein local ring and R = S/I, then Homg(R, S) is a canonical module
for R. As S is Gorenstein, S = Eg(k). But

HOHIS(R, S) = HomS(S/I, Es(k’)) = ES/[(k') = ER(]{?),
and Eg(k) is a canonical module for R. This completes the proof. [

Corollary 9.17. Let (S,n,k) be a reqular local ring and I and ideal of S. Suppose R := S/I
is Cohen-Macaulay and let Fy be a minimal free S-resolution of R. Then ¥'Homg(F,,S) is a
manimal free S-resolution of wg, where t = dim S — dim R = pdg R.

Proof. First note that by the Auslander-Buchsbaum formula, pdg R = depth S — depth R =
dim S — dim S/I. Let F; = S% for i = 0,...,t. Then F, has the form

0— §% 2 §hr 55 g8 B gy,
where ¢; ® S/n = 0 for all i. Applying Homg(—,S), we have the complex
058 g8 .y g8 %y B g

where the complex sits in cohomological degrees 0 to t. We have H'(Homg(F,, S)) = Exti(R, S)
for all ¢. By Proposition , Exty(R,S) = 0foralli # t. (Note dim R = dim S—t.) By Theorem



9.16] Ext% (R, S) & wg. Thus, the complex Homg(F,, S) is exact except in cohomological degree
t. Note also that ¢f ® S/n = 0 for all i. Hence Homg(Fs, S) is a minimal free S-resolution of
wr, once properly shifted. Switching to homological degrees, Homg(F,, S) sits in degrees 0 to
—t, so we need to shift the complex ¢ units to the left. This is accomplished by applying the
functor £! (see Definition [4.5). Thus, £! Homg(Fs, S) is a minimal free resolution for wg.

O

Example 9.18. Let k be a field and R = k[[t3,t*,t°]]. As R is the quotient of a Gorenstein
local ring (namely, S = k[[z,y, z]]), we know that R has a canonical module wg. Let’s find a
resolution of wr over S. Let ¢ : S — R be given by ¢(x) = t3, ¢(y) = t*, and ¢(z) = t°. Clearly,
¢ is a surjective ring homomorphism. Using Macaulay2 (or some results by Herzog and others),
one can find that P := ker ¢ = (23 — yz,y* — 2, 2> — 2%y)S. By the Hilbert-Burch theorem (or
again, Macaulay2), one obtains the following minimal resolution for R over S:

z
22
Y

ISR IINS

(2% —yz y?—az 22 —a?y)

0— §? 53 s S — R — 0.

Hence, by Corollary [9.17] by applying Homg(—,.S) and shifting two degrees to the left we have
a resolution of wg:

22 —yz

y? — xz (y z :L‘)
2 2 2
22— 1y z 7ty
0— S > 5 -

S? = wp — 0.

Corollary 9.19. Let S and R be as above. For a finitely generated S-module M, let 5;(M) =
dimy, Tor? (k, M); i.e., B;(M) is the rank of the free module in degree i of a minimal free resolution
of M. (These are called the Betti numbers of M.)

(a) For all i, Bi(wr) = Pi—i(R), where t = pdg R.
(b) R is Gorenstein if and only if the sequence of Betti numbers of R is symmetric.

Proof. Part (a) is an immediate consequence of Corollary [0.17 It remains to show (b). If R is
Gorenstein, then wr = R, and the Betti sequence is symmetric by part (a). Conversely, suppose
the Betti sequence of R is symmetric. Then 1 = fy(R) = pi(R) = Bo(wgr). Thus, wg is cyclic,
so wr = R/J for some ideal J of R. But by Proposition [9.13|(a), Anngwg = (0). Hence, J =0
and wg = R. Thus, R is Gorenstein. n

The following theorem generalizes Matlis duality in the zero-dimensional case to maximal
CM modules over a CM ring;:

Theorem 9.20. Let (R,m, k) be a d-dimensional CM local ring which possesses a canonical
module wg. Let (=)' denote the functor Homg(—,wr). Then (=)' is a dualizing functor on the
category of finitely generated maximal CM modules. That is,

1. For any finitely generated MCM module M, M is also MCM.

2. Gwen any s.e.s. 0 - A — B — C — 0 of finitely generated maximal CM modules, the
sequence 0 — CT — BT — AT — 0 is exact.



3. For any f.g. mazimal CM module M the evaluation homomorphism M — M is an
1somorphism.

Proof. Part (a) follows from Proposition By the same proposition, we know Exth(C, wg) =
0, where C' is as in part (b). Hence the s.e.s. is exact.

For part (c), let x be a maximal R-sequence. Then x is a regular sequence on any MCM.
Let ¢ : M — M be the evaluation homomorphism. Since M is an MCM, it suffices to show

¢ ® R/(x) is an isomorphism by Lemma . Now, by Propositions and ,
M ®@g R/(x) = Hompx)(Homp,x) (M/xM, wr/XWr), wr/Xwr).

Note that as x is a maximal R-sequence, wr/Xwr = wr/(x) = Er/@)(k). Let ()" := Hompgx)(—, Er/x)(k))
Then we have a commutative diagram

POR/(x)

M ®gr R/(x) y MTT @5 R/(x)

L !

M/xM ———— Hompg/x)(Hompgx) (M /XM, wr/Xwg), wr/Xwr)

b !

M /xM = s (M/xM)vY

Here, the bottom arrow is the evaluation homomorphism with Eg/)(k), which is an isomor-
phism by Matlis duality. Thus, ¢ ® R/(x) is an isomorphism, and hence so is ¢.
0

Corollary 9.21. Let (R,m, k) be a CM local ring which possesses a canonical modules wg. For
any f.g. MCM R-module M let r(M) denote the CM type of M and p(M) the minimal number
of generators of M. Let (=)' denote Hompg(—,wg). Then

1. r(M) = u(MT).
2. (M) =r(M").
In particular, the type of R is equal to the minimal number of generators of wg.

Proof. We'll prove (b) first. Let x be a maximal regular sequence on R. Then

r(M") = dimy, Ext% (k, Hompg (M, wg))
= dimy, HomR/(x)(k‘, HomR/(X)<M/XM7 WR/XWR))
= dimy, Hompg,x) (kK ®r/x) M, Er/x)(k))
= dimy, Hompg,x) ("), Br ) (k)
= dim,, k*M)

= p(M).

For (a), note that r(M) = r(M') = u(MT) by part (b) applied to MT in place of M.



Discussion 9.22. The duality induced by the canonical module is best appreciated on the level
of complexes. To state the duality in that context, we first need to define the Hom complex of
two complexes M and N. The (homological) degree n component of Homg(M, N) is given by

Homp(M, N),, := [ [ Homp(M,, Npin).

PEZ

An element o« € Hompg(M, N),, is called a homomorphism of degree n, and we write |a| = n.
The differential 9% on Homg(M, N), is defined as follows: For a € Homp(M, N),,

oM (a) = 0Na — (1) ad™.

