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Introduction

Hochster has written “The existence of non-trivial modules of finite projective dimension is almost entirely due
to the present of regular sequences in the ring.”
As evidence of this, consider the following results:
e Koszul Complex: Let (R,m) be local and 1, ...,z, € m. Then K.(z1,...,z,; R) is a finite free resolution of
R/(z1,...,xy) if and only if 1, ..., z, is an R—sequence.
o Auslander-Buchsbaum: Let (R, m) be local, M a finitely generated R—module with pdp M < oo. Then
depth M + pdp M = depth R. In particular, pdp M < depth R.
Ps—1

e Buchsbaum-Eisenbud: Let R be Noetherian and suppose F. : 0 — Fj LN F,_ 1 —— -+ — [y is a complex

of finitely generated free R—modules. For i = 1,...,s, set r; := Z;:i(—l)j_irank F;. Then F. is acyclic if
and only if grade I, (¢;) > i for i = 1, ..., s where if F 2 Gisa map of free modules then I,.(¢) is the ideal

in R generated by all » X r minors of any matrix representation of ¢.

Theorem 1 (Zero Divisor Conjecture (ZDC), Auslander 1961). Let (R, m) be local and suppose M is a module

of finite projective dimension. Any non-zero-divisor on M is a non-zero-divisor on R.

Definition. Let (R,m) be local, M a finitely generated R—module. Say M is rigid if whenever Torl (M, N) = 0
for some finitely generated R—module N, then Torf’(]\/[, N) =0 forall j > 1.

Theorem 2 (Rigidity Theorem). Let (R, m) be a reqular local ring. Then any finitely generated R—module M is
rigid.
The Rigidity Theorem was proved by Auslander in the unramified case (and in particular for regular local rings

containing a field) in 1961. Lichtenbaum proved the theorem for arbitrary regular local rings in 1966.

Conjecture (Rigidity Conjecture (RC), Auslander). Let (R, m) be local, M a finitely generated R—module with

finite projective dimension. Then M is rigid.

Auslander proved that RC implies ZDC. Unfortunately the RC was shown to be false by an example of R. Heitmann
in 1993 of a non-rigid module of projective dimension 3. However, if one modifies the definition of rigid to force N

to have finite projective dimension as well, the conjecture is still open.

Intersection Theorems

If U,V are subspaces of a finite dimensional vector space W, then dimU NV > dim U + dim V — dim W. Similarly,
if X,V are algebraic varieties in A? (for k = k), then dimX NY > dim X + dimY — n. In fact this holds when
X NY is replaced by any irreducible component of X NY,: Let X = Z(P) and Y = Z(Q) where P,Q are primes in
R = k[x1, ..., 2,]. Then an irreducible component of X NY is of the form W = Z(J) where J is a prime minimal over
P + @. Translating this, since dimW =dimR/J = dim R —ht J, dim X =dim R —ht P and dimY = dim R — ht @,
we have ht J < ht P4+ht Q. Thus in k[x1, ..., ], we see ht(P+ Q) < ht P+ht @ for all primes P, Q). This formula does
not hold for arbitrary rings, however. For example, take R = k[z,y, u,v]/(zu—yv) with p = (z,y)R and ¢ = (u,v)R.
Here htp = ht ¢ = 1 but ht(p + ¢) = 3.

Theorem 3 (Serre’s Intersection Theorem, 1961). Let (R,m) be a regular local ring, p,q € Spec R. Then
ht(p + ¢) < htp+ htq.

Corollary 4. Let (R,m) be a regular local ring, M, N finitely generated R—modules such that A(M ®r N) < oo.
Then dim M + dim N < dim R.

Proof. Recall /Anng M ® g N = /Anng M + Anng N and A(M ®g N) < oo if and only if Anng M ®g N is
m—primary. Thus A(M ®r N) < oo if and only if v/Ann M + Ann N = m which is if and only if A(R/ Ann M ®




R/ Ann N) < oco. By taking primes minimal over Ann M and Ann N we can assume M = R/p and N = R/q for
some p,q € Spec R. As p+ ¢ is m—primary, dim R = ht(p 4+ ¢) < htp 4+ ht ¢ = 2dim R — dim M — dim N. a

One might try to generalize the corollary by removing the regular local ring assumption. In this case, one could
conjecture that for (R, m) local with pd M < oo and AM(M ®r N) < oo that dim M + dim N < dim R. (This was
conjectured by Peskine and Szpiro and is still open.) From here, we can slightly tweak the conjecture to just having
dim N < depth R — depth M = pd M.

Theorem 5 (Intersection Conjecture (IC), Peskine-Szpiro 1974, Roberts 1987). Let (R, m) be local, pdp M < oo
and A\(M @ N) < co. Then dim N < pdp M.

By the above arguments, IC is true for regular local rings. Peskine and Szpiro proved it for local rings of

characteristic p and for a large class of rings of equicharacteristic zero. IC was proved for arbitrary local rings by
Paul Roberts in 1987.

Proposition 6. IC implies ZDC.

Proof. Suppose IC holds. We wish to show that if pdp M < oo and p € Assgr R, then p C ¢ for some g € Assp M.
(Then if z is a zerodivisor on R it is also on M). If dim M = 0, done. So assume dim M > 0 and induct on dim M.
Let p € AssR.

Case 1. There exists ¢ € Supp M with ¢ # m such that ¢ O p. Then dim M, < dim M and pdg, My <

oo. By induction, there exists ¢’ € Assg M such that ¢’ R, O pR,, which implies ¢’ D p.

Case 2. p+Ann M is m—primary. Then A\(R/p@rM) < oo (since /Anng(R/p @ M) = \/(p + Anng M)

and so dim R/p < pdy M = depth R — depth M. Then depth M < depth R — dim R/p < 0 since
depth R < dim R/p for all p € Assg R (see [BH] Proposition 1.2.13). Thus m € Ass M and clearly

p < m. 0

Definition. Let M be a finitely generated R—module. Define grade M := inf{i > 0| Ext’ (M, R) # 0}.
Note that grade M = depthy,, . »s R (see [Mats] Theorem 16.6) and grade M < pdp M.

Conjecture (Strong Intersection Conjecture (SIC)). Let (R, m) be local, \(M ®p N) < 0o, pdg M < co. Then
dim N < grade M.

