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Abstract. Let R be a commutative Noetherian local ring of prime characteristic p and
f : R−→R the Frobenius ring homomorphism. For e ≥ 1 let R(e) denote the ring R viewed
as an R-module via fe. Results of Peskine, Szpiro, and Herzog state that for finitely
generated modules M , M has finite projective dimension if and only if TorRi (R(e),M) = 0
for all i > 0 and all (equivalently, infinitely many) e ≥ 1. We prove this statement holds
for arbitrary modules using the theory of flat covers and minimal flat resolutions.

1. Introduction

Let R be a commutative Noetherian ring of prime characteristic p and f : R−→R the
Frobenius map. For e ≥ 1 let R(e) be the ring R considered as an R-module via fe; i.e.,
for r ∈ R, s ∈ R(e), r · s := rp

e
s. A classic result of Kunz [12] states that R is regular if

and only if R(e) is flat as an R-module for all (equivalently, some) e ≥ 1. Subsequently,
Peskine and Szpiro [13, Théorèm 1.7] proved that if P is a finite projective resolution of

a finitely generated R-module M then for all e ≥ 1, R(e) ⊗R P is a projective resolution
of R(e) ⊗RM ; that is, finitely generated modules of finite projective dimension are acyclic
objects with respect to the Frobenius functors R(e) ⊗R −. A year later Herzog [9, Satz
3.1] showed the converse holds: namely, if M is a finitely generated R-module and P is a

projective resolution of M such that R(e)⊗RP is acyclic for infinitely many integers e, then
M has finite projective dimension. An interesting question is whether these results hold
for arbitrary R-modules, not just finitely generated ones. In Corollary 3.5(a) and Theorem
4.2, we give an affirmative answer to this question:

Theorem 1.1. Let R be a Noetherian ring of prime characteristic and M an R-module.
Then the following hold:

(a) If fdRM <∞ then for all i, e > 0, TorRi (R(e),M) = 0 and fdR(e)(R(e)⊗RM) = fdRM .

(b) If R has finite Krull dimension and TorRi (R(e),M) = 0 for all i > 0 and infinitely many
integers e, then pdRM <∞.

Here fdRM and pdRM denote the flat and projective dimensions of M , respectively. Note
that part (a) implies that if pdRM < ∞ then pdR(e)(R(e) ⊗R M) ≤ pdRM for all e
(although we do not know of any examples where the inequality is strict). We also prove
an analogue of Theorem 1.1 for injective dimension in the case the Frobenius map is finite
(cf. Corollaries 3.5(b) and 4.4).

A special case of part (a) of Theorem 1.1 is well-known and is what inspired this inves-
tigation: Suppose x = x1, . . . , xn is a regular sequence on R and C = C(x;R) is the Čech
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complex on R with respect to x. Then C is a finite flat resolution of the local cohomology

module Hn
(x)(R) and R(e) ⊗R C ∼= C(x;R(e)) ∼= C(xp

e
;R) is acyclic since xp

e

1 , . . . , x
pe
n is an

R-sequence.
The proofs of Peskine-Szpiro and Herzog both reduce to the case R is local and utilize

minimal projective (free) resolutions. (In the case of Herzog’s result, one uses Lemma 4.5
of [3] to reduce to the local case.) The minimality condition for such projective resolutions
can be expressed by saying that all the differentials are zero when tensored with the residue
field. It can be easily shown that projective resolutions of this type do not necessarily exist
for arbitrary modules. However, flat resolutions with this kind of minimality condition
do exist for a large class of modules (i.e., cotorsion modules), which we show is sufficient
to prove Theorem 1.1. The theory of flat covers, cotorsion modules, and minimal flat
resolutions, as developed by Enochs and Xu in [6] and [7], are essential ingredients in all
our arguments. In Section 2, we summarize some basic properties of these notions as well as
prove some auxiliary results which are used in later sections. Minimal flat resolutions have
many properties analogous to those of minimal injective resolutions. In particular, the flat
modules appearing in a minimal flat resolution of a module M are uniquely determined (up
to isomorphism) by invariants which we call the Enochs-Xu numbers of M . The Enochs-Xu
numbers of a module are in some sense the dual of the Bass numbers of a module.

Sections 3 and 4 are devoted to the proofs of parts (a) and (b), respectively, of Theorem
1.1. For both parts it is sufficient to consider the case when R is a local ring, in which case
every module of finite flat dimension has finite projective dimension by the Jensen-Raynaud-
Gruson theorem ([11, Proposition 6] and [14, Seconde partie, Théorème 3.2.6]). Our strategy
is to apply the methods of Peskine-Szpiro and Herzog to minimal flat resolutions. There are
several difficulties which arise: the finitistic flat dimension may exceed the depth of the ring
(cf. [2, Corollary 5.3]); minimal flat resolutions do not in general localize; and the modules
appearing in minimal flat resolutions are not generally finitely generated. We are able to
overcome these difficulties by, in part, proving that the depths of the modules in degrees
exceeding depthR in finite minimal flat resolutions are infinite, and showing that, in the
case the Frobenius map is finite, the acyclicity of Frobenius for minimal flat resolutions of
cotorsion modules commutes with the colocalization functor HomR(Rp,−). And while the
flat modules in question are not typically finitely generated, we are able to reduce to the
case where they are completions of free R-modules.