One can easily check that 07 o 9 = 0. Note that « is a chain map from M to N if |a| = 0
and 07 («) = 0. Thus, the cycles of degree 0 in Homz(M, N) are the chain maps of M to N.
Also, if |a] = 0, then « is null-homotopic if and only if there exists s € Homg(M, N); such that
0 (s) = a, i.e., a is a degree 0 boundary. Hence, Hy(Hompz(M, N)) is the homotopy equivalence
classes of chain maps from M to N.

An R-complex M is called finite and (homologically) bounded if H;(M) is finitely generated
for all ¢ and H;(M) = 0 for all but finitely many ¢. (That is, the nonzero homology of M is
finitely generated and concentrated in a finite interval.)

Theorem 9.23. Let (R,m, k) be a CM local ring which possesses a canonical module wg. Let
D be a minimal injective resolution for wg. Then the evaluation chain map

M — Hompg(Hompg(M, D), D)
induces an isomorphism on homology for all finite bounded complexes M.

Proof. See Hartshorne, Residues and Duality. O]

Thus we see that the duality holds much more generally than just for MCMs. In fact,
one doesn’t even need R to be CM. Suppose R = S/I (not necessarily CM) where S is a
Gorenstein local ring with dim .S = dim R. Let Dg be a minimal injective resolution for S and
let Dr := Homg(R, Dg). Then the above theorem holds with D in place of D (without the
CM hypothesis).

10 The Frobenius functor

Throughout this section, when we say a ring R has characteristic p, we always mean p is a
(positive) prime integer. Recall that in such rings, (a + b)? = a? + b* for all a,b € R.

Definition 10.1. Let R be a ring of characteristic p. The ring homomorphism f : R — R given
by f(r) =rP for all r € R is called the Frobenius endomorphism (or simply, the Frobenius map)
on R.

Notation: Fore > 1, f¢: R — R be the map f composed with itself e times. Hence, f¢(r) = r?
for all 7 € R. For an ideal I and e > 1, we let Il denote the ideal generated by {i** | i € I},
i.e., the ideal generated by f¢(I) in R. For ease of notation and to avoid overuse of double
superscripts, we will often denote a power of p by ¢q. Thus, in the context of Frobenius map, ¢



will denote p¢ for some e. For example, instead of writing 7*° € IP"! for all e, we will often write
r4 e I for all q.

Tensoring along a ring homomorphism: Let ¢ : R — S be a ring homomorphism (of
any characteristic). For an R-module M and an S-module N, we let M ®, N denote the S-
module M ®g N, where N is viewed as an R-module via ¢. So (rm) ® n = m ® ¢(r)n for all
re Rom e M,n € N. And just as we consider M ®r N as an S-module through N, we view
M ®,4 N as an S-module through N as well. So for s € S we have s(m ® n) = m ® (sn). Of
course, this is how we normally interpret M ®xr N in the situation where S is an R-algebra.
However, this new notation becomes advantageous when we have multiple actions of R on S.
For example, when S = R, ¢ could be the identity map, the Frobenius map, or some other
endomorphism of R.

For an R-module homomorphism g : L — M, the map ¢ @1y : L&y N — M ®4 N given by
(9@ 1n)({®n) = g(f) ®n) is a homomorphism of S-modules. In this way for a fixed S-module
N, (—)®4 N is a covariant functor from the category of R-modules to the category of S-modules.

The Frobenius functor: Now let R be a ring of characteristic p and f : R — R be the
Frobenius map. The functor Fr(—) := (=) ®; R is a covariant functor from the category of
R-modules to itself and is called the Frobenius functor on R. For e > 1, F4(—) = (=) ® R is
the eth iteration of the Frobenius functor. Note that as F, is defined as a tensor product, it is
additive and right exact.

The Frobenius functor can be thought of this way: Let f : R — S be the Frobenius map,
where S = R. The Frobenius functor is simply base change with S (where S is viewed as an
R-algebra via f), followed by the forgetful functor where we ignore the R-action on S and recall
that S = R as rings (i.e., identifying the category of S-modules with the category of R-modules).

Lemma 10.2. Let R be a ring of characteristic p and FF, the eth iteration of the Frobenius
functor. Then

(a) For any free R-module G, F4(G) = G for all e > 1.

(b) Let ¢ : R™ — R™ be given by multiplication by the matriz A = (a;;). Then F&(¢) : R™ — R™

is given by multiplication by A4 .= (al), where ¢ = p°.

ij
(¢c) For an ideal I of R, F%(R/I) = R/,

Proof. 1t suffices to prove each part in the case e = 1. For (a), let f : R — S, where S = R. Let
G = ®,R. Then F(G) = GRrS = (B R)®rS = @,S. Since S = R, we see that Fr(G) = G.
For part (b), Fr(¢) : S™ — S™ is given by multiplication by the matrix (a;;)S = (aj;). Again
recalling S = R, we obtain that Fp(¢) is multiplication by APl. For part (c), this is just a
property of change of rings: Fr(R/I) = R/I @ S = S/IS. Note that IS = I as an ideal in
S. Identifying S with R, we obtain the desired result. O

We next want to show that applying F} to a finite free resolution of a finitely generated
R-module M yields a finite free resolution of F%(M). This is a powerful result with many
important consequences. To prove this, we first need a celebrated lemma from the thesis of
Peskine and Szpiro:

Proposition 10.3. [Peskine-Szpiro, Lemma d’acyclicité, 1972] Let (R, m) be a local ring and
T, a finite complex of finitely generated R-modules:

O—>Ts£>TS_1—>---f—1>T0—>O.



Suppose

(i) depthT; > i for alli;

(i1) Fori > 1, we have H;(T') = 0 or depth H;(T") = 0.
Then H;(T) =0 for all i > 1.

Proof. For each 1 < i < s, let C; = coker f;11 =2 T;/im f;y1. Let 1 < r < s. We'll prove by
descending induction on i that depth C; > ¢ and H;(T") = 0.

Base case: Suppose t = s. As fo11 =0, Cs = T. Hence, depth Cy = depth T; > s by assumption
(i). Also, Hy(T') = ker f; C T. Since depthTy > s > 1, any regular element on Ty is regular
on Hy(7T). Thus, depthHs(T) > 1. But by (ii), depthHy(7") = 0 or Hs(T) = 0. Therefore,
H,(T) = 0.

Inductive step: Suppose 1 < ¢ < s and depthCiy; > i+ 1 and H;1(7) = 0. Note that as
H; 1 (T) =0, im fi1o = ker f;y;. Thus,

Cit1 = Tipr/im fipo = Tiyi/ ker fiyy Zim fiyy C T
Hence, we have an exact sequence
0—=Cipn =T, —C; =0,

where the first (nonzero) map is the composition C; 11 = im f;11 < T;. Applying Homg(R/m, —),
we obtain the long exact sequence

- = Exth(R/m, T;) — Extly(R/m, C;) — Ext} (R/m, Ciq) — -+ .