One consequence of SIC would be that if A(M ®r N) < 0o and pdy M < oo, then dim M +dim N < dim R. This
holds as dim N < grade M = depthy,,,, . oy R < ht Anng M < dim R — dim R/ Anng M = dim R — dim M.

Theorem 7 (Bass’ Conjecture (BC), 1961). Let (R, m) be local and suppose there exists a finitely generated

R—module of finite injective dimension. Then R is Cohen Macaulay.
Proof. In 1972, Peskine and Szpiro showed IC implies BC. We will prove this later in the course. O
Definition. Let R be Noetherian, I an ideal of R. Let

superht(I) = sup{ht(IS)|R — S is a ring homomorphism, S is Noetherian, IS # S}.

Example. Let R = k[z,y]/(xy),I = (x). Then ht I = 0 as I is minimal. For S = R/(y) = k[x], we see ht(I.S) = 1.
By Krull’s PIT, ht(I1S") < 1 for all S Noetherian. Thus superht(/) = 1. In general, superht(I) < ug(I) by Krull’s
PIT.

Theorem 8 (Superheight Conjecture (SC), Hochster 1970s). Let (R,m) be local, M a finitely generated
R—module such that pdg M < co. Then superht(Anng M) < pdp M.

Proof. We will see below that this is a consequence of the New Intersection Theorem. O



Remark. SC implies KPIT

Proof. Let I = (1,...,2,) in S and R = Z[Ty,...,T,,] for T; variables. For J = (Ty,...,T},), we see pdg R/J = n.
Then SC gives superht(J) < n. Map ¢ : R — S by T; — ;. Then JS = I and so ht I < superht J < n. ]

Proposition 9. SC implies IC

Proof. Let \(M®pN) < oo and pdp M < co. Want to show dim N = pdp M. Let I = Anng N. Sodim N = dim R/I.
Then A(M ®g N)Moo if and only if v/Ann M + Ann N = m which is if and only if \(M ®g R/I) < oo as [ = Ann N.
Without loss of generality, we may assume N = R/I. By SC, superht(Anng M) < pdgp M. Consider the map
R — R/I. We have ht(Anng M)R/I = dim R/I < superht(Anng M) < pdp M. O

Theorem 10 (New Intersection Conjecture (NIC), Roberts 1975). Let (R, m) be local and F. : 0 — F5 —
Fs_ 1 — -+« — Fy — 0 a complex of finitely generated free R—modules. Suppose F. is not exact and \(H;(F.)) < oo

for all i (that is, F. becomes exact when localizing at any prime # m). Then s > dim R.
Proposition 11. NIC implies SC

Proof. Let (R,m) be local, pdy M < oo. Let R — S be a ring homomorphism, S Noetherian. Let @ be a minimal
prime over (Anng M)S such that ht Q = ht(Anng M)S = ht((Anng M)S)q. Let ¢ = ¢~1(Q). Then we have a
homomorphism R, — Sq. Note ((Anng M)S)qg = (Anng, M,)Sq. Thus ht(Anng, M,;)Sq = ht(Anng M)S. Also
pdg, My < pdp M. Hence we may assume ¢ : (R, m) — (S5,n) is a homomorphism of local rings and V/(Anng M)S =
n. I n particular, ht(Anng M)S = dim S.

Let F. be a minimal free resolution of M as an R—module. Say F. =0 — F., — F,_1 — --- — Fy — 0 where
r =pdr M. Let Q € Spec S with Q # n and set ¢ = ¢~ !(g). Since Q 2 (Anng M)S, ¢ 2 Anng M and thus M, = 0.
Hence F. ®pg R, is exact. Since F. is free, F. ® R, is in fact split exact. Thus (F. ®r Ry) ®r, Sq = F. ®r Sq is split
exact. Consider F. ®g S, a complex of free S—modules. Note Hy(F. ®r S) = M ®r S # 0 as M # 0 and the map
R — Sislocal. So F. ®g S is not exact. Since F. ®pr Sg is exact for all Q # n, A(H;(F. ®r S)) < oo for all i. By
NIC, r > dim S = ht(Anng M)S. O

Conjecture (Direct Summand Conjecture (DSC), Hochster 1971). Let (R, m) be a regular local ring and S
a module finite ring extension of R. Then R is a direct summand of S as an R—module; that is, there exists an
R—module map ¢ : S — R such that ¢(r) = r for all T € R.

Conjecture (Monomial Conjecture (MC), Hochster 1970s). Let (R, m) be local and x1,...,xq a system of pa-
rameters for R. Then for allt > 1, 2t -- 2!, & (zt+ zf;'l).

Exercise. Prove MC holds for all Cohen Macaulay rings.

In 1983, Hochster proved DSC was equivalent to MC and that DSC implies NIC. He also proved DSC and MC
hold for Noetherian local rings containing a field. Hochster also proved DSC for arbitrary local rings of dimension

at most two. In 2002, DSC was proved for arbitrary local rings of dimension three by R. Heitmann.

Definition. Let R be a ring, @ the total quotient ring (that is, Q = Rw for W = {non-zerodivisors of R). An
R-module M has a rank if M ®r @ is a free module. If so, we set the rank M to be rankg M ®p Q.

The rank is not always defined, but if for example M has a finite free resolution then it is.

Definition. Let (R, m) be local, M a finitely generated R—module. Let --- — F; LN Fi_1— - 2, Fy 2o, M — 0
be a minimal free resolution of M. The it" syzygy of M is defined to be ker ¢;_1 = im ¢;. This is unique up to
isomorphism and we denote the it" syzygy of M by syzZ(M). If L is an R—module such that L = syzl*(M) for some
M, then we say L is an it" syzygy.



Conjecture (Syzygy Conjecture, Evans-Griffiths 1981). Let (R,m) be local, L a non-free finitely generated i'"
syzygy of finite projective dimension. Then rank L > i.

This was proved for rings containing fields by Evans and Griffiths in 1981. In 1983, Hochster showed DSC implies
the Syzygy Conjecture.

Definition. Let (R, m) be local, x = x4, ..., x4 a system of parameters for R. An R—module M (not necessarily finitely
generated) is called a (Big) Cohen Macaulay Module for x if (x1,..,2q)M # M and x1,...,xq is M—regular.