Acknowledgments: The authors would like to thank Sri Iyengar for his many helpful
comments and suggestions on this work. The authors are also grateful to Lucho Avramov,
Doug Dailey, Edgar Enochs, Peder Thompson, Mark Walker, and Wenliang Zhang for their
useful feedback on this project.

2. Flat covers and cotorsion modules

In this section we collect the results we will need regarding flat covers, cotorsion modules,
and minimal flat resolutions. We refer the reader to [18] for background on this material.
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Definition 2.1. Let M be an R-module. An R-homomorphism ϕ : F−→M is called a flat
cover of M if the following hold:

(a) F is flat;
(b) for every map ψ : G−→M with G flat, there exists a homomorphism g : G−→F such

that ψ = ϕg; and
(c) if h : F−→F satisfies ϕ = ϕh then h is an isomorphism.

By abuse of language, we sometimes refer to the module F as the ‘flat cover’ of M , rather
than the homomorphism ϕ. In [4], it is proved that flat covers exists for all modules over
all rings. However, in this work we will only need the existence of flat covers for modules
over commutative Noetherian rings of finite Krull dimension, which was proved in [17]. It
is easily seen that flat covers are surjective (since every module is a homomorphic image of
a flat module), that a flat cover of a module is unique up to isomorphism, and that the flat
cover of a flat module is an isomorphism.

Definition 2.2. An R-module M is called cotorsion if Ext1R(F,M) = 0 for every flat
R-module F .

It is easily seen that if M is cotorsion then ExtiR(F,M) = 0 for all i ≥ 1 and all flat R-
modules F . By [6, Lemma 2.2 and Corollary], the kernel of a flat cover is cotorsion and a
flat cover of a cotorsion module is cotorsion. For an R-module M we let CR(M) denote the
cotorsion envelope of M , which exists by [18, Theorem 3.4.6]. The cotorsion envelope of a
flat module is flat by [18, Theorem 3.4.2]. If F is flat and cotorsion then F ∼=

∏
p∈SpecR T (p)

where each T (p) is the completion with respect to the pRp-adic topology of a free Rp-module
G(p); furthermore, the ranks of the free Rp-modules G(p) are uniquely determined by F
([6, Theorem]). For each p ∈ SpecR, let π(p, F ) denote the rank (possibly infinite) of G(p).

Given an R-module M , a minimal flat resolution of M is a complex

F : · · · −→Fi
∂i−→ Fi−1−→· · ·−→F0−→0

such that Hi(F) = 0 for i > 0, H0(F) ∼= M , and for each i, the natural map Fi−→ coker ∂i+1

is a flat cover. It is clear that every R-module has a minimal flat resolution, and that any two
minimal flat resolutions of M are (chain) isomorphic. Since the flat cover of a flat module
is an isomorphism, it follows that if fdRM = n < ∞ then the length of any minimal flat
resolution of M is n. Note that, by the remarks in the preceding paragraph, if F is a minimal
flat resolution of M then Fi is cotorsion for all i ≥ 1. For each i ≥ 1 and p ∈ SpecR we
set πi(p,M) := π(p, Fi). For i = 0 and p ∈ SpecR, we set π0(p,M) := π(p, CR(F0)). Note
that if M is cotorsion, so is F0 and thus π0(p,M) = π(p, F0) for all p ∈ SpecR. We call the
the invariants πi(p,M) the Enochs-Xu numbers of M . Note that fdRM ≤ n if and only if
πi(p,M) = 0 for all p ∈ SpecR and i > n.

We now state a theorem of Enochs and Xu:

Theorem 2.3. ([7, Theorem 2.1 and 2.2]) Let R be a Noetherian ring. Then for any
R-module M we have:

(a) πi(p,M) = πi(p, CR(M)) for all i ≥ 0 and p ∈ SpecR.

(b) If M is cotorsion then πi(p,M) = dimk(p) Tor
Rp

i (k(p),HomR(Rp,M)) for all i ≥ 0 and
p ∈ SpecR.

In particular, note that part (a) of this theorem implies that fdRM = fdR CR(M).
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We now establish some additional results on cotorsion modules which are needed in
sections 3 and 4. We thank Edgar Enochs for showing us a proof of part (b) of the following
lemma, which is implicit in [7]:

Lemma 2.4. Let R be a Noetherian ring and S a flat R-algebra.

(a) If C is a cotorsion R-module and T a flat S-module then HomR(T,C) is a cotorsion
S-module.

(b) If F is a flat and cotorsion R-module and p ∈ SpecR then HomR(Rp, F ) is a flat and
cotorsion Rp-module.