Since depth T; > i and depth Cy; 1 > i+ 1, we have Extg%(R/m, T;) = Extgl(R/m, Ciy1) = 0 for
all j <i— 1. Hence, Extl,(R/m,C;) = 0 for all j < i — 1, which implies depth C; > i. Now let
K; = ker f;. Recalling that C;,1 = im f; 1, we have a short exact sequence

Since K; C T; and depthT; > i > 1, we see that depth K; > 1. (Any element regular on T; is
regular on K;.) Thus, Hompg(R/m, K;) = 0. Hence, we have an exact sequence

0 — Homp(R/m, H;(T)) — Extyp(R/m, Ciy1) — Extyp(R/m, K;) — - - .

Suppose H;(T') # 0. Then, by assumption (ii), depth H;(T") = 0. Thus, Homg(R/m,H;(T")) # 0.
From the last exact sequence, we obtain that Exty(R/m, Ci;1) # 0. This implies depth C;,; = 1,
contradicting that depth C;y1 > ¢ + 1 > 2. Thus, we must have H;(T") = 0.

[

Corollary 10.4. Let (R,m) be a local ring of depth r and suppose Fy is a complex of free
R-modules of finite rank

0O0—>F,—F,_ 14— —=F—=>F—=0

such that for all i > 1, H;(F') has finite length. If s < r then H;(F) =0 for alli > 1.



Proof. Note that for any (nonzero) free R-module G, depthG = depth R = r. Hence, as
r > s, depthF; > i for all 1 < i < s. Also, as H;(F) has finite length for all ¢ > 1, we
have depthH;(F) = 0 or H;(F) = 0 for all i« > 1. The conclusion now follows from Lemma
d’acyclicite. O

Theorem 10.5. Let (R, m) be a local ring of characteristic p and f : R — S the Frobenius map.
Suppose M is a finitely generated R-module of finite projective dimension and G4 a minimal free
resolution of M. Then

(a) Torf(M,S) =0 for all i > 0.
(b) Fr(G.) is a minimal free resolution of Fr(M).
(¢) pdg Fr(M) = pdp M.
(d) AsspFr(M) = Assgp M.
Proof. Suppose by way of contradiction that Tor(M,S) # 0 for some i > 1. Note that
Torf (M, S) = 0 for i > pdg M and let
pdr M
N = & Torf(M,S).
i=1
Observe that N is a nonzero finitely generated S-module. Let p € Ming N. Then N, # 0 and

dim N, = 0. Hence, N, has finite length (as an S,-module). Note that f ®r R, : R, — S,

is the Frobenius map for R, and that Torf”(Mp, S,) = Torf (M, S), has finite length for all
i 2 1. As pdp M, < co we can reset notation and assume Tor(M, S) has finite length for
all © > 1 and is nonzero for at least one such 7. Let T be a minimal free R-resolution of M.
Then F = T ®g S is a complex of finitely generated free S-modules, H;(F) = Tor(M, S) has
finite length for all ¢ > 1, and H;(F) # 0 for some i > 1. Furthermore, the length of the F' is
pdr M < depth R = depth S. By Corollary [10.4] H;(F) = 0 for all i > 1, a contradiction. This
proves (a).

By part (a), we have H;(Fg(Q)) = H;(G ®g S) = Tor®(M,S) = 0 for all i > 1. Also, Fr(G)
consists of finitely generated free R-modules in each degree. Thus, Fg(G) is a free R-resolution
of Hy(Fr(G)) = Fr(M). To see that it is minimal, note that since G is minimal,

(0; @ S)(G; ®r S) CmGi_1 @5 S = mP(Gi_1 @5 9)

for all i. Hence, Fr(9;)(Fr(G);) € mP Fr(G);_; for all i. This proves (b).

Part (c) follows immediately from (b). For (d), note that for any finitely generated R-
module N of finite projective dimension, m € Assg N if and only if pd; N = depth R. Thus,
for p € Spec R

p € Assgp M <= pR, € Assg, M,
pdg, M, = depth R,
pdg, Fr,(M,) = depth R,
pdg, Fr(M), = depth R,
pR, € Assp, Fr(M),
p € Assp Fr(M)

11vey



Corollary 10.6. Let R be a regular ring of characteristic p. Then F%, is an exact functor for
all e. Equivalently, f¢: R — R 1is flat ring homomorphism for all e.

Proof. 1t suffices to prove the case e = 1. Let f : R — S be the Frobenius map. We wish to
show S is a flat R-module. To show S is flat, Tor{'(M,S) = 0 for all R-modules M. In fact,
one just needs to show this for finitely generated R-modules M. (This is left as an exercise.) It
suffices to show Tor{%(M ,S)p = 0 for all prime ideals p. Thus, we may assume R is a regular
local ring, in which case M has finite projective dimension. Thus, Torf (A, S) = 0 by Theorem

0.5 O

Remark 10.7. The converse of the above Corollary is also true in a strong form: If f€ is a flat
ring homomorphism for some e > 1 then R is regular. This was proved by E. Kunz in 1969.
It was greatly generalized in a theorem by Avramov, Hochster, Iyengar and Yao published in
2012.

Lemma 10.8. Let f: R — S be a flat ring homomorphism.

(a) For any ideal I of R, | @ S = IS.

(b) For any finitely generated R-module M, Anng(M ®r S) = (Anng M)S.

(c) Let I and J be ideals of R, with J finitely generated. Then (I :g J)S = (1S :5 JS).

Proof. Applying — ®g S to the exact sequence 0 — I — R — R/I — 0, we have

0= T®rS5H S S/1S—0

is exact. Thus, ] ® g S =Zim f =kerg = IS.

For (b), let M = Rx1+ ---+ Rx,. Then there is an exact sequence 0 — R/ Anngp M Iy mm
given by f(1) = (x1,...,7,). Tensoring with S and noting that M ®p S is generated by
r1®1,---,x, ® 1, we obtain the desired result.

For part (c), let M = (J+I)/I. Then M is finitely generated and Anng M = (I :p J). By
(b), Anng(M ®@g S) = (I :g J)S. On the other hand, applying — ®r S to the exact sequence
0—1—1+J— M — 0 and using part (a), we have 0 = IS — (I + J)S - M ®r S — 0 is
exact. Thus, M ®r S = (IS + JS)/IS. Hence, Anng M ®r S = (IS :g JS). This completes
the proof.

O

Proposition 10.9. Let (R, m) be a reqular local ring of characteristic p and I an ideal of R.
Then

(a) For any v € R, (119 :p 29) = (I : 2) for all ¢ = p°.

(b) Assgp R/I = Assg R/I for all q. In particular, for any prime ideal P of R, Pl is P-
primary for all q.

Proof. Let ¢ = p°. Since R is regular, the Frobenius map f¢: R — S is flat. Since I.S = Il¢ for
all ideals I of R, we have by LemmaMthat (I:go)d =(I:g2)S = (IS :52S) =119 :529).
This proves (a). For (b), note that Fg(R/I) = R/IW by Lemma One now invokes part
(d) of Theorem [10.5] O



Definition 10.10. Let R be a ring and I an ideal of R. An element v € R is integral over [ if
there exists an equation of the form

u" " e qu T, =0

for some n and with r; € I for i = 1,...,n. The set of all elements integral over I is called the
integral closure of I and is denoted I.