Conjecture (Big CM Conjecture). Every system of parameters in any local ring has a big CM module.

Hochster proved this result for rings containing a field in 1974 and proved it implies DSC in 1983. In 1992,
Hochster and Huneke proved if R is an excellent local ring of characteristic p, then R has a Big CM algebra. [For
R a domain and R™ the integral closure of R in an algebraic closure of the quotient field of R, BT is a big Cohen
Macaulay algebra.] In 2003, Hochster showed R has a big Cohen Macaulay algebra for dim R < 3 using Heitmann’s
proof of DSC in dimension 3.

Conjecture (Small CM Conjecture). If (R, m) is a complete local ring, then R has a finitely generated maximal

Cohen Macaulay module.

It is clear that the Small CM Conjecture implies the Big CM Conjecture: If M is a finitely generated maximal
Cohen Macaulay module for R then it is a Big Cohen Macaulay module for R.

In summary, we have the following conjectures/theorems and implications thus far.

Small CM

*

Big CM

Syzygy Conj (NIC) (SIC)

(ZDC) Bass’ Conjecture

Furthermore, we have proved all of the implications with an asterisk. Our goal now is to prove the other implica-
tions, and to give a proof in characteristic p of the Big CM Conjecture. To do that, we first need to build up some

necessary machinery.

Let R be Noetherian, @ the total quotient ring (Q = Ry for W = R\ {P, U---U P,} where P; are the maximal
associated primes of R). Note the maximal ideals of @) are P;Q and so @ is semilocal.

Exercise. (From [BH]) If R is semilocal and M is a finitely generated R—module then M is free if and only if M,,

is a free R,,—module for all maximal ideals m and rank M,,, = rank My, for all maximal ideals m;, m;.

Definition. If ¢ : M — N is an R—linear map, define rank ¢ := rankim ¢ (if im ¢ has a rank).



Proposition 12. Let R be Noetherian and F 2, Fy — M — 0 exact where Fy, Fy are finitely generated free
R—modules. The following statements are equivalent:
(1) rank M = r.
(2)
(3) For allp € Assg R, M), = R.
(4) rank ¢ = rank Fyy — 7.

There exists an exact sequence 0 — R™ — M — T — 0. where T is torsion

Proof. (1)=(2): Suppose Q" = M®rQ = Mw = (Rw)". Choose z1, ...,x, € M such that 5, ..., &= is
an Ry, —basis. Then x4, ..., z, are R—linearly independent. So we have 0 - R — M — M/R" — 0
where the first map is defined by r; — x;. Localizing at W gives us (M/R")w = 0. Thus M/R" is
torsion.

(2)=(1): Localize at W to get 0 — Ry, — Mw — 0. Thus My is a free Ry —module of rank r.

(1)=(3): Let Mw = Ry Now My, = (Mw )pry = (Rw)pp,, = R, for all p € Assg R.

(3)=(1): The maximal ideals of Ry are pRy for p € Assg R maximal. So M, is free of rank r for
all maximal ideals of Ry . Now apply the exercise.

(3)=(4): We have 0 — im ¢ — Fy — M — 0 is exact. Localize to get 0 — (im ¢), — (Fp)p, — M, —
0. Since M, is free of rank r, the sequence splits. Thus (im ¢),, is free of rank equal to rank Fy — r.
By (3)=-(1), this says rankim ¢ = rank F — r.

(4)=(3) We first need to prove the following fact.

Fact. Let (R,m) be local. If depth R = 0 and pdp M < oo, then M is free.

Proof. Take a minimal free resolution of M : 0 — Rt L), ptey o Rl
M — 0. Then a;; € m = (0 :g z) for some x € m as m € Ass R. Let x denote a
column vector with « in every row. Then (a;;)X = 0 and thus a,; is not injective.

This is a contradiction unless 7 = 0 and M = R'o. O

Now rank ¢ = rank Fy — r. We have 0 — (im¢), — (Fy)p, — My — 0 where (im¢), is a free
R,—module. Thus dep M, < oo but p € Assg R. So depth R, = 0. By the fact, M, is free of rank
Fy — rank ¢ for all p € Ass R.

O

Proposition 13. Let R be Noetherian, 0 — A — B — C — 0 an exact sequence of finitely generated modules. If
any two of A, B, and C have a rank, then so does the third and rank B = rank A 4 rank C.

Proof. Without loss of generality, we may assume (R, m) is local and depth R = 0. If C is free, the sequence splits
and we are done. If A, B are free, then pd C' < co. Then C is free as depth R = 0 and again the sequence splits. [

Corollary 14. Suppose 0 — F, L F._4 $r, LBy Fy is an acyclic sequence of finitely generated free

R—modules. Then rank ¢; = Y "_.(—1)? 7 rank Fj.

j=i
Proof. Recall rank ¢; = rankim ¢;. Use the sequence 0 — F. — --- — F; — im¢; — 0 along with the proposition
and induction to show that im ¢; has a rank and it is equal to Z;zi(fl)j*i rank F. O

Question. When does a finitely generated R-module M have a rank? If:

e R is a domain.

e M has a finite free resolution (that is, M has a free resolution of finite length consisting of finitely generated
free R-modules).

e (R,m) is local and pdp M < oo

e M is a finitely generated projective module and R has no nontrivial idempotents.

e M is projective and rank M, = rank M,, for all minimal primes p, gq.



Definition. Let A be an m X n matriz with coefficients in some ring R. For 1 < r < min{m,n}, let I.(A) be the
ideal generated by the r-sized minors of A. [For r <0 we let I.(A) = R and for r > min{m,n} we let I.(A) =0.]

Facts.

o I.(A) CI,_1(A) for all r (since an r-sized minor can be written as a linear combination of r — 1-sized minors).

e 1,(AB) C I(A) N I,(B)

e Suppose ¢ : F' — G is a homomorphism of finitely generated free R—modules and A, B are two matrices
representing ¢ with respect to bases of F' and G. Then A = UBV where U,V are invertible. Thus I,.(A) =
I.(B) for all r (by the preceding fact). Thus, we may define I,.(¢) to be I.(A) where A is any matrix
representing ¢.

e If Ris a field and rank A = r, then I,,(4) = R and I,41(A) = 0.

e If Sis an R—algebra, 9 @ 1: FQr S — G ®g S, then I.(¢p ® 1) = I,(¢)S for all r.