Proof. To prove (a), let A be a flat S-module. As S is flat over R, any flat S-module is
also flat as an R-module. Thus, ExtiR(P ⊗S A,C) = 0 for all i > 0 and all projective
S-modules P . Thus, we have a Grothendieck spectral sequence ExtiR(TorSj (T,A), C) ⇒
Exti+jS (A,HomR(T,C)) (cf. [15, Theorem 11.54]). The spectral sequence collapses, giving

ExtiS(A,HomR(T,C)) ∼= ExtiR(T ⊗S A,C) = 0 for i > 0, as T ⊗S A is a flat S-module and
therefore flat as an R-module as well. Hence, HomR(T,C) is a cotorsion S-module.

For (b), as F is flat and cotorsion we have F ∼=
∏

q∈SpecR T (q) where each T (q) is the

completion of a free Rq-module. We’ll show that HomR(Rp, F ) ∼=
∏

q⊆p T (q), which is flat

and cotorsion by [6, Theorem]. For each q ∈ SpecR let ρq : F−→T (q) be the projection
map. Let ϕ ∈ HomR(Rp, F ). Then, as Rp is divisible by each element in R \ p, the same
is true for the image (ρqϕ)(Rp) for all q. Suppose q 6⊆ p. Let r ∈ q \ p. Then for all
n ≥ 1 we have (ρqϕ)(Rp) ⊆ rn(ρqϕ)(Rp) ⊆ qnT (q). As T (q) is separated in the qRq-adic
topology, we conclude that (ρqϕ)(Rp) = 0. Thus, HomR(Rp, F ) ∼= HomR(Rp, G), where
G =

∏
q⊆p T (q). But since each T (q) for q ⊆ p is an Rp-module, G is an Rp-module. Thus,

HomR(Rp, F ) ∼= G. �

Lemma 2.5. Let R be a Noetherian ring of finite Krull dimension and M an R-module.
Suppose M has a (left) cotorsion resolution C; i.e., there exists an exact sequence

· · · −→Ci
ϕi−→ Ci−1−→· · ·−→C0−→M−→0

where each Ci is cotorsion. Then

(a) M is cotorsion.
(b) For any flat R-module T , HomR(T,C) is a cotorsion resolution of HomR(T,M).

Proof. For each integer i ≥ 0 let Ki = cokerϕi+1. Let T be a flat R-module. Since
ExtiR(T,Cj) = 0 for all i ≥ 1 and j ≥ 0, we have that Ext1R(T,M) ∼= Exti+1

R (T,Ki) for all

i ≥ 0. Let n = dimR. Then Extn+1
R (T,Kn) = 0 as pdR T ≤ n by the Jensen-Raynaud-

Gruson theorem ([11, Proposition 6] and [14, Seconde partie, Théorème 3.2.6]). Thus,
Ext1R(T,M) = 0 and M is cotorsion. This proves (a).

For part (b), first note that HomR(T,Ci) is cotorsion for all i by Lemma 2.4(a). Let
Ki = cokerϕi+1 as above. Since each Ki has a cotorsion resolution, Ki is cotorsion by part
(a). Applying HomR(T,−) to the exact sequences 0−→Ki+1−→Ci−→Ki−→0, we obtain
that

0−→HomR(T,Ki+1)−→HomR(T,Ci)−→HomR(T,Ki)−→0

is exact for all i. Splicing these short exact sequences, we see that HomR(T,C) is a cotorsion
resolution of HomR(T,M). �
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In the case the module M has finite flat dimension, we have the following vanishing result
for the Enochs-Xu numbers of M :

Proposition 2.6. Let R be a Noetherian ring and M an R-module such that fdRM <∞.
Then πi(p,M) = 0 for all p ∈ SpecR and i > depthRp.

Proof. By Theorem 2.3(a), we may assume that M is cotorsion by replacing M with CR(M)
if necessary. Let p ∈ SpecR. Note that HomR(Rp,M) is a cotorsion Rp-module by Lemma
2.4(a) and fdRp HomR(Rp,M) <∞ by Lemmas 2.4(b) and 2.5(b). Using part (b) of Theo-
rem 2.3, we have that πi(p,M) = πi(pRp,HomR(Rp,M)) for all i ≥ 0. Resetting notation,
we can now assume R is a Noetherian local ring and p = m, the maximal ideal of R.
By [10, Theorem 2.1], we have that TorRi (k,M) = 0 for all i > depthR. Consequently,
πi(m,M) = 0 for i > depthR. �

We remark that for any R-modules L, M , and N there is a natural R-module homomor-
phism

L⊗R HomR(M,N)
ψ−→ HomR(M,L⊗R N)

such that for ` ∈ L, f ∈ HomR(M,N) and m ∈M , ψ(`⊗ f)(m) = `⊗ f(m).

