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DETECTING FINITE FLAT DIMENSION OF MODULES
VIA ITERATES OF THE FROBENIUS ENDOMORPHISM

DOUGLAS J. DAILEY, SRIKANTH B. IYENGAR AND THOMAS MARLEY

It is proved that a module M over a Noetherian ring R of positive characteristic p has finite flat dimension
if there exists an integer t > 0 such that TorR

i (M, f e
R)= 0 for t 6 i 6 t + dim R and infinitely many e.

This extends results of Herzog, who proved it when M is finitely generated. It is also proved that when
R is a Cohen–Macaulay local ring, it suffices that the Tor vanishing holds for one e > logp e(R), where
e(R) is the multiplicity of R.

1. Introduction

The Frobenius endomorphism f : R→ R of a commutative Noetherian local ring R of prime characteristic
p is an effective tool for understanding the structure of such rings and the homological properties of
finitely generated modules over them. A paradigm of this is a result of Kunz [13] that R is regular if and
only if f e is flat for some (equivalently, every) integer e > 1. Our work is motivated by the following
module-theoretic version of Kunz’s result:

There exists an integer c such that for any finitely generated R-module M the following statements are
equivalent:

(1) The flat dimension of M is finite.

(2) TorR
i (M, f e

R)= 0 for all positive integers i and e.

(3) TorR
i (M, f e

R)= 0 for all i > 0 and infinitely many e > 0.

(4) TorR
i (M, f e

R)= 0 for depth R+ 1 consecutive values of i > 0 and some e > c.

Peskine and Szpiro [16] proved (1)⇒(2), Herzog [10] proved (3)⇒(1), and Koh and Lee [12] proved
(4)⇒(1). Recently, the third author and M. Webb [15, Theorem 4.2] proved the equivalence of condi-
tions (1), (2), and (3) for all R-modules, even infinitely generated ones. In their work, the argument
for (3)⇒(1) is quite technical and heavily dependent on results of Enochs and Xu [8] concerning flat
cotorsion modules and minimal flat resolutions.

In this work we give another proof of [15, Theorem 4.2] that circumvents [8]; more to the point, it
yields a stronger result and sheds additional light also on the finitely generated case. See [1] for the
definition of the flat dimension of a complex.

Theorem 1.1. Let R be a Noetherian local ring of prime characteristic p and M an R-complex with
s := sup H∗(M) finite. The following conditions are equivalent:
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(1) The flat dimension of M is finite.

(2) TorR
i (M, f e

R)= 0 for all i > s and e > 0.

(3) There exists an integer t > s such that TorR
i (M, f e

R) = 0 for t 6 i 6 t + dim R and for infinitely
many e.

Moreover, when R is Cohen–Macaulay of multiplicity e(R), it suffices that the vanishing in (3) holds for
one e > logp e(R).

This result is proved in Section 3. The key element in our proofs is the use of homotopical Loewy
lengths of complexes, in much the same way as in the work of the second author and Avramov and
C. Miller [4, Section 4]. Using rather different methods, Avramov and the second author [2] have proved
that the last part of the theorem above holds without the Cohen–Macaulay hypothesis, but with a different
lower bound on e.

2. Homotopical Loewy length

In this section we collect results on homotopical Loewy length, and their corollaries, needed in our
proof of Theorem 1.1. Throughout (R,m, k) is a local (this includes commutative and Noetherian) ring,
with maximal ideal m and residue field k; there is no restriction on its characteristic. We adopt the
terminology and notation of [4, Section 2] regarding complexes and related constructs. In particular,
given R-complexes M and N , the notation M ' N means that M and N are isomorphic in D(R), the
derived category of R-modules.

The Loewy length of an R-complex M is the number

``R(M) := inf{n ∈ N |mn M = 0}.

Following [3, 6.2], the homotopical Loewy length of an R-complex M is the number

``D(R)(M) := inf{``R(V ) | M ' V in D(R)}.

Given a finite sequence x ⊂ R and an R-complex M , we write K[x;M] for the Koszul complex on x,
with coefficients in M . The result below extends, with an identical proof, [4, Proposition 4.1] and [3,
Theorem 6.2.2], which deal with the case when x generates m.

Proposition 2.1. Let x be a finite sequence in R such that `R(R/x R) is finite. For each R-complex M
there are inequalities

``D(R) K[x;M] ≤ ``D(R) K[x; R]<∞.

Proof. Let I = (x) and K = K[x; R]. For each i , consider the subcomplex C i of K

· · · → I i−2K2→ I i−1K1→ I i K0→ 0.