Notation: For a ring R, let R’ :={c € R| c ¢ p for all p € Ming R}.
Remark 10.11. Let R be a ring and I an ideal of R. Then

(a) T is an ideal of R containing I.
(b) T=T.

(c) If R is Noetherian, then u € I if and only if there exists ¢ € R° such that cu™ € I for all
n sufficiently large.

Proof. See, for example, Integral Closure of Ideals, Rings, and Modules, by 1. Swanson and C.
Huneke. O]

Definition 10.12. Let R be a Noetherian ring of characteristic p and I an ideal. An element
u € R is in the tight closure of I, written u € I*, if there exists ¢ € R° such that cu? € Il9 for ¢
sufficiently large.

It is easily seen from the definition that I* is an ideal of R containing I. And by part (d) of
Remark [10.11] we have I* C I. It is left as an exercise to prove ([*)* = I* for any ideal I of R.
One of the most important properties comes from the following remarkable observation:

Theorem 10.13. Let (R, m) be a regular local ring and I an ideal of R. Then I = I* for every
tdeal I of R.

Proof. Let u € I*. Suppose u ¢ I. Then (I :g u) C m. Now by definition, there exists ¢ € R°
such that cu? € I'9 for all ¢ sufficiently large. By Proposition , for ¢ sufficiently large,
c€ (I g ut) = (I :g w)ld C mld C ma By Krull’s intersection theorem, this implies ¢ = 0, a
contradiction. [

We give an application to the containment problem for symbolic powers. Recall that for a
prime p in a Noetherian ring R, the nth symbolic power of p, denoted p™, is defined to be the
p-primary component of p”; equivalently, p(™ = ¢~ (p"R,) where ¢ : R — R, is the localization
map. It is elementary to see that p” C p™ for all n and that p(™p C p(™+) for all integers
n and m. In many cases, it is known that there exists an integer k& (depending on p) such that
p™) C p* for all n. However, it’s not always easy to find such a k (if it exists), and also answer
the question of whether there exists a single k which works for all primes p. However, there is
a satisfying answer for regular local rings containing a field which says that & may be taken to
be the height of the prime p. This was initially proved in the characteristic zero case by Ein,
Lazersfeld, and Smith in 2000. Hochster and Huneke proved the characteristic p case shortly
afterward:

Theorem 10.14. [Hochster-Huncke, 2002] Let (R, m) be a regular local ring of prime charac-
teristic and let p a prime of height h. Then for alln > 1, p"™ C p™. In particular, if d = dim R
the p4") C p™ for all n.



We first need a couple elementary facts:
Lemma 10.15. Let R be a Noetherian ring of characteristic p and I an ideal. Then
(a) For alln and q = p°, (I19)™ = (1)l
(b) If I is generated by ¢ elements then I C 19 for all q.

Proof. For (a), suppose I = (ay,...,a;). Then I'9 is generated by elements of the form a.
Hence, (I'9)™ is generated by monomials of the form (a;)?™ - - - (a,)?™ where my+- - - +my; = n.
On the other hand, I is generated by monomials of the form a}" ---a," such that ) . m; =
n. Then (I")l4 is generated by the qth powers of these monomials, which gives us the same
generators as for (Il4)".
For (b), let I = (ai,...,as). Note that I* is generated by monomials of the form u =
a' ---a"™ with 7, r; = {q. But this implies that 7; > ¢ for some j. Hence, u € (af) C Il
O

Proof of Theorem 10.14: We may assume p # (0). Let u € p"™ for some n. Let ¢ be given,
and write ¢ = an + r where a,7 € Z and 0 < r < n — 1. Then u® € (p"™)* C plahn) So
phnua C p(ahn+hn) C p(ahn—i-hr) _ p(hq)'

Claim: ph9) C pldl.

Proof of Claim: Note that Assg(p"® +pld) /pldd C Assg R/p4l = {p} by Proposition M(b)
Thus, it suffices to show the Claim holds locally at p. But pR,, is generated by h elements (as R,
is a RLR), so p"@ R, = (pR,)" C (pR,)14 = (pld)R, by Lemma . This proves the Claim.

Thus, we have p"u® € pl4l. Taking nth powers, we have p"*u"* € (pld)* = (p™)l4) by Lemma
10.15, As ¢ > na, we have p"u? € (p")@. Now, as R is a domain and p # 0, this implies

u € (p")* = p" by Theorem [10.13]

11 Completions

Let R be a ring and M an R-module. A filtration F = {M, },>0 of M is a descending chain of
submodules
M=My2 M 2M;2---.

Such a filtration induces an inverse system of R-modules
MMy € MM, 5 MMy -

where 7,(m+ M,) = m+ M,_; for all n. The completion M7 of M with respect to F is defined
by
M7 = lim M /M,

Recall that from Grifo’s 915 notes (Theorem 1.67) that

lim M/M, = {(m, + M,) € [ [ M/My, | mo(my + M) = mp 1 + M1, ¥ 0}

n=0

= {(mn + M,) € [ M/M, | my —mp_1 € My_y, ¥ n}.

n=0



For each filtration F there is a canonical map ¢}, : M — M7 given by ¢%;(m) = (m+M,,) 0.
If ¢f, is injective, i.e. N, M, = 0, then M is said to be separated with respect to F. If ¢&, is an
isomorphism, we say that M is complete with respect to F.

The following is an elementary exercise on inverse limits:

Lemma 11.1. Let M be an R-module and F = {M,} a filtration of M.
(a) If M,, =0 for some n then ¢, : M — M7 is an isomorphism.

(b) If F' = {M]} is a filtration of M which is cofinal with F, i.e., for all n there exists k such
that M! ., C M, and M,y C M}, then M7 = M.

Proposition 11.2. Let0 — A Iy B4 € = 0 be an exact sequence of R-modules and F = {B,,}
a filtration of B. Let F' = {f~*(B,)} and F" = {g(B,)} be the induced filtations of A and C,
respectively. Then R R R

0 A" =B 507" =0
18 exact.

Proof. Let M an R-module and G = {M,} a filtration of M. Let M9 := I1, M/M,, and define
d™ : MY — M9 by d™((myn+My)) = ((mn—mng1)+M,). One can check that d™ is a surjective
R-module homomorphism and ker d™ = M9. We then have the following commutative diagram

0— s A7 L pgr_ 9,07

ldg ldé lda

0— s A7 L pr_ 9,07

where f((a, + f7(Bn))) = ((f(an) + Bn)) and §((by + By)) = (9(ba) + g(Bn))). It is easily
seen that the rows are exact (one can check this component-wise). The result now follows by
the snake lemma.

]

Definition 11.3. Let M be an R-module and [ an ideal of R. Then F = {I"M},> is called the
I-adic filtration of M, and M := 1&1 M /1" M is called the I-adic completion of M. When there

is no possibility of confusion, we’ll denote M! by M. When the canonical map ¢4, - M — M is
an isomorphism, we say that M is I-adically complete.