Lemma 2.7. Let R be a Noetherian ring of finite Krull dimension. Let M , T , and F be
R-modules such that M is finitely generated, T is flat, and F is flat and cotorsion. Then
the natural map ψ : M ⊗R HomR(T, F )−→HomR(T,M ⊗R F ) is an isomorphism.

Proof. We first note that the lemma is clear in the case M is a finitely generated free R-
module. Let G be a free resolution of M consisting of finitely generated free R-modules. As
F is flat and cotorsion, G⊗R F is a cotorsion resolution of M ⊗R F . By Lemma 2.5(b), we
obtain that HomR(T,G⊗RF ) is a cotorsion resolution of HomR(T,M⊗RF ). Now consider
the commutative diagram:

G1 ⊗R HomR(T, F ) −−−−→ G0 ⊗R HomR(T, F ) −−−−→ M ⊗R HomR(T, F ) −−−−→ 0y∼= y∼= y
HomR(T,G1 ⊗R F ) −−−−→ HomR(T,G0 ⊗R F ) −−−−→ HomR(T,M ⊗R F ) −−−−→ 0

where the rows are exact and the vertical arrows are the natural maps. Since the first two
vertical maps are isomorphisms, so is the third by the Five Lemma. �

We will need the following colocalization result for Tor:

Proposition 2.8. Let R be a Noetherian ring of finite Krull dimension. Let L be a finitely
generated R-module and M a cotorsion R-module. Suppose TorRi (L,M) = 0 for all i > 0.

Then Tor
Rp

i (Lp,HomR(Rp,M)) = 0 for all p ∈ SpecR and i > 0.

Proof. Let p ∈ SpecR. It suffices to prove that TorRi (L,HomR(Rp,M)) = 0 for all i >
0. Let F be a minimal flat resolution of M . As M is cotorsion, so is Fi for all i. As
TorRi (L,M) = 0 for all i > 0 we have that L ⊗R F is acyclic. We remark that L ⊗R Fi
is cotorsion for all i. To see this, let G be a free resolution of L by finitely generated
free R-modules. Then G ⊗R Fi is a cotorsion resolution of L ⊗R Fi. Hence, L ⊗R Fi is
cotorsion by Lemma 2.5(a). By Lemma 2.5(b), HomR(Rp, L ⊗R F) is acyclic. By Lemma
2.7, L ⊗R HomR(Rp,F) ∼= HomR(Rp, L ⊗R F) as complexes. Thus, L ⊗R HomR(Rp,F) is
acyclic. However, HomR(Rp,F) is a flat resolution of HomR(Rp,M) by Lemmas 2.4(a) and

2.5(b). Thus, TorRi (L,HomR(Rp,M)) ∼= Hi(L⊗R HomR(Rp,F)) = 0 for i > 0. �
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3. An acyclicity theorem for finite flat resolutions

We begin by making a convention regarding depth for (possibly) non-finitely generated
modules. Let R be a Noetherian local ring with maximal ideal m and M an arbitrary
R-module. For i ≥ 0, let Hi

m(M) denote the ith local cohomology module with support in
m. We define the depth of M by

depthM := inf{i ∈ N0 | Hi
m(M) 6= 0}.

Note that under this definition, depthM = ∞ if and only if Hi
m(M) = 0 for all i. We

remark that if F is a flat R-module then Hi
m(F ) ∼= Hi

m(R)⊗R F ; hence, depthF ≥ depthR.
We’ll need the following result concerning the depths of certain cotorsion flat modules:

Lemma 3.1. Let ϕ : R−→S be a homomorphism of Noetherian local rings. Let m and n be
the maximal ideals of R and S, respectively, and assume ϕ(m) ⊆ n. Let F be a cotorsion flat
R-module such that π(m, F ) = 0. Then for every S-module N we have depthS N⊗RF =∞.
In particular, depthF =∞.

Proof. We first remark that as F is a flat R-module, Hi
n(N ⊗R F ) ∼= Hi

n(N)⊗R F for all i.
Note that, as mS ⊆ n, SuppR Hi

n(N) ⊆ {m} for all i. Thus, it suffices to prove that given
any R-module M with SuppRM ⊆ {m} then M ⊗R F = 0. As F is flat and cotorsion,
we have F ∼=

∏
p∈SpecR T (p) where T (p) is the pRp-adic completion of a free Rp-module of

rank π(p, F ). As π(m, F ) = 0, we can write this decomposition as F ∼=
∏

p6=m T (p). Let
M be an R-module of finite length. As R is Noetherian, M is finitely presented and hence
M ⊗R F ∼=

∏
p6=m(M ⊗R T (p)) = 0, since M ⊗R Rp = 0 for all p 6= m. Suppose now that

M is an arbitrary R-module such that SuppRM ⊆ {m}. Then M is the direct limit of the
direct system {Mα} consisting of the finite length R-submodules of M (with morphisms the
inclusion maps). Thus

M ⊗R F ∼= (lim−→Mα)⊗R F ∼= lim−→(Mα ⊗R F ) = 0.