Since I i annihilates K/C i and I is m-primary, it follows that ``R(K/C i ) is finite for each i . There
exists an r such that C i is acyclic for all i > r ; see [7, Proposition]. Thus, for i > r the natural map
K → K/C i is a quasi-isomorphism, and hence the homotopical Loewy length of K is finite. The
inequality ``D(R)(K ⊗R M)6 ``D(R)K can be verified exactly as in the proof of [4, Proposition 4.1]. �



DETECTING FINITE FLAT DIMENSION OF MODULES 73

The following invariant plays an important role in what follows:

c(R) := inf{``D(R) K[x; R] | x is an s.o.p. for R}.

Proposition 2.1 yields that c(R) is finite for any R. For our purposes, we need a uniform bound on c(Rp),
as p varies over the primes ideals in R. We have been able to establish this only for Cohen–Macaulay
rings; this is the content of the next result, where e(R) denotes the multiplicity of R.

Lemma 2.2. Let (R,m, k) be local ring with k infinite. If R is Cohen–Macaulay, there is an inequality
c(Rp)6 e(R) for each p in Spec R.

Proof. By a result of Lech [14], one has e(R)> e(Rp) for all p ∈ Spec R. Moreover, it is easy to verify
that since k is infinite, so is k(p) for each p. It thus suffices to verify that c(R)6 e(R).

Let x be a s.o.p. of R that is a minimal reduction of m. This exists as k is infinite; see [11, Proposi-
tion 8.3.7]. Then there are inequalities

e(R)= `R(R/(x))> ``R(R/(x))= ``D(R) K[x; R]> c(R).

For the first equality see, for example, [11, Proposition 11.2.2], while the second equality holds because
K[x; R] ' R/(x); both need the hypothesis that R is Cohen–Macaulay. �

Lemma 2.2 bring up the question below; its import for the results in this paper will become apparent
in the proof of Theorem 1.1.

Question 2.3. Is sup{c(Rp) | p ∈ Spec R} finite for any Noetherian ring R?

The proof of Lemma 2.2 is unlikely to help answer this question.

Remark 2.4. Let x be a finite sequence in a local ring (R,m, k). Since the ideal (x) annihilates
H∗(K[x; R]), it is immediate from definitions that there is an inequality

``R(R/(x))≤ ``D(R) K[x; R].

Equality holds if x is a regular sequence, for then R/(x) ' K[x; R]; this is the main reason for the
Cohen–Macaulay hypothesis in Lemma 2.2. The inequality can be strict in general. For example, if
(x)=m, then ``R(R/m)= 1, but ``D(R) K[x; R] = 1 exactly when R is regular; see [3, Corollary 6.2.3].

Here is an example where the inequality is strict for x a s.o.p.
Let R := k[|x, y|]/(xn y, y2), where n > 1 is an integer. The residue class of x in R is a s.o.p., and

the Loewy length of R/(x) equals 2. We claim that the homotopical Loewy length of K[x; R] is n+ 1.
Indeed, the subcomplex

A := 0→ (xn)→ (xn+1)→ 0

of K[x; R] is acyclic, so one has K[x; R] '−→ K[x; R]/A. Since

K[x; R]/A = 0→
R

(xn)
→

R
(xn+1)

→ 0

and the Loewy length of this complex is n+ 1, it follows that ``D(R)(K[x; R]) 6 n+ 1. On the other
hand

H1(K[x; R])= (xn−1 y)⊂ R.
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Say K[x; R] ' V for an R-complex V . As K[x; R] is a finite complex of free R-modules there exists a
morphism f : K[x; R] → V of R-complexes with H∗( f ) bijective. The map f1 : K1 = R→ V1 satisfies

0 6= f1(xn−1 y)= xn−1 y f (1).

It follows that xn−1 y · V1 6= 0, and hence that ``R V > ``R(V1)> n+ 1.

As in [4, Proposition 4.3(2)] one can apply Proposition 2.1 to local homomorphisms to obtain an
isomorphism relating Koszul homologies.

Proposition 2.5. Let (S, n, l) be a local ring, let y ⊂ S be a finite sequence such that the ideal ( y) is n-
primary, and set c := ``D(S) K[ y; S]. If ϕ : (R,m, k)→ (S, n, l) is a local homomorphism with mS ⊆ nc,
then for each R-complex M , there exists an isomorphism of graded k-vector spaces

TorR
∗
(M, K[ y; S])∼= TorR

∗
(M, k)⊗k H∗(K[ y; S]). �

We also need the following routine computation.