Proposition 15. Let R be a ring, Fy 2, Fy - M — 0 a finite presentation (so Fy,Fy are finitely generated free
modules). Let p € Spec R,t € Z. The following are equivalent.

o [,(¢) Z p.

o (im¢), contains a free direct summand of (Fy), of rank t.

o (M) <rank Fj —t.

Proof. Without loss of generality, we may assume R is local and p = m. Let the bar notation represent passage to
R/m. Then

e I;(¢) = R if and only if I;(¢) = R/m.

o (M) = pu(M/mM) = dimg/,, M/mM and rankp Fy = rankg/, Fo/mFp.

e im ¢ contains a free summand of F of rank ¢ if and only if im ¢ contains a free summand of Fyy of rank t.

Proof. One direction is clear. Suppose im¢ = (im ¢ + mFy)/mF, contains a free summand of Fy/mF, of
rank ¢. Then there exists uq,...,u; € im¢ such that @y, ...,u; € Fy/mF, are part of a basis for Fy/mFjp.
By Nakayama’s Lemma, u1, ..., u; form part of a basis for Fy. Thus U = Ru; + ... + Ru; C im ¢ is a direct

summand of Fy of rank ¢. O
Hence the proposition holds if and only if it does over a field, which is clear. O

Proposition 16. Let R be a ring, Fi 2, Fy — M — 0 a presentation. The following are equivalent
(1) 1:(¢) Z p, L141(9)p = 0.
(2) (im @), is a direct summand of (Fy), of rank t.
(3) M, is free of rank Fy —t.

Proof. Assume (R, m) is local, p = m. Note that (2) < (3) follows from the sequence 0 — im¢ — F — M — 0.
For (2) = (1), choose a basis so ¢ has the identity matrix in the upper left corner and zeros everywhere else. For
(1) = (2), the previous proposition says im ¢ contains a free direct summand of rank ¢. Thus ¢ = (Itox‘ ,03) B #£0,
there exists a nonzero (¢ 4+ 1)—sized minor, a contradiction. So B = 0 and im ¢ is a direct summand of rank ¢t. [

Corollary 17. Let R be a ring, Fy 2, Fy — M — 0 a presentation. The following are equivalent

(1) M is projective of rank equal to rank Fy — ¢

(2) 1i(¢) = R, I111(¢) = 0.
Proof. For (1) = (2), since r := rank M = rank Fy —t = r, we have M, = R} for all p € Ming R. As M is projective,
M, = R} for all ¢ € Spec R (as each ¢ contains a minimal prime). By the proposition, I;(¢) ¢ ¢ for all ¢ € Spec R
and I;41(¢)q = 0 for all ¢ € Spec R. Thus I(¢) = R and I;41(¢) = 0.

For (2) = (1), we have I;(¢) ¢ q and I;41(¢)q = 0 for all ¢ € Spec R. Thus M, is free of rank equal to rank F —¢

by the proposition. Therefore, M is projective. Additionally, if R is Noetherian, then M has a rank. O



Corollary 18. Let R be Noetherian, ¢ : F — G a map of finitely generated free R—modules. The following are
equivalent

(1) rank ¢ =r.

(2) gradel, (¢) > 1 and I,41(¢) = 0.

Proof. For (1) = (2), (im ¢), is a free R,—module for all p € Assg R. Therefore 0 — (im ¢), — G, — coker ¢, — 0.
Now pd(coker ¢,,) < oo and depth R, = 0 imply coker ¢, is free. Thus (im ¢), is a direct summand of G, of rank r.
Hence I,(¢) ¢ p for all p € Ass R and I,41(¢), = 0 for all p € Ass R. Therefore, I,(¢) contains a non-zerodivisor
and I,41(¢) = 0.

Note (2) = (1) follows directly from the second proposition. O

Definition. Let R be a ring and G. : 0 — G LN G141 — -~ #, Gy — 0 be a complex of R—modules. Say G. is
split acyclic if it is acyclic and ¢;(G;) is a direct summand of G;—1 for all i > 1. Equivalently, G is split acyclic if
0—im¢; — Gi—1 — ime;—1 — 0 is split exact for all i > 2 and 0 — im ¢ — Gy — Ho(G.) — 0 is split exact.

Remark. If G. is split acyclic, so is G. ® g M for any R—module M.

Definition. Let R be a ring, M an R—module, and p € SpecR. Say p € Assp M if p = (0 :gr x) for x € M.
Equivalently, if there exists a injective map R/p — M.

Note. If R is Noetherian and M arbitrary, then Assgp M = ) if and only if M = 0.

Lemma 19. Let (R,m) be quasi-local, M and R—modules, and suppose m € Assg M. Let ¢ : F — G be a map of
finitely generated free R—modules. The following are equivalent:

(1) ¢ is a split injection.

(2) 9Qr 1y : F@r M — G®g M is injective.

(3) ¢: F/mF — G/mG is injective.

Proof. Note that (1) = (2) is clear and we leave (3) = (1) as an exercise. For (2) = (3), note that there exists a

map 0 — R/m — M as m € Assg M. So we have the commutative diagram

F®RR/m—¢>G®RR/m

|

00— FQRrM — GQRr M

where the down arrows are injective as F, G are flat. Thus the top horizontal arrow is injective by commutativity of

the diagram. O

Proposition 20. Let R be a ring, M an R—module, p € Assg M. Let F. =0 — F P, Fe gy — - o, Fy—0bea
complex of finitely generated free modules. The following are equivalent:
(1) F. ®gr M, is acyclic.
(2) (F.)p is split acyclic.
(3) Foralli=1,...,s, I, (¢;) ¢ p where r; = Z;:i(—l)j_irank F;.
Furthermore, if (1), (2), or (8) is satisfied, then for all i we have I(¢;), =0 for t > r,.
Proof. Without loss of generality, we may assume (R, m) is quasilocal and p = m € Assg M.
(1)=(2): For s = 1, we have 0 — F} &, Fy — 0. By assumption, 0 — F; @ g M — Fy ®r M is
injective. By the lemma, ¢ is a split injection. Suppose s > 2. Let F/ : 0 — Fy — --- — F; — 0.