�

We next state a generalization of Peskine and Szpiro’s acyclicity lemma for complexes of
modules which are not necessarily finitely generated. The proof is mutatis mutandi, using
the definition of depth given above. We remark that the statement of the acyclicity lemma
in this generality first appeared in [8].

Proposition 3.2. ([13, Lemme d’acyclicité 1.8] and [8, Lemma 1.3]) Let R be a Noetherian
local ring and consider a bounded complex T of R-modules

T : 0−→Ts
fs−→ Ts−1−→· · ·

f0−→ T0−→0.

Suppose the following two conditions hold for each i > 0:

(1) depthTi ≥ i;
(2) depth Hi(T) = 0 or Hi(T) = 0.

Then Hi(T) = 0 for all i > 0.

We now prove the main result of this section, which generalizes [13, Corollary 1.10] to
modules of finite flat dimension:
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Theorem 3.3. Let ϕ : R−→S be a homomorphism of Noetherian rings such that for every
q ∈ SpecS and p = ϕ−1(q) one has that depthSq ≥ depthRp. Let M be an R-module of
finite flat dimension. Then

(a) TorRi (S,M) = 0 for all i > 0.
(b) fdS(S ⊗RM) ≤ fdRM .
(c) If k(p)⊗R S 6= 0 for all p ∈ SpecR, then fdS(S ⊗RM) = fdRM .

Proof. We prove part (a) by way of contradiction. Suppose TorRi (S,M) 6= 0 for some i ≥ 1.
Let q ∈ SpecS be a prime minimal with respect to the property that TorRi (S,M)q 6= 0
for some i ≥ 1 and let p := ϕ−1(q). By replacing R, S, and M with Rp, Sq, and Mp, we

may assume (R,m) and (S, n) are local rings, ϕ(m) ⊆ n, TorRi (S,M) 6= 0 for some i ≥ 1,
and SuppS TorRi (S,M) ⊆ {n} for all i ≥ 1. Let F be a minimal flat resolution of M and
L := S ⊗R F. Since Hi(L) ∼= TorRi (S,M) and SuppS TorRi (S,M) ⊆ {n} for all i ≥ 1, we
have that depth Hi(L) = 0 or Hi(L) = 0 for all i ≥ 1.

We claim that depthS Li ≥ i for all i. Since Li is a flat S-module, depthS Li ≥ depthS.
Suppose i > depthS. Then Fi is a cotorsion flat R-module and π(m, Fi) = πi(m,M) = 0
by Proposition 2.6 since i > depthR. Then depthS Li =∞ by Lemma 3.1. This proves the
claim. By Proposition 3.2, we obtain that Hi(L) = TorRi (S,M) = 0 for all i ≥ 1, which is
a contradiction. This proves part (a).

To see part (b), let F be a flat resolution of M of length n = fdRM . Then S ⊗R F is
an S-flat resolution of S ⊗R M , since TorRi (S,M) = 0 for all i > 0 by part (a). Hence,
fdS(S ⊗RM) ≤ n.

To prove part (c) it suffices by part (b) to show that fdS(S ⊗R M) ≥ fdRM . Let
n = fdRM and J an ideal maximal with respect to TorRn (R/J,M) 6= 0. Then by [1,
Proposition 2.2], J = p is prime and TorRn (R/p,M) is a (nonzero) k(p)-module, where
k(p) = Rp/pRp. Let (F, ∂) be a flat resolution of M of length n. Then we have an exact
sequence

0−→TorRn (R/p,M)−→k(p)⊗R Fn
1⊗∂n−−−→ k(p)⊗R Fn−1.

Now, tensoring with S over R (which is the same as tensoring by S⊗R k(p) over k(p), which
is flat over k(p)), we have

0−→S ⊗R TorRn (R/p,M)−→S ⊗R k(p)⊗R Fn
1⊗1⊗∂n−−−−−→ S ⊗R k(p)⊗R Fn−1

is exact. Reassociating, we obtain an exact sequence

0−→S⊗RTorRn (R/p,M)−→(k(p)⊗RS)⊗S(S⊗RFn)
(1⊗1)⊗(1⊗∂n)−−−−−−−−−→ (k(p)⊗RS)⊗S(S⊗RFn−1).

Since S ⊗R F is a flat S-resolution of S ⊗RM , this sequence shows that

TorSn(k(p)⊗R S, S ⊗RM) ∼= S ⊗R TorRn (R/p,M) ∼= S ⊗R k(p)`,

which is nonzero, since l 6= 0 and S ⊗R k(p) 6= 0. Hence, fdS(S ⊗RM) ≥ n. �

In the case the ring homomorphism ϕ : R−→S is finite, we have the following dual result
for modules of finite injective dimension:

Corollary 3.4. Let ϕ : R−→S be as in in Theorem 3.3 and assume S is a finitely generated
R-module. Let M be an R-module of finite injective dimension. Then

(a) ExtiR(S,M) = 0 for all i > 0.
(b) idS HomR(S,M) ≤ idRM .
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(c) If k(p)⊗R S 6= 0 for all p ∈ SpecR, then idS HomR(S,M) = idRM .