Lemma 2.6. Let ϕ : R → S be a homomorphism of rings and let y = y1, . . . , yd be a sequence of
elements in S. Let M be an R-complex and t an integer such that TorR

i (M, S)= 0 for t 6 i 6 t+d. Then
TorR

t+d(M, K[x; S])= 0. �

Applied to an appropriate composition of the Frobenius endomorphism the next result yields an ana-
logue of [12, Proposition 2.6] for complexes. The number of consecutive vanishing of Tor required in
the case of modules is not optimal (dim R+ 1 as compared to depth R+ 1 in [12]), but the proof we give
applies to complexes whose homology need not be finitely generated.

Lemma 2.7. Let ϕ : (R,m, k)→ (S, n, l) be a homomorphism of local rings such that ϕ(m)⊆ nc(S). Let
M be an R-complex. If an integer t satisfies TorR

i (M, S)= 0 for t 6 i 6 t + dim S, then

TorR
t+dim S(M, k)= 0.

If moreover the R-module H(M) is f.g. and t ≥ sup H(M)− dim S, the flat dimension of M is at most
t + dim S.

Proof. Set d := dim S and let y be an s.o.p. of S such that c(S)= ``D(S) K[ y; S]. The hypothesis on ϕ and
Lemma 2.6 yield TorR

t+d(M, K[ y; S])= 0. It then follows from Proposition 2.5 that TorR
t+d(M, k)= 0,

since H0(K[ y; S]) 6= 0.
Given this, and the additional hypotheses on H(M) and t , the desired result follows from the existence

of minimal resolutions; see [1, Proposition 5.5(F)]. �

3. Finite flat dimension

This section contains a proof of Theorem 1.1. In preparation, we recall that an R-complex has finite flat
dimension if it is isomorphic in D(R) to a bounded complex of flat R-modules. The following result is
[6, Theorem 4.1].

Remark 3.1. Let R be a Noetherian ring and M an R-complex. If there is an integer n>supH∗(M)+dim R
with TorRp

n (Mp, k(p))= 0 for all p ∈ Spec R then the flat dimension of M is finite.
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In what follows, given an endomorphism f : R→ R and an R-complex M , we write fM for M viewed
as an R-complex via f .

Proof of Theorem 1.1. Recall that R is a Noetherian ring of prime characteristic p and f : R→ R is the
Frobenius endomorphism.

(1)⇒(2): Fix an integer e > 1 and set r := sup TorR
∗
(M, f e

R). Since flat dimR M is finite, r <∞ holds.
The desired result is that r 6 s.

Pick a prime ideal p associated to TorR
r (M, f e

R). Since Frobenius commutes with localization one
has

TorR
r (M, f e

R)p ∼= TorRp
r (Mp,

f e
Rp)

as Rp-modules. Moreover, flat dimRp Mp is finite. Thus replacing R and M by their localizations at p
we get that the maximal ideal of R is associated to TorR

r (M, f e
R); that is to say, the depth of the latter

module is zero.
The next step uses some results concerning depth for complexes; see [9]. Given the conclusion of the

last paragraph, [9, 2.7] yields the last equality in

depth R− sup TorR
∗
(k, M)= depthR( f e

R)− sup TorR
∗
(k, M)= depthR(M ⊗L

R
f e

R)=−r.

The second equality is by [9, Theorem 2.4]. The same results also yield

depth R− sup TorR
∗
(k, M)= depthR M >− sup H∗(M)=−s.

It follows that −r >−s, that is to say, r ≤ s, as desired.

(3)⇒(1): Let d = dim R. By Remark 3.1, it suffices to verify that

(3-1) TorRp

t+d(Mp, k(p))= 0 for all p ∈ Spec R.

Fix p ∈ Spec R and choose e such that pe > c(Rp) and

TorR
i (M, f e

R)= 0 for t 6 i 6 t + d;

such an e exists by our hypothesis. As the Frobenius map commutes with localization, one gets

TorRp

i (Mp,
f e
(Rp))= 0 for t 6 i 6 t + d.

The choice of e ensures that f e(pRp)⊆ pc(Rp) Rp. Thus, Lemma 2.7 applied to the Frobenius endomor-
phism Rp→ Rp yields

TorRp

t+d(Mp, k(p))= 0.

This is as desired.

Assume now that R is Cohen–Macaulay and that the vanishing in (3) holds for some e > logp e(R).
It is a routine exercise to verify that the hypotheses remain unchanged, and that the desired conclusion
can be verified, after passage to faithfully flat extensions. One can thus assume that the residue field k
is infinite; see [5, IX.37]. Then, by the choice of e and Lemma 2.2, one gets that pe > c(Rp) for each p

in Spec R. Then one can argue as above to deduce that (3-1) holds, and that yields the finiteness of the
flat dimension of M . �



76 DOUGLAS J. DAILEY, SRIKANTH B. IYENGAR AND THOMAS MARLEY

References

[1] L. L. Avramov and H.-B. Foxby, “Homological dimensions of unbounded complexes”, J. Pure Appl. Algebra 71:2-3
(1991), 129–155.