Example 11.4. Let R = k[zy,...,x4) be a polynomial ring in d variables over a field k and
let m = (x1,...,24). Then the m-adic completion of R is the ring of formal power series
k[[x1,...,x4)]. The proof is left as an exercise.

Example 11.5. Let p be a prime integer. Then the (p)-adic completion of Z is the ring of
p-adic integers.

Remark 11.6. Let I be an ideal of R and f : M — N a surjective homomorphism of R-
modules. Then f : M! — N7 is surjective. This follows from Proposition since the image
of the [-adic filtration of M under f is the [-adic filtration on N. However, [-adic completion
need not be right exact, even over Noetherian rings. (Examples are difficult, though.) Also,
I-adic completion need not preserve injections. Consider the inclusion Z — Q and [ = 27Z.
Then Q = I&nQ/QQ =0, but Z! # 0. (One can see this by noting 21/2/21 = 7./27 # 0 using
the Proposition below.)



Proposition 11.7. Let M be an R-module and I and ideal. Let (/—\) denote the I-adic completion
functor.

(a) If N D I*M for some R-submodule N of M and some k > 0, then ]\7/7\7 = M/N.
(b) M/IFM = M/T*M for all k > 0.
(c) M is complete with respect to the filtration {]/”]\\/[}

Proof. Part (a) follows from part (a) of Lemma [11.1] since I*(M/N) = 0

For part (b), for each k > 0 we have an exact sequence 0 — I*M ERS VRN M/I*M — 0.
Let F = {I"M} be the I-adic filtration of M. Then ]:’ = {f YImM)} = {I"M N I"M}, is

cofinal with the I-adic ﬁltratlon of I* M. Therefore, [’“M = Tk) by part (b) of Lemma |[11.1]
By part (a), we have M/[k]\/[ >~ M/I*M. Thus, by Proposition |11.2] we have

0 — IEM — M — M/I*M — 0,
is exact. This proves (b). Part (c¢) follows from part (b) and the definition of completion. [

Remark 11.8. Let R be a ring and F = {I,} a filtration on R. Since the projection maps

: R/I, — R/I,_; are ring homomorphisms, it is easy to see that RF = LR/[" is a
(commutatlve) ring and the canonical map ¢% : R — RF is a rmg homomorphism. For any
R-module M and ideal I, it is straightforward to show that M M! is an R!-module. Thus, I-
adic completion is a (covariant) functor from the category of R-modules to the category of
R!-modules.

Proposition 11.9. Let R be a ring and I an ideal. Let (/—\) denote I-adic completion. Then
(a) For any R-module, Im.MC ™M for all m.

(b) For all nonnegative integers m and n, Im. [n C [min,

(c) T is contained in the Jacobson radical of R.

Proof. Note that M /I™M is an R/I™-module. Thus, M/[mM M/ImM is an R/Im = R/Im
module (where we have used (a) and (b) of Proposition . Thus, 1™ - M/ImM =0, and so
Im .M C ImM. This proves (a). Part (b) follows from (a ) by letting M = I".

To prove (c), it suffices to show that 1— z is a unit for every = € I. Solet z € I. By part (c)
of Proposition [11.7} the canonical map ¢ : R— L R/ I is an 1som0rphlsm It suffices to prove
¢(1—z) = (1 —x + I"), is a unit in LR/I“ Since z € I, #7 € (1) C I for all j by part (b)

Thus, the element u = (14+z+- - - 2" 14I7), € Jim m R/I". Then ¢(z)u = (1—z"+1"), = (14+1"),,
showing that ¢(x) is a unit.

]

We next show that, under the hypothesis that R is Noetherian, [-adic completion is exact
on the category of finitely generated R-modules. To prove this, we need the following important
result:



Theorem 11.10. [The Artin-Rees Lemma| Let R be a Noetherian ring, I an ideal, M a finitely
generated R-module and N a submodule of M. Then there exists an integer k such that

I"M NN =I" I"MnNN)
foralln > k.

Proof. Let I = (ay,...,a,) and t an indeterminate over R. Consider the subring of S =
Rlait, ... a,t] of R[t]. Setting degt = 1 and the degree of R equal to 0, we see that S is
a graded subring of R[t] generated over R by homogenous of elements of degree 1. As R is
Noetherian and S is a finitely generated R-algebra, we have that S is Noetherian. Observe that
the degree n component of S is I"t". Thus,

S=R[Itl=RelteI’*® .-

S is called the Rees ring of I. Now consider the module M[t] = M ®g R[t]. Then M][t] is a the
graded R[t]-module M ®MtHMt?*@®- - -. Of course, M|t] is also a graded S-module by restriction
of scalars. Note that N[t] is a graded S-submodule of M[t]. Let A be the S-submodule of M|t]
generated by the elements of M (i.e., the degree zero component of M[t]:

A:=R[I|]M =M ®IMt® PMt* @ -- -,

which is called the Rees module of I and M. Since M is a finitely generated R-module, A
is a finitely generated S-module and thus is Noetherian (as an S-module). Now consider the
S-module B = AN NJt]. Then

B=M&(IMNON)t®(I*PMON)}---.

Since A is a Noetherian S-module and B is an S-submodule of A, we obtain that B is finitely
generated as an S-module. As B is graded, B can be generated over S by finitely many homo-
geneous elements, say ut™, ..., upt™. Without loss of generality, we may assume m; < m;yq
for all i. Let k = my. We claim that I"M NN = I""*(I*M N N) for all n > k. It is easy to see
that I"*(I*"M N N) C I"M NN. Let u € I"M N N where n > k. Then ut® € B. Thus, we
can write ut” in terms of the homogeneous generators of B as an S-module. Hence, there exists
sit"~™i e S for i =1,...,¢ such that

ut = (spt" ") (ugt™) + - -+ (st (ugt™)
= (squy + - - + spup)t"

Hence, u = sjuy + - - - + spup. Now, as s;t"" " € S, we have s; € ["™™ for each 7. Similarly, as
u;t™ € B, we have u; € I"™"M N N. Consequently,

l
we I"M(I™MAON).

i=1
But since ["(IPM N N) C I""(IP™' M N N) for all integers r and p, we have
mmi(I™MAN) C I (™ MNON)=I"""I*"MnNN).

Therefore, u € I"*(I*M N N).



Theorem 11.11. Let R be Noetherian and I an ideal of R. Let (/—\) denote I-adic completion.
Suppose 0 - A — B — C' — 0 is an exact sequence of finitely generated R-modules. Then

0—>E—>§—>@—>0
15 exact.

Proof. By identifying A with its image in B, we may assume A is a submodule of B. The
I-adic filtration of B induces the filtration {I"B N A} on A, which is cofinal with the I-adic
filtration of A by the Artin-Rees lemma. Applying Proposition we obtain the desired exact
sequence. ]

Proposition 11.12. Let R be a Noetherian rmg, I an ideal ofR and( ) the I-adic completion
functor. For any finitely generated R-module, R Qpr M = M.

Proof. Let F'= R" be a finitely generated free R-module. Then
F=lim F/I"F = PlimR/I" = (R)" = Rop R" = Rop F.