Then F/ ® M is acyclic. By induction, F’ is split acyclic. Therefore ¢;(F;) is a direct summand of
F;_ foralli>2and 0 — im ¢o — F; — coker ¢ — 0 is split exact. Thus coker ¢ is free. We have



F,opr M $2®1, Fy, ®g M — Fy ®r M is exact. Now (coker ¢2) @ g M =2 Fy @ M/im(¢py ® 1) =
Fy ®r M/ ker(¢1 ® 1) — Fy @ M. Consider the following commutative diagram:

¢
coker ¢q — - - F 0

|

F1/ker ¢y

where again recall that coker ¢ is free. By the argument above, tensoring the top arrow with M
yields an injection. By the lemma, we have that coker ¢o — Fj is a split injection. Thus, the natural
surjection coker ¢po = Fy/im¢o — Fy/ker ¢; is injective as well, which implies im ¢po = ker ¢; and
¢1(F1) is a direct summand of Fj.

(2)=(1): Clear by the remark

(2)=(3): As F is split acyclic, F. := F. ®g R/m is split acyclic. Now 0 — Fy — Fy_q — -+ — F; —
im ¢; — 0 is exact with rank ¢; = dim ¢; = 7. Thus I,.,(¢;) # 0, which implies I,., (¢;) ¢ m for all i.

(3)=(2): We use induction on s. For s = 1, we have 0 — F} 2, Fy — 0. Now r; = rank F}. By
assumption I, (¢1) ¢ m and so I, (¢1) = R. Of course, I, +1(¢1) = 0 as r; = rank Fy. Thus im ¢,
is a direct summand of Fj of rank r;, which implies ¢, is injective (as F; and ¢(F;) have the same
rank) and ¢, splits.

Let s >1and F' :==0— Fy — --- — F; — 0. By induction, F” is split acyclic. Thus it is enough

to show im ¢o = ker ¢; and ¢ (F}) is a direct summand of Fy. Now coker ¢ = Fy/im ¢y is free of
rank 71 (since F” is split acyclic). By assumption, I, (¢1) ¢ m. By a previous proposition, im ¢;

contains a direct summand U of F of rank r;. Let 9 be the composition of the following maps:
Cokerd)g = Fl/lmd)g - Fl/kergbg - 1m¢)1 — U.

Since v is a surjective homomorphism of free modules of the same rank, v is an isomorphism. Thus,
im ¢ = ker ¢1 and im ¢; = U, a direct summand of Fy. Thus F. is split acyclic.
For the last statement, note that since 0 — Fy — --- — F; — im ¢; — 0 is split exact for all ¢,

im ¢; is free of rank r;. By one of the previous propositions, I;(¢;) = 0 for all ¢t > r;.

O

Remark. Let R be Noetherian and suppose F. : 0 — F LN Fy_q—--- N F, 2, M — 0 is exact with F; finitely

generated free. Then rank ¢; = >-°_,(—1)7~" rank F}.

Proof. By truncating, it is enough to show the ¢ = 0 case. Let p € Assg R and localize to get (F.), is exact. Since

depth R, =0, (im¢y), = M, is a free R,—module. Thus the sequence (F), splits. a
Corollary 21. Let R be a ring, F. : 0 — F; 2, Fo_1 — --- LN Fy L0, M - 0 is exact. Then r; =

Z;:i(—l)j_i rank F; > 0 for all i.
Proof. Fix bases for all the F; and let A; be the matrix representation of ¢;. Let S be the subring of R generated
by the prime subring of R together with all entries from the A;’s. Then S is Noetherian. Let G; denote the free
S—module of rank equal to rank F; and let ¢; : G; — G;4+1 be defined by multiplication by A;. Certainly A;_1A4; =0
(in R and thus in S). So G. is a complex of finitely generated free S—modules and G. ® g R = F. is acyclic. Let
p € Assg R. Then G. ®g R, is acyclic, which implies by the proposition that (G.), is split acyclic. By the Noetherian

case, we have 0 < rank¢); = 327 (1) "' rank G; = r; for all 4. O



Let R be a ring, M an R-module and z = x, ..., x, elements of R. The Cech complex C" (z; R) of R with respect

to z is defined to be the cochain complex
n

X0 — R R—0).
=1

The Cech complex C"(z; M) is defined to be C"(z; R) ®p M. It is easily seen (by induction) that

CwMi= @ My,

1<j1<j2<--<ji<n
The ith cohomology of C"(z; M) is called the ith Cech cohomology of M with respect to z and is denoted H @(M ).
If R is Noetherian then fo)(M) is isomorphic to the ith local cohomology of M with support in the ideal (z). This

is not the case in general. However, one can still show that Cech cohomology with respect to z and y are isomorphic

if (z) = (y), or in fact even if \/(z) = \/@

Proposition 22. Let z = x1,...,x, € R and M an R—module. Then for all i and for all u € H(lz)(M) there exists
¢ such that (z)‘u = 0 (that is, Hiz)(M) is (x)—torsion).

J

flat, H{,)(M)o, = Hiy)p(Ma,) = Hipyp, (Ma,) = Hiy (My,) = 0 for all i O

Proof. It is enough to show there exists £; such that xﬁju = 0. Equivalently, H Zw)(M )z, = 0. Since localization is

Proposition 23. Let x = x1,...,2, € R and M an R—module. Suppose ()M # M. Then there exists i such that
Hi,y (M) #0.

Proof. Suppose H@)(M) = 0 for all 4. Then 0 — M 2% OM,, S, Sy My, ...n, 2, 0 is exact. Let
K; = ker ¢;. We will show by induction that Torf‘(R/(g),Kn_i) = 0 for all j and 7 > 0. [Note that M = K. If
the claim holds, then M/zM = Torf(R/(z), Ko) = 0 implies M = (z)M.] For i = 0, we see K, = My,...p,. So
Torf(R/(g), My, .0,) = Torf(R/(g), M)y g, = Torf(O, My, ...p,,) = 0 (where the first equality holds as Ry, ..., is
flat). Fori > 0,let C*~! = C*~!(x; R). Then we have 0 — K;_; — C*"'@rM — K; — 0. Now Torf/(R/(@)7 Ci—logr
M) = Torf(R/(g); M)®pC*! 20 for all j as the Tor is annihilated by (z) and C*~! is a direct sum of localizations
at subproducts of z; - - - x,,. By induction and the long exact sequence on Tor, we have Torf(R/(g), K;_1) =0 for
all j. O

Definition. Let I = (z) be a finitely generated ideal and M an R—module. Define grade(I, M) = sup{k|H:(M) =
0 for alli < k}.