Proof. For part (a), it suffices to prove the statement locally at every prime ideal (as S is a
f.g. R-module). So assume R is local and let (−)v denote the Matlis dual functor for R. By
[15, Theorem 11.57], TorRi (A,Mv) ∼= ExtiR(A,M)v for all i ≥ 0 and all finitely generated
R-modules A. In particular, we have that fdRM

v = idRM < ∞. Applying part (a) of
Theorem 3.3, we have ExtiR(S,M)v ∼= TorRi (S,Mv) = 0 for all i > 0. Thus, ExtiR(S,M) = 0
for all i > 0.

As in Theorem 3.3, part (b) follows readily from part (a).
To prove (c), it suffices to show that idS HomR(S,M) ≥ idRM . Let n = idRM . Then

there exists p ∈ SpecR such that ExtnRp
(k(p),Mp) 6= 0. An argument analagous to the one

in the proof of part (c) of Theorem 3.3 shows that

ExtnSp
(k(p)⊗R S,HomR(S,M)p) ∼= HomRp(S ⊗R k(p),ExtnRp

(k(p),Mp)),

which is nonzero since k(p)⊗RS 6= 0 and ExtnRp
(k(p),Mp) 6= 0. Thus, idS HomR(S,M) ≥ n.

�

We now apply our results to the Frobenius map. The following corollary generalizes
Théorèms 1.7 and 4.15 of [13], which were proved for finitely generated modules.

Corollary 3.5. Let R be a Noetherian ring of prime characteristic p, M an R-module, and
e ≥ 1 an integer.

(a) If fdRM <∞ then TorRi (R(e),M) = 0 for all i > 0 and fdR(e) R(e) ⊗RM = fdRM .

(b) If the Frobenius map of R is finite and idRM <∞ then ExtiR(R(e),M) = 0 for all

i > 0 and idR(e) HomR(R(e),M) = idRM .

Proof. It suffices to prove both (a) and (b) in the case e = 1. If f : R−→R is the Frobenius

map, then for all p ∈ SpecR, f−1(p) = p and k(p)⊗RR(e) 6= 0 for all e ≥ 1. The conclusions
now follow from Theorem 3.3 and Corollary 3.4. �

4. Proof of the converse

In this section we prove part (b) of Theorem 1.1. Before doing so, we need to establish
some results on completions of free modules. Let (R,m) be a Noetherian local ring and M

an R-module. We let M̂ denote the m-adic completion of M ; i.e., M̂ := lim←−M/mnM . If

M is separated (i.e., ∩nmnM = 0), then the natural map M−→M̂ is injective. We note

that for any n ≥ 1, M/mnM ∼= M̂/mnM ∼= M̂/m̂nM . In particular, if M is separated, then

m̂nM ∩M = mnM . Finally, as mn is finitely generated, we have that mnM̂ = m̂nM .

Lemma 4.1. Let (R,m) be a Noetherian local ring, F a free R-module, and N a finitely
generated R-module. Let t := t(R) be the least integer such that mt ∩ H0

m(R) = 0. (Such a
t exists by the Artin-Rees lemma.) Then the following hold:

(a) H0
m(F̂ ) = H0

m(F ).

(b) For all n ≥ t, mnF̂ ∩H0
m(F̂ ) = 0.

(c) F̂ ⊗R N ∼= ̂F ⊗R N .

Proof. Part (a) follows from Corollory (iv) of Theorem (0.3)∗ of [16] for an arbitrary module
F . We give here a elementary proof for the case when F is free. Let X be a basis for F .
Then F ∼=

⊕
α∈X Rα, where Rα = R for all α. We write this as F = ⊕αR for short. Note
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that mnF = ⊕αmn for all n ≥ 1 and H0
m(F ) = ⊕α H0

m(R). In particular, F is separated. We
also observe that the topology on H0

m(F ) induced from the m-adic topology on F coincides
with the m-adic topology on H0

m(F ). (One can check this on each component.) Thus,
̂F/H0

m(F ) ∼= F̂ /Ĥ0
m(F ). Clearly, Ĥ0

m(F ) = H0
m(F ) and H0

m(F ) ⊆ H0
m(F̂ ). Therefore, to prove

(a) it suffices to show that H0
m( ̂F/H0

m(F )) = 0. If R = H0
m(R), this is clear. Otherwise, we

can replace R by R/H0
m(R) and assume H0

m(R) = 0. In this case, H0
m(F ) = 0 and it suffices

to prove that H0
m(F̂ ) = 0. Let x ∈ m be a non-zero-divisor on R. Then 0−→F µx−→ F is exact,

where µx is multiplication by x. We claim that 0−→F̂ µx−→ F̂ is exact. To see this, it suffices
to show that the topology induced by µ−1x (mnF ) on F coincides with the m-adic topology
on F . As x is a non-zero-divisor on R, there exists (by the Artin-Rees lemma) an integer `
such that (mn :R x) ⊆ mn−` for all n ≥ `. Then µ−1x (mnF ) = ⊕α(mn :R x) ⊆ mn−`F for all

n ≥ `. Hence the topologies coincide, and x is a non-zero-divisor on F̂ . Thus, H0
m(F̂ ) = 0

and part (a) is proved.