Now let M be a finitely generated R-module and F' — G — M — 0 a presentation of M by
finitely generated free R-modules. Then we have a commutative diagram

—~

s M > 0

)

F >

B

}A%®RF—> §®RG—> E@RM—> 0

(a3

<—

where the top row is exact by Theorem [11.11} By a diagram chase, there exists a unique
map ¢ : M — R ®gr M which makes the diagram commute. By the Five Lemma, 1 is an
isomorphism. O

Lemma 11.13. Let R be a ring and M an R-module. Then M is flat if and only if for every
tdeal I of R, the map I @ M — R ®gr M 1is injective.

Proof. The “only if” direction is clear. Suppose [ ®g M — R ®g M is injective for every

ideal T of R. Let 0 — A L B be an injective homomorphism of arbitrary R-modules and let
K =ker f®1,,. We wish to show K = 0. As it suffices to show K,, = 0 for every maximal ideal
of R, we may assume R is a quasi-local ring with maximal ideal m. Let E = Er(R/m) and
(—)" = Hompg(—, F). Applying (—)¥ to the exact sequence 0 - K - A®r M — B ®r M, we
have (B®gr M)" = (A®r M)" — K¥Y — 0 is exact. By adjunction, this sequence is naturally
isomorphic to

Hompg(B, M") — Hompg(A, MV) - KY — 0.

By assumption, K = 0 when B = R and A = [ is an ideal of B. Hence, Homg(R, M) —
Homp(I, MV) — 0 is exact for all ideals I of R. Equivalently, Exty(R/I, M") = 0 for all ideals
I. By Baer’s Criterion, this means that MV is injective. Hence, Homg(B, MY) — Hompg(A, M")
is surjective. Therefore, KV = 0, which implies K = 0. Hence, M is flat.

m

Corollary 11.14. Let R be a Noetherian ring, I an ideal, and R the I-adic completion of R.



(a) R is a flat R-module.
(b) R is faithfully flat if and only if I is contained in the Jacobson radical of R.

Proof. Let J be an ideal of R. Then 0 — J — R is exact by Theorem Thus, 0 —
R®pJ — R®gpR by Proposition . Thus, R is flat by Lemma .
For part (b), suppose [ is contained in the Jacobson radical of R. Let m be a maximal ideal
of R. Then L -
R/mR= R®gr R/m = R/m = R/m,

where the last isomorphism is by part (a) of Proposition . Thus, mR # R for all maximal
ideals m of R. Hence R is faithfully flat over R. (See Exermse 61 of Grifo’s 915 Notes.)
Conversely, suppose [ is not contained in some maximal ideal m of R. Then I™ +m = R for all

n. Hence, ﬁ/mﬁ’i’]?/f\n%’l'&lﬁ’/(]”—i-m):o, so mR = R. O

Convention: For the rest of this section, we will narrow our focus to the situation where (R, m)

is a local ring and (—) denotes the m-adic completion functor. In this context, when we say a
ring or a module is complete, we mean complete with respect to the m-adic filtation.

Lemma 11. 15 Let (R, m) be a local ring, J an ideal, and M a ﬁmtely generated R-module.
As above, let ( ) denote m-adic completion. Then JM = JM = JM.

Proof. Tensormg the exact sequence 0—J — R— R/J — 0 with R we obtain the - exact
sequence 0 — J— R — R/JR — 0. From this, we deduce that JR = J. Hence, JM =
JRM = JM. Now applying (—) ®3 M to the second exact sequence above, we obtain

f@;z]\?%z\?%ﬁ/m%o,
where here we have used that
R/J®: M= (R/J®rR)®z(R®r M)~ Ror R/J @r M = M/JM.

From the exact sequence, we conclude that JM = JM. O

Proposition 11.16. Let (R, m) be a Noetherian local ring. Then R has a unique maximal ideal,
namely m = mR. Furthermore:

(a) m"R = ()" = m" for all n;
(b) ﬁ/fﬁ” = R/m" for all n.
(c) m™/m" Tt 2 m" /m™*L for all n.

(d) R is complete with respect to the m-adic topology.

.9, m is contained in the Jacobson radical of R. Hence, m is the unique maximal

Proof. As R/ = % = R/m is a field, we see that m is a maximal ideal of R. By part (c) of
Proposition
ideal of R.

Part (a) follows from Lemma and induction (with J =m and M = m"™1).



For part (b), observe that
R/m" = R/mh = R/m = R/m"

with the last isomorphism following from part (a) of Proposition m
For part (c), note that

A2 i S [t 2
Finally, part (d) follows immediately from Proposition [L1.7(c). O
Theorem 11.17. Let (R, m) be a local ring. Then R is local.

Proof. As we already have proved R has a unique maximal ideal, it suffices to prove that R is
Noetherian. See Theorem 10.26 of Atiyah-Macdonald. [

Proposition 11.18. Let (R, m) be a local ring and M a finitely generated R-module.
(a) If diim M =0 then M = M.

(b) If R is complete then M=~M. In particular, R/ is a complete local ring for any ideal I of
R.

Proof. For part (a), we have m"M = 0 for some n. Hence, M = M by Lemma m(a). For
part (b), as R is complete, R = R. Thus, M ® RQr M = R®r M = M. O

Theorem 11.19. Let (R, m) be a local ring and M a finitely generated R-module. Then
(a) dim M = dim M.
(b) BE(M) = BE(M) for all i.

—

(c) pi(m, M) = p;(m, M) for all i.
(d) depthy M = depthy M.

(e) idg M =idz M.

(f) pdp M =pdz M

(9) nr(M) = pp(M).

Proof. Note that k := R/m = R/m ®r R = R/i. Hence, as R is faithfully flat over R,
Ar(N) = Aa(N®g R) for any R-module N of finite length. Likewise, if mN = 0, then dim, N =

o~

dim; N ®r R. Hence for all i we have
dimy Tor®(k, M) = dimy Tor®(k, M) @ R = dimy, Tor?(k, M).
Similarly, for all ¢

dimy, Extly (k, M) = dimy, Extly(k, M) ® R = dimy, Ext’(k, M).



Parts (b)-(f) follow.
Part (g) follows from

pr(M) = dimy, M/mM = dimy, M/mM = dimy M /mM = dimy, M /@M = puz(M).

For part (a), one approach is to use that dim M = sup{i | H’ (M) # 0}, where H’ (M) is
the ith local cohomology module of M with support in m. As R is flat over R and using the
change of rings principle, H’ (M) ®p R = H' (M) = H. (M) for all i. As tensoring with R is
faithful, we have

dim M = sup{i | H. (M) # 0} = sup{i | H:, (M) # 0} = dim M.

Alternatively, one can use the fact that dim M is the degree of the polynomial (called the
Hilbert polynomial of M) which coincides with Ag(M/m"M) for n sufficiently large. Since
Ar(M/m™M) = )\ﬁ(]/\Z/ﬁ@"]\/i) for all n (see the remarks at the beginning of this proof), M and
M have the same Hilbert polynomial. Thus, dim M = dim M.