Note that by the Proposition, if I is a finitely generated ideal and IM # M then grade(I, M) < oo. Also
grade(, M) > 0 if and only if HY(M) = 0 if and only if (0 :p; I) = 0 which is if and only if Hompg(R/I, M) = 0.
If R is Noetherian and M is finitely generated, we know (by primary decomposition) that grade(l, M) > 0 if and
only if I contains a non-zero-divisor on M. However, this does not hold if R is not Noetherian or M is not finitely
generated, as the following examples show:

Example. Let R = k[z,y](z,), m = (2,y)R, and M = &{R/p where the sum is over all height one primes p of
R. Note every element of m is a zero-divisor on M (for f € m \ {0}, we have f € p for some height 1 prime p and
so f(uq) = 0 where u; = 0if ¢ # p and uy, = 1 if ¢ = p). However, grade(m, M) = 0, that is (0 :ay m) = 0. Let
(ug) € (0:ar m) so muy =0 in R/q for all q. As m ¢ ¢, we have u, = 0.

Example. Let R and M be as above and set S = R x M = {(r,m)|r € R,m € M} with (r1,mq) - (ra,ma) =
(rira,r1mo + romyq), the idealization of M. Then S is a commutative quasi-local ring with maximal ideal m x M.

Then n = mS consists of zerodivisors on S, yet grade(n, S) > 0.

Lemma 24. Suppose I C J are finitely generated ideals, M any R—module. Then grade(I, M) < grade(J, M).



Proof. By induction, it is enough to show the case J = (I, z). Then we have the long exact sequence
o HYH M), — HY (M) = H{ () = (M), = -+
If i < grade(I, M) then H%(M) = 0 which implies ¢ < grade(J, M). O
By virtue of this lemma, we can make the following definition:
Definition. Let I be an ideal of a ring R and M an R-module. We set
grade(I, M) := sup{grade(J, M)|J C I,J f.g.}.
If (R, m) is quasilocal, we define depth M := grade(m, M).

Proposition 25. Let R be a ring, I an ideal and M an R—module.

(1) grade(I, M) = grade(v/I, M)

(2) If R — S is flat, grade(I, M) < grade(IS,M ®p S)

(3) If R — S is faithfully flat, grade(I, M) = grade(IS,M ®p S)
(4) For any ring homomorphism R — S and S—module M, gradeg (I, M) = gradeg (IS, M).
(5)

5) Suppose 0 = A — B — C — 0 is exact. Then

grade(I, B) < min{grade(/, A), grade(I,C)},
grade(I, A) < min{grade(/, B),grade(I,C)+ 1},
grade(I,C) < min{grade(I,C),grade(l, A) —1}.

(6) Ifz € I is a non-zerodivisor on M, then gradep (., (I/(x), M/xM) = gradeg (I, M/xM) = gradeg (I, M) —1.
(7) If I is finitely generated, then there exists p € Spec R with p O I such that grade(I, M) = grade(pR,, M) =
depth M,,.

Definition. Let M be an R—module and x1,...,x, € R. We say x1,...,x, is a weak M—sequence (or weakly

M —regular) if x; is a non-zerodivisor on M /(x1,...,x,)M for all i.

Note that any M —sequence is a weak M —sequence. Furthermore, if M = 0 then any sequence is a weak M-

sequence. Now let
Grade(I, M) = sup{n| there exists a weak M —sequence of length n in I'}.

Note that Grade(Z,0) = oo = Grade(R, M) for any ideal I and R-module M. Furthermore, by part (6) of the
Proposition on grade, Grade(I, M) < grade(I,M). If R — S is faithfully flat, Grade(I, M) < Grade(IS,M ®pr 5)
and grade(I, M) = grade(IS, M ®g S).

Notice that if x € I is a non-zero-divisor on M and xM = M, then Grade(I, M) = oo = grade(I, M). Perhaps
because of this, Bruns and Herzog adopt the convention that grade(I, M) = Grade(I, M) = oo if IM = M. However,
this differs from our conventions, as shown by the following example:

Example. Let R = Z), m = (2)R, and M = Q/Z,). Then every element of m is a zero-divisor on M, mM = M
and grade(m, M) = 0 = Grade(m, M).

Lemma 26. Let R be a ring, I C R, M an R—module. Let T be an indeterminate over R. If grade(I, M) > 0 then
Grade(IR[T], M[T]) > 0 where M[T] = M ®@r R[T).

Proof. Note that grade(I, M) > 0 implies grade(J, M) > 0 for some finitely generated ideal J contained in I. Thus,
(0:p J)=0. Let J = (ay,..., at).
Claim. ait+ ... + ant™ is a non-zero-divisor on M|[T].
Proof. If a1t + ... + apt™ is a zero-divisor on M|[T] then Nick’s exercise (Homework set 1) says there
exists m € M \ {0} such that (a1t + ... + apt™)m = 0. Then Jm = 0, a contradiction.



Thus Grade(IR[T], M[T]) > 0 as a1t + ... + ant™ € IR[T]. O
Proposition 27. If grade(I, M) > s, then Grade(IR[Th, ..., Ts|, M[Ty, ..., Tg]) > s.