Using part (a) and that mnF̂ ∩ F = mnF , we have for all n ≥ t

mnF̂ ∩H0
m(F̂ ) = mnF ∩H0

m(F )

= ⊕α(mn ∩H0
m(R))

= 0.

Thus, (b) is proved.

We now prove part (c). Let Rr
ϕ−→ Rs−→N−→0 be a presentation for N . Let K = imϕ.

By the Artin-Rees lemma, there exists an integer ` ≥ 1 such that mnRs ∩K ⊆ mn−`K for
all n ≥ `. As F is free, we have 0−→F ⊗R K−→F ⊗R Rs−→F ⊗R N−→0 is exact. Then
for n ≥ `,

mn(F ⊗R Rs) ∩ (F ⊗R K) = (⊕αmnRs) ∩ ⊕αK
= ⊕α(mnRs ∩K)

⊆ ⊕αmn−`K

⊆ mn−`(F ⊗R K).

Thus, the induced and m-adic topologies on F ⊗R K coincide. Therefore,

0−→ ̂F ⊗R K−→ ̂F ⊗R Rs−→ ̂F ⊗R N−→0

is exact. Composing with the surjection ̂F ⊗R Rr
1̂⊗ϕ−−→ ̂F ⊗R K and noting that Â ⊗R Rn

is naturally isomorphic to Ân for any R-module A and any positive integer n, we obtain
the commutative diagram:

̂F ⊗R Rr
1̂⊗ϕ−−−−→ ̂F ⊗R Rs −−−−→ ̂F ⊗R N −−−−→ 0y∼= y∼=

F̂ ⊗R Rr
1⊗ϕ−−−−→ F̂ ⊗R Rs −−−−→ F̂ ⊗R N −−−−→ 0.

Hence, ̂F ⊗R N ∼= F̂ ⊗R N by the Five Lemma. �

Before proving part (b) of Theorem 1.1, we introduce some notation used in the proof. For

e ≥ 1 we let me denote the maximal ideal of R(e). For x ∈ R, we let xe denote the element
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x considered as an element in R(e). Thus, xR(e) = xp
e

e R(e). Given an R-module N we let
N (e) denote the R(e)-module R(e)⊗RN . If ψ : L−→N is an R-module homomorphism, ψ(e)

denotes the map 1⊗R ψ : L(e)−→N (e).

Theorem 4.2. Let R be a Noetherian ring of prime characteristic p and M an R-module.
Assume R has finite Krull dimension. Suppose TorRi (R(e),M) = 0 for all i > 0 and infinitely
many integers e. Then fdRM <∞ (and hence pdRM <∞ by the Jensen-Raynaud-Gruson
theorem).

Proof. Let d := dimR. As fdRM < ∞ if and only if Tor
Rp

d+1(Mp, Np) = 0 for every R-
module N and p ∈ SpecR, we can assume R is local. By a standard argument, there
exists a faithfully flat local R-algebra (T, n) such that T (e) is f.g. as a T -module for all

e (e.g, [12, Section 3]). Note that fdRM = fdT (T ⊗R M) and TorTi (T (e), T ⊗R M) ∼=
T (e) ⊗R(e) TorRi (R(e),M) for all i and e. Hence, by replacing R by T , we may assume R(e)

is a finitely generated R-module for all e.
Let ϕ : F−→M be a flat cover and K = kerϕ. By [6, Lemma 2.2], K is cotorsion. Note

that fdRK < ∞ if and only if fdRM < ∞ and TorRi (R(e),K) ∼= TorRi+1(R
(e),M) for all

i ≥ 1 and all e. Hence, we may assume that M is cotorsion.
We assume that fdRM = ∞ and derive a contradiction. Choose p ∈ SpecR mini-

mal with respect to the property that fdRp HomR(Rp,M) = ∞. By Proposition 2.8, if

TorRi (R(e),M) = 0 for some e and all i > 0, then Tor
Rp

i (R
(e)
p ,HomR(Rp,M)) = 0 for all

i > 0. Note also that HomR(Rp,M) is a cotorsion Rp-module by Lemma 2.4(a) and that

R
(e)
p is finitely generated as an Rp-module for all e ≥ 1. Thus, by replacing R with Rp and

M with HomR(Rp,M), we may assume fdRM = ∞ and fdRp HomR(Rp,M) < ∞ for all
p 6= m.