Corollary 11.20. Let (R, m) be a Noetherian local ring and M a finitely generated R-module.
Then

(a) M is CM (resp., MCM) if and only if M is CM (resp., MCM).

(b) R is Gorenstein if and only zfﬁ 1s Gorenstein.

(¢) R is regular local ring if and only if Risa reqular local ring.

(d) edim R = edim R.

(e) M is a canonical module for R if and only if]\//f s a canonical module for R.

Proof. All of these follow immediately from Theorem and the definitions. O]

]

We end this section with a statement of the Cohen Structure Theorem for complete local
rings (without proof). A proof can be found in Matsumura’s Commutative ring theory or in
Cohen’s original paper. Recall that every local domain (R, m) falls into one of three categories:

(i) char R = 0 and char R/m = 0.
(ii) char R = p > 0 and char R/m = p.
(iii) char R = 0 and char R/m = p.

An example of a local domain of type (i) or (ii) is any field k of characteristic 0 or p. An
example of type (iii) is Z,). Local domains of type (i) and (ii) are called equicharacteristic local
domains, while those of type (iii) are called mized characteristic. 1t is easily proved that a local
domain is equicharacteristic if and only if it contains a field.

Theorem 11.21. (Cohen Structure Theorem) Let R be a complete local ring. Then

(a) R=S/J for some complete reqular local ring S and ideal J.



(b) Let (S,n) be a complete reqular local ring of dimension d. Then:

(i) If S contains a field then S is isomorphic to a formal power series ring in d variables
over a field.

(ii) If char S = 0 and char S/n = p > 0 and p € n?, then S is isomorphic to a formal
power series ring in d — 1 variables over a complete DVR V' and where the maximal
tdeal of V' is generated by p.

(iii) If char S = 0 and char S/n = p > 0 and p € n?, then S is isomorphic to a quotient of a
formal power series ring in d variables over a complete DVR by a nonzero polynomial.

Remark 11.22. Complete regular local rings of types (i) and (ii) above are called unramified.
Those of type (iii) are called ramified.

Corollary 11.23. Let (R, m) be a complete local ring. Then R is catenary.

Proof. Recall that CM local rings are catenary (Corollary and that regular local rings are
CM. As quotients of catenary rings are catenary, we have that any complete local ring is catenary
from part (a) of the Cohen Structure Theorem. O

Corollary 11.24. A complete CM local ring possesses a canonical module.

Proof. We've proved that CM local rings which are the quotient of a Gorenstein ring possess
canonical modules (Theorem|9.16]). As regular local rings are Gorenstein, the result follows from
part (a) of the Cohen Structure Theorem. O

Example 11.25. Let R = Clz,y]/(y* — 2*(z + 1)) and m = (x,y)R. It is easily seen that
y* — 2%(z + 1) is irreducible in C[z, y], and so R is a domain. Let R be the m-adic completion of
R. Then R =~ C[[z,y]]/(y* — 22(x + 1)). Using the binomial series, one obtains that vz + 1 €
C[[z]] € C[[z,y]]. Thus 3 — 2%(z + 1) = (y — 2v/z + 1)(y + 23/7 + 1) in C[[z,y]]. Hence, R is

not a domain.

Remark 11.26. In fact, there are examples of local domains R such that R is not even reduced.
Examples of this behavior can be found in Nagata’s Local Rings and in a paper by Ferrand and
Raynaud.
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Exercises

Math 906
Homework # 1

. Let (R,m) be a local PID which is not a field. (Such rings are called discrete valuation

rings or DVRs for short.) Prove that Er(R/m) = Q/R, where @ is the field of fractions of
R. (Hint: Let m = (x). First show that @ = R,. Then show that R/m can be naturally
embedded in Q/R.)

Let R be aring, I an ideal of R, and M an R/I-module. Prove that Homg(R/I, Er(M)) =
Eri(M).

Let R be a local ring which has a non-zero finitely generated injective module E. Prove
that R is Artinian (equivalently, dim R = 0). (Hint: First, one can assume that E is
indecomposable. Using the previous exercise, one can reduce (with some work) to the case
that R is a domain and E = Er(R/m).)

. Let (R, m) be a local ring and suppose R is injective. Prove that R = Er(R/m).

Let R = k[x,y](s,y) Where k[z,y] is a polynomial ring over a field k. Let Q = k(x,y) be
the field of fractions of R. Prove that /R is divisible but not injective. (Hint: Show
that there exists an R-module M such that Ext%(M, R) # 0. For instance, you can let
M = R/(z,y) and use the Koszul complex on = and y; alternatively, one can let M = R/I
as in Example 5.26 of Grifo’s 915 notes and use the resolution there.)

Let R be a Noetherian ring and M an R-module. Prove that the following are equivalent:

(a) M is injective;

(b) M, is injective for all prime ideals p;

—~

c) M, is injective for all maximal ideals m.

Let R be a Noetherian domain (but not a field) which is locally a DVR at every nonzero
prime ideal. (Such rings are called Dedekind domains.) Prove that every divisible R-
module is injective.

Give an example of a Noetherian ring R and a nonzero injective module I such that

Anng I # 0.

. Show that Anng ER(R/m) = 0. (Hint: You may use that for any nonzero R-module M,

Hompg(M, Egr(R/m)) # 0 — something we’ll eventually show in class.)



Math 906
Homework # 2

Note: All rings are assumed to be commutative with identity. Local rings are assumed to be
Noetherian.

1. Let k be a field and R = k[x](,). Prove p(m, R) = 1 where m = (z)R.

2. Let M be a finitely generated R-module and I an ideal such that IM = M. Prove that
there exists s € I such that (1 — s)M = 0. (Hint: There are at least two approaches:
one uses the determinant trick (see Grifo’s 905 notes, Lemma 1.34) and the other uses
localization together with Nakayama’s lemma to show I + Anng M = R.)

3. Let (R, m) be a local ring such that pdz R/m < co. Prove that idg M < oo for all finitely
generated R-modules M.

4. Let k be a field and R = k[x,y, z]. Prove that x,y — zy, 2z — zx in an R-sequence but
y —xy, 2 — zx, T is not an R-sequence.

5. Let (R, m) be a local PID which is not field and let m = (x). Consider the ring S = R[y],
where y is a variable. Prove that {z,y} and {1 — zy} are both maximal S-sequences.

6. Let (R, m) be a local ring and M a finitely generated R-module. Suppose z € m is a
regular element on M. Prove that idg M = idg M /xM.

7. Let ¢ : R — S be a faithfully flat ring homomorphism, M an R-module, and x = 24, ..., 2,
an M-sequence. Prove that ¢(x) is a M ®p S-sequence.

8. Let R be a Noetherian ring and p € Spec R. Prove that htp > gradep. (Hint: You
may use the following consequence of Krull’s Principal Ideal Theorem: for any x € p,
ht(p/(x)) = ht(p) — 1 with equality if z is not contained in any minimal prime of R; cf.
Theorem 8.17 of Grifo’s 905 notes.)



Math 906
Homework # 3

Note: All rings are assumed to be commutative with identity. Local rings are assumed to be
Noetherian.