Proof. The s = 1 case was proved in the lemma. So suppose s > 1. By the s — 1 case, there exists fi, ..., fs_1 € I :=
IR[Ty,...,Ts—1] which is a weak M= MIT1, ..., Ts—1]—sequence. Then grade([, M/(fl, ey fs—1)M) = grade(I, M) —
s —1 = grade(/, M) —s—1 > 1 since R — R[T1,...,Ts_1] is a faithfully flat extension. By the lemma,
Grade(IR[T.), M /(f1, ..., fs—1)[Ts]) > 1. As M/(f1, ..., fo—1)[Ts] = M[Ty, ..., Ts]/(f1s o, fo—1)M[Ty, ..., Ts], we see
that Grade(IR[T1, ..., Ty|, M [Ty, ..., Ts]) > s. O

Corollary 28. With I, M as above, we have

grade(I, M) = lim Grade(IR[T}, ..., T,], M[T1, ..., T,])
= sup{Grade(IS,M @ S) | R — S faithfully flat}.

Remark.

(1) Let R be a ring, I finitely generated ideal, M an R—module. Let S be the subring of R generated over the
prime subring by a generating set for z1,...,xz, for I. Let J = (z1,...,2,)S. Then S is Noetherian and
gradep (I, M) = gradeg(J, N).

(2) Suppose R is Noetherian of dimension d. Then for every ideal I of R and R-module M such that IM # M,
we have grade(I, M) < d. In particular, if R is local and mM # M, then depth M < dim R.

Proof. Without loss of generality, we may assume R is local. Then H(M) = 0 for all i > d and for all
R-modules M. Hence, grade(I, M) < d. O

(3) Suppose R is Noetherian, I C R and M an R—module. Then grade(I, M) > 0 if and only if I Z p for all
p € Assg M.

Proof. grade(I, M) > 0if and only if (0:p7 I) =0.If (0:p7 ) = 0 then I ¢ p for all p € Assg M. Conversely,
suppose (0 :p7 I) # 0. Then Iz = 0 for some z € M \ {0}. Consider N = Rz C M. As N is finitely generated,
I C p for some p € Assg N C Assp M. O

Definition. Let R be a ring and M an R—module and ¢ : F — G where F,G are finitely generated free. Then
rank(¢, M) = r if and only if grade(I,.(¢), M) > 1 and I,41(¢p)M = 0. If M = 0, set rank(¢, M) = 0.

Note by a previous result we have rank ¢ = rank(¢, R) if R is Noetherian.

Lemma 29. Let R be a ring, M an R—module, ¢ : F — G a map of finitely generated free R—modules and
r=rank F. Then F.Qr M — G. ®g M is injective if and only if grade(I,.(¢), M) > 1.

Proof. Let S be the Noetherian subring generated by the entries of a matrix representing ¢. Let F’,G’ be free
S—modules of the same rank as F,G respectively and let ¢ : F/ — G’ be given by the same matrix as the one

representing ¢. Clearly, the following diagram commutes:

®1
F.’®SRL>Gf®sR

iu(ﬁ lu

F G




Thus I (¢)R = I,(¢) which implies grade(I,(v)), M) = grade(I,(¢), M). Now, consider the commutative squares

F/®SM G/®SM

T

(F' s R)@r M —— (G’ ®s R) @r M

)

ForM G®r M.

Hence F @ g M — G ®pr M is injective if and only if F’ ®s M — G’ ®g M is injective. Thus we may assume R is
Noetherian.
Let K be the kernel of the map F ® g M KLIN G ®r M. Then Assp K C Assgp M. So

¢ ®gr 1 1is injective & K =0
& K,=0forall pe Assgp M
& (¢®1),: F®r M, — G®r M, is injective for all p € Assp M
& I.(¢) ¢ plorall pe Assg M (by Prop 20)
< grade(I.(¢), M) > 1. O

Proposition 30. Let R be a ring, M # 0 an R—module, F. the complex 0 — F; P, Fs_ 1 — - 2, Fy — 0.
Suppose F. @r M is acyclic. Then rank(¢;, M) =r; fori=1,...,s.

Proof. As above, we reduce to the case where R is Noetherian. Let p € Assp M. Then F. ® g M), is acyclic, which
implies I, (¢;) ¢ p and I, 41(¢;), = 0 for all i by Proposition 20. Thus grade([,,(¢;), M) > 1. Fix ¢ and let
I =1.,+1(¢;). We want to show IM = 0. If IM # 0, choose z € M such that Iz # 0. Let p € Assg Iz C Assg M.
Then (Iz), # 0 implies I, # 0, a contradiction. Thus rank(¢;, M) = r;. O

Exercise. Let R be aring, I, J ideals, and M an R—module. Then grade(INJ, M) = min{grade(I, M), grade(J, M)}.

Exercise. Suppose N.:--- — N; —» N;_; — --- — N; — Ny — 0 is an exact sequence of R—modules. Let x € R
be weakly N;—regular for all i. Then N. ® R/(z) is exact.

Lemma 31. Let (R,m) be a quasi-local ring, ¢ : F — G a map of finitely generated free R-modules, and M an
R—module. Let C = coker(F @gr M — G ®@g M). Suppose that I.(¢) = R and I,+1(¢)M =0 for some r. Then C is

isomorphic to a direct sum of finitely many copies of M.
Proof. As I.(¢) = R, im ¢ contains a direct summand of G of rank r. By choosing an appropriate basis, ¢ has the

1, 0 . . . . . .
form (0 B)’ where 1, denotes the r x r identity matrix. With respect to this basis, let ¢ : FF — G be the map

1, 0 . . .
given by o ol The result follows if we show im(¢ ® 1p) = im(¢) @ 1p7). Let B = (b;;). Its enough to show

bi; M = 0 for all 7, j. But note that, with respect to this basis, each b;; is an r + 1-sized minor of ¢. Hence, b;; M =0
by hypothesis. O

Theorem 32 (Buchsbaum-Eisenbud, Northcott). Let R be a ring, M an R—module. Let F. denote the complex
0 — F LN Fy o, Fy — 0. Then F. @ g M is acyclic if and only if grade(I,(¢;), M) > i fori=1,...,s where

r; are the expected ranks.