[2] L. L. Avramov and S. B. Iyengar, “Ghost homomorphisms in local algebra”, in preparation.

[3] L. L. Avramov, S. Iyengar, and C. Miller, “Homology over local homomorphisms”, Amer. J. Math. 128:1 (2006), 23–90.

[4] L. L. Avramov, M. Hochster, S. B. Iyengar, and Y. Yao, “Homological invariants of modules over contracting endomor-
phisms”, Math. Ann. 353:2 (2012), 275–291.

[5] N. Bourbaki, Éléments de mathématique: Algèbre commutative, chapitres 8 et 9, Springer, 2006.

[6] L. W. Christensen, S. B. Iyengar, and T. Marley, “Rigidity of Ext and Tor with coefficients in residue fields of a commuta-
tive Noetherian ring”, Proc. Edinb. Math. Soc. (2) 62:2 (2019), 305–321.

[7] J. A. Eagon and M. M. Fraser, “A note on the Koszul complex”, Proc. Amer. Math. Soc. 19 (1968), 251–252.

[8] E. Enochs and J. Xu, “On invariants dual to the Bass numbers”, Proc. Amer. Math. Soc. 125:4 (1997), 951–960.

[9] H.-B. Foxby and S. Iyengar, “Depth and amplitude for unbounded complexes”, pp. 119–137 in Commutative algebra
(Grenoble/Lyon, 2001), edited by L. L. Avramov et al., Contemp. Math. 331, Amer. Math. Soc., Providence, RI, 2003.

[10] J. Herzog, “Ringe der Charakteristik p und Frobeniusfunktoren”, Math. Z. 140 (1974), 67–78.

[11] C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note
Series 336, Cambridge University Press, 2006.

[12] J. Koh and K. Lee, “Some restrictions on the maps in minimal resolutions”, J. Algebra 202:2 (1998), 671–689.

[13] E. Kunz, “Characterizations of regular local rings of characteristic p”, Amer. J. Math. 91 (1969), 772–784.

[14] C. Lech, “Inequalities related to certain couples of local rings”, Acta Math. 112 (1964), 69–89.

[15] T. Marley and M. Webb, “The acyclicity of the Frobenius functor for modules of finite flat dimension”, J. Pure Appl.
Algebra 220:8 (2016), 2886–2896.

[16] C. Peskine and L. Szpiro, “Dimension projective finie et cohomologie locale: Applications à la démonstration de conjec-
tures de M. Auslander, H. Bass et A. Grothendieck”, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119.

DOUGLAS J. DAILEY: douglas.dailey@christendom.edu
Christendom College, Front Royal, VA, United States

SRIKANTH B. IYENGAR: iyengar@math.utah.edu
University of Utah, Salt Lake City, UT, United States

THOMAS MARLEY: tmarley1@unl.edu
University of Nebraska, Lincoln, NE, United States

JCA — prepared by msp for the
Rocky Mountain Mathematics Consortium

http://dx.doi.org/10.1016/0022-4049(91)90144-Q
http://dx.doi.org/10.1353/ajm.2006.0001
http://dx.doi.org/10.1007/s00208-011-0682-z
http://dx.doi.org/10.1007/s00208-011-0682-z
http://dx.doi.org/10.1017/s0013091518000081
http://dx.doi.org/10.1017/s0013091518000081
http://dx.doi.org/10.2307/2036183
http://dx.doi.org/10.1090/S0002-9939-97-03662-9
http://dx.doi.org/10.1090/conm/331/05906
http://dx.doi.org/10.1007/BF01218647
http://dx.doi.org/10.1006/jabr.1997.7310
http://dx.doi.org/10.2307/2373351
http://dx.doi.org/10.1007/BF02391765
http://dx.doi.org/10.1016/j.jpaa.2016.01.007
http://www.numdam.org/item?id=PMIHES_1973__42__47_0
http://www.numdam.org/item?id=PMIHES_1973__42__47_0
mailto:douglas.dailey@christendom.edu
mailto:iyengar@math.utah.edu
mailto:tmarley1@unl.edu
http://msp.org
https://rmmc.asu.edu

	1. Introduction
	2. Homotopical Loewy length
	3. Finite flat dimension
	References