1. Let R be a Noetherian ring, x = xy,...,x, € J(R), and M a finitely generated R-module.
Suppose H;(x; M) = 0 for some ¢ > 1. Prove that H;(x; M) = 0 for all j > 4.

2. Let R be a Noetherian ring, x = x1,...,z, € J(R), and M a (nonzero) finitely generated
R-module. Let I = (x). Prove that

grade(I, M) =n — sup{i | H;(x; M) # 0}.

(Hint: Use induction on grade(/, M'). Corollary 4.15 and Proposition 4.16 are useful here.)

3. Let (R, m) be a Cohen-Macaulay local ring and I = (z1,...,x,) € m. Suppose ht(I) = n.
Prove that x4, ..., z, is a regular sequence.

4. Let (R,m) be a local ring of dimension d and I an ideal of R. Prove that there exists
Ty, ... x4 € I suchthat vI = \/(z1,...,24). (Hint: By induction, show that for 1 <i < d
there exists z1, ..., x; € I such that for all primes p of height at most i—1,ifp D (z1,...,x;)

then p D I.)

5. Let (R,m) be a local UFD. Suppose f,g € m. Prove that {f, g} is an R-sequence if and
only if ged(f, g) = 1.

6. Decide whether the following rings are CM (assume that £ is a field and that all the rings
below are localized at the “obvious” maximal ideal):

(a) klr,y,2]/(a* —yz, =)
(b) klz,y,z]/(zz2,y2)
(©) K[z, y,z,wl/(z,y) O (z,w)

7. Give an example of an ideal I in a Noetherian ring R and prime ideal p such that
grade(l,, R,) > grade(I, R).

8. Let R be a Noetherian ring, x € R, and M a finitely generated R-module. Let I =
Anng M/xM. Prove that the set {p € Spec R | x is an M,-sequence} is an open subset of
V(I). (Hint: the Koszul complex may be helpful here.)



Math 906
Homework # 4

Note: All rings are assumed to be commutative with identity. Local rings are assumed to be
Noetherian.

1. Prove that if R is a Gorenstein ring so is R[x1, ..., z,].
2. Prove that if R is a regular ring so is R[x1,...,2,).

3. Let R be a Noetherian regular ring of infinite dimension. (Nagata has shown such rings
exist.) Let M be a finitely generated R-module. Prove that pdy M < oco. (Hint: Let M
be a finitely generated R-module. For each n > 0, show that the set of all primes such
that pdg M, < n is an open subset of Spec R. This gives us an increasing chain of open
sets whose union is Spec R as R is regular. Now use that Spec R is Noetherian.)

4. Let R be a Noetherian regular ring of infinite dimension. Show that there exists an R-
module M such that pd; M = oc.

5. Let R be a Noetherian ring and M an R-module. Prove that fdp M < pdy M with equality
if M is finitely generated. (Here, fdg M denotes the flat dimension of M, i.e., the length
of the shortest resolution of M by flat modules.)

6. Let R be a Noetherian ring. Prove that gl-dim R < n if and only if fdg M < n for all
R-modules M.

7. Let (R, m) be a zero-dimensional local ring. Prove that R is Gorenstein if and only if
(0:r (0:5 1)) =1 for all ideals I of R.

8. Let (R.m) be a local ring. An ideal I is called perfect if pdy R/I = grade I.

(a) Let I be an ideal. Prove that grade I < pdy R/I. (Theorem 3.16 is helpful here.)

(b) Assume R is CM and pdp R/I < oco. Prove that [ is perfect if and only if R/I is
CM.



Math 906
Homework # 5

Note: All rings are assumed to be commutative with identity. Local rings are assumed to be
Noetherian.

1. Decide whether the following ring is normal: Clz,y, z]/(2° + v° + 2°). Is 2° + y° + 2°
irreducible in C[z,y, 2]? Why or why not?

2. Let R be an Artinian ring and let pq,...,p, be its prime ideals. Prove that R = R, X
-+ X R, . (Hint: Use CRT.)

3. Let D be a Dedekind domain. Prove that every ideal of D can be generated by two
elements. (Hint: For any nonzero a € I, R/(a) is an Artinian ring.)

4. Prove that a Noetherian ring R satisfies S,, if and only if R, is CM for all primes p such
that depth R, < n.

5. Prove that a regular ring is isomorphic to a finite product of regular domains. (Hint: See
Theorem 8.7.)

6. Let S = R[z,y]/(2* + y* — 1) (the coordinate ring for the real circle). Define f : S — S?
by f(s) = (s¥,sy). Let P = coker f. Prove that P is free.

7. Let (R,m) C (S,n) be local rings. Suppose R is an RLR and S is finitely generated as
an R-module. Prove that S is CM if and only if S is a free R-module. (Hint: Use the
hypothesis to show that depthp S = depthgS. Then apply the Auslander-Buchsbaum
formula.)

8. Let R be a Noetherian ring such that every finitely generated R-module has an FFR.
Prove that R is a UFD. (Hint: Use Problem #5, Propositions 8.17 and 8.24, and Theorem
8.28.)



Math 906
Homework # 6

Note: All rings are assumed to be commutative with identity. Local rings are assumed to be
Noetherian.

1. Let R be a d-dimensional CM local ring with canonical module wg. Suppose M is a an
R-module of finite length. Prove that Ag(M) = Ag(Ext%(M, wg)).

2. Let R be a CM local ring with canonical module wg. Prove that the following are equiv-
alent:

(a) R is Gorenstein.

(b) For every finitely generated R-module M there exists a surjection w}, — M for some
n.

3. Let (R,m, k) be a CM local ring with canonical module wg. Suppose M is a finitely
generated MCM which has finite injective dimension. Prove that M = w} for some n.
(Hint: Let n = r(M) = pur(MT) by Corollary 9.21. Then there exists an exact sequence

0 -+ K — R* — M' — 0. This gives a s.e.s. O—)M&wﬁ—)KT—)O. Let x be a
maximal R-sequence. Show that ¢ ®p R/(x) is an isomorphism.)

4. Let (R, m, k) be a Gorenstein local ring and M a finitely generated R-module. Prove that
pdp M < oo if and only if idg M < oo. (Hint: For the backward direction, induct on
dim R — depth M. Use the previous problem for the base case. If M is not MCM, let
0 —- K — R" — M — 0 be exact. Show that depth K = depth M + 1.)

5. Let ¢ : (R,m,k) — (S,n,¢) be a faithfully flat homomorphism of CM local rings. (In
particular, this implies mS C n.) Let C be a finitely generated R-module such that
C ®p S is a canonical module for S. Prove that C' is a canonical module for R. (Hint:
Start by localizing at a prime minimal over mS to reduce to the situation that mS is
n-primary. Then S/m.S is a finite length S-module. Lemma 2.22 is useful.)

6. Let (S,n, k) be a regular local ring and I an ideal such that R := S/I is CM. Prove that
Homp(wg, R) = Tor; (R, R) where t = pdg R. (Hint: Use Corollary 9.17.)
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