Let F be a minimal flat resolution of M and let ϕi : Fi−→Fi−1 denote the differentials of
F. Since M is cotorsion, so is Fi for all i. By the proof of [7, Theorem 2.2], ϕi⊗R 1R/m = 0

for all i; i.e., ϕi(Fi) ⊆ mFi−1 for all i. Then ϕ
(e)
i (F

(e)
i ) ⊆ m

[pe]
e F

(e)
i−1 for all i and e.

Let s := depthR and x ∈ m a regular sequence on R of length s. Let t := t(R/(x)) as

defined in Lemma 4.1, and let e be an integer such that m[pe] ⊆ mt and TorRi (R(e),M) = 0

for all i > 0. Let S denote the R(e)-algebra R(e)/(xe) and n = meS, the maximal ideal of
S. Then H0

n(S) 6= 0 and nt ∩H0
n(S) = 0 by definition of t. Since pdR(e) S = s, we have that

TorR
(e)

i (S,M (e)) = 0 for all i > s. As F(e) is an R(e)-flat resolution of M (e), we obtain that

Hi(S ⊗R(e) F(e)) = 0 for all i > s. For each i ≥ 0 let Ci = imϕi+1. Then for all i ≥ 1 we

have an exact sequence of R(e)-modules

0−→C(e)
i −→F

(e)
i −→C

(e)
i−1−→0.

From the remarks above, we have that C
(e)
i = ϕ

(e)
i+1(F

(e)
i+1) ⊆ m

[pe]
e F

(e)
i ⊆ mt

eF
(e)
i for all i.

Since Hi(S ⊗R F(e)) = 0 for all i > s, we have that

0−→S ⊗R(e) C
(e)
i −→S ⊗R(e) F

(e)
i −→S ⊗R(e) C

(e)
i−1−→0

is exact for all i > s− 1. Note that S ⊗R(e) C
(e)
i ⊆ nt(S ⊗R(e) F

(e)
i ) for all i > s− 1.

By our assumptions, we have that fdRp HomR(Rp,M) ≤ d − 1 for all p 6= m, where d =
dimR. By Theorem 2.3(b), this implies that π(p, Fi) = πi(p,M) = πi(pRp,HomR(Rp,M)) =
0 for all i ≥ d and all p 6= m. Consequently, for i ≥ d, Fi is the completion of a free R-module
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Gi of rank ri := πi(m,M). By Lemma 4.1(c), for i ≥ d we have that F
(e)
i
∼= R(e)⊗RĜi ∼= Ĝ

(e)
i

and S ⊗R(e) F
(e)
i
∼= ̂
S ⊗R(e) G

(e)
i , which is the n-adic completion of a free S-module of rank

ri. Note that since fdRM =∞, ri 6= 0 for all i ≥ d. For all i ≥ d− 1, let Bi = S ⊗R(e) C
(e)
i

and Vi = S ⊗R(e) F
(e)
i . From above, for i ≥ d we have exact sequences of S-modules

0−→Bi−→Vi−→Bi−1−→0

where Vi is the completion of a (nonzero) free S-module and Bi ⊆ ntVi. In particular, by
Lemma 4.1(a), H0

n(Vi) 6= 0 for all i ≥ d. By Lemma 4.1(b), H0
n(Bi) ⊆ ntVi ∩ H0

n(Vi) = 0 for
all i ≥ d. This implies that H0

n(Vi) = 0 for i ≥ d+ 1, a contradiction. �

The following example shows that the hypothesis in Theorem 4.2 that R have finite Krull
dimension is necessary:

Example 4.3. Let R be a Noetherian regular ring of infinite Krull dimension and M =
⊕i≥0R/pi, where pi is a prime ideal of height i. It is easily seen that TorRi (k(pi),M) 6= 0 for

all i. Hence, fdRM = ∞. On the other hand, as R is regular, we have TorRi (R(e),M) = 0
for all positive integers i and e.

In the case the Frobenius map is finite, we obtain the converse to part (b) of Corollary
3.5. This generalizes [9, Satz 5.2], which was proved in the case the module M is finitely
generated.

Corollary 4.4. Let R be a Noetherian ring of prime characteristic. Assume that R has
finite Krull dimension and that the Frobenius map is finite. Let M be an R-module and
suppose that ExtiR(R(e),M) = 0 for all i > 0 and for infinitely many integers e. Then
idRM <∞.

Proof. Since R(e) is a finitely generated R-module for all e and dimR <∞, we may assume
R is local. Let (−)v be the Matlis dual functor. Then, as in the proof of Corollary 3.4(a),

idRM = fdRM
v. By [15, Theorem 11.57], TorRi (R(e),Mv) ∼= ExtiR(R(e),M)v = 0 for all

i > 0 and infinitely many e. By Theorem 4.2, idRM = fdRM
v <∞. �

Remark 4.5. Theorem 4.2 can be strengthened: In [5], it is proved that if there exists

dimR + 1 consecutive values of i such that TorRi (R(e),M) = 0 for infinitely many e, then
fdRM < ∞. Further, the techniques there do not require the use of flat covers. An
analogous result holds for Corollary 4.4.
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