Proof. As usual, we may assume R is Noetherian (by adjoining the entries of the matrices to the prime subring of
R). First, we assume that F' @ g M is acyclic and use induction on s. The case when s = 1 is done by Lemma 29. So
suppose s > 1. We want to show grade(I,,(¢;), M) > i for ¢ = 1, ..., s. By Proposition 30, rank(¢;, M) = r;. Hence
grade(I,,(¢:), M) > 1 for all 4. By an exercise, grade(N;_, I, (¢;), M) > 1. By passing to a faithfully flat extension S

[



of R we can assume that there exists © € N?_; I, (¢;) which is weakly M —regular. (Note that the hypotheses and the
conclusion are stable under passage to faithfully flat extensions.) Consider 0 — Fs @ g M — - - #2081, Fi®r M —
coker g ® 1 — 0, which is exact. Also 0 — coker(¢o ® I) — Fy ®g M is exact. As z is weakly M —regular,
x is weakly regular on F; ® g M for all i and is weakly regular on coker(¢s ® 1). By the second exercise above,
0— FsQrM/xM Lol 229l gy ®M/xzM — 0 is acyclic. By induction on s, grade(I,,(¢;), M/xM) > i—1 for
i1 =2,...,s. Thus grade(I,,(¢;), M) > for i = 2,..,s. Since we already have grade(I,, (¢1), M) > 1, we are done.
Conversely, assume that grade(I,,(¢;), M) > i for all i = 1,...;s. We will use induction on the length s of
the complex. The case when s = 1 is again done by Lemma 29, so we assume s > 1. Let F’ denote the complex
0— F, P, Fo g — - f2, F1 — 0. By induction, F ® g M is acyclic. For each i = 1,..,s, let M; = coker(¢;+1®17).
We need to show Fo g M — F} g M — Fy @r M is exact at F; ®g M. Its enough to show the induced map

M; — Fy ®g M is injective. Note by exactness of F’, that 0 - M; 1 — F; @ g M — M; — 0 is exact for all i > 1.

Claim. For all p € Spec R and for all ¢ > 1, depth(M;), > min{depth M,,i}.

Proof. We use induction on s —i. Note that My = F; ® g M, and hence depth(M;), = depth M, for
all primes p. Now suppose ¢ < s and assume that the claim holds for M. By localizing, we may
assume (R, m) is local and p = m. (Note that if M = 0 we are done.) By the short exact sequence

above,
depth M; > min{depth(F; ® g M), depth M; 1 — 1} = min{depth M, depth M, — 1}.

Suppose first that depth M > i+1. Then, as depth M, 1 > min{depth M, i+1}, we have depth M;
i. Suppose now that depth M <. Since grade(I,,,, (¢i41), M) > i+1 (by assumption), I, (¢iy1) =
R.Sincei+1 > 2 and F/®r M is exact, rank(¢;1+1, M) = ;41 by Proposition 30 and so I;(¢;+1)M =
0 for all ¢ > r;41. By Lemma 31, M; is isomorphic to a direct sum of finitely many copies of M, and
hence depth M; = depth M.

Let N = ker(M; — Fy @g M) = Hi(F. ®p M). We want to show N = 0. Its enough to show N, = 0 for all
p € Assp My. Let p € Assp M;. Then 0 = depth(M7), > min{depth M,,1} which implies depth M,, = 0. Then
p € Assg M. Since grade(I,,(¢;), M) > i for all § > 1, I,,(¢;) ¢ p for all i. By Proposition 20, (F. ® g M), is (split)
acyclic which implies N, = H;(F. @ M), =0 for all p € Assgp My. Thus N = 0. O

Y

Corollary 33. Let 0 — Fj 2, Fe g1 — - o, Fy 2, N = 0 be evact where F; are finitely generated free R-modules.
Let K; = ker ¢;_1. Then for all p € Spec R and all i > 1, depth(K;), > min{depth R,,3}.

Proof. In the Claim in the proof of Buchsbaum-FEisenbud, M; = K; for all . O

Theorem 34 (Hilbert-Burch). Let (R, m) be a Noetherian, local ring and I C R an ideal such that pdg R/I = 2.
Then the minimal resolution of R/I has the form 0 — R™ 2 R S R — R/I — 0 where n+1 = ur(I). Moreover,
I = zI,(¢) for some non-zero-divisor x. Conversely, let A be an (n + 1) X n matriz with entries in m and suppose
grade I,(A) > 2. Let v : R"™ — R be the map which sends the ith standard basis element e; to (—1)'A;, where A;
is the n x n. minors of A obtained by deleting the i'" row. Then the sequence 0 — R™ A Rt YR R/I,(A) — 0

s exact.

Proof. We prove the ‘converse’ first, so suppose A is as above with grade I,,(A) > 2. Using cofactor expansion, one
can show that [(—1)Aq,...,(—=1)"A,]A = 0. (This is left as an exercise.) Thus 0 — R" A R Y Risa complex.
But I;(¢) = I,(A) and so grade I1(¢) > 1. By Buchsbaum Eisenbud, the complex is acyclic.

Now suppose I is an ideal and pd R/I = 2. A minimal resolution of R/I has the form (#)0 — R™ 2, grtt 2,
R = R/I — 0. Since this sequence is exact, we must have 1 — (n 4+ 1) +m > 0, or m > n. Also n+1 —m > 0,
son <m <n+ 1. If m =n+1 then rank7 = 0, which implies I, = 0 for all p € Assgp R. This means I = 0, a

contradiction. Hence we must have m = n. By Buchsbaum-Eisenbud, we have grade I,,(¢) > 2. Now, fix bases for



R™ and R"*! and let A be the matrix which represents ¢. Let 1 : R**! — R be the map defined above. Consider

the following commutative diagram:

0—— R" $ Rn+1 J I 0.
l A l P
0 —> R" —— Rn+! In(A) 0

The top row is exact (by hypothesis) and the bottom row is exact by the ‘converse’ part (note I,(¢) = I,(A)).
By the five-lemma, there exists an isomorphism 7 : I,(¢) — I — R. We claim that every map I,(¢) — R is
multiplication by some element of R. If so, then I = x1I,,(¢) for some non-zero-divisor z, since 7 is an isomorphism.
Since grade I,,(¢) > 2, we have that Extz(R/I,,(¢), R) = 0 for i = 0, 1. Applying Homg(—, R) to 0 — I,(¢) — R —
R/I,(¢) — 0, we have

- — Hompg(R/I,(¢$), R) — Homp(R, R) 2 Hompg(I,(¢), R) — Ext}%(R/In(qb), R).

=0 =0

This says « is an isomorphism, but of course a : pi, — pir|7, (¢)- O

Note. By Buchsbaum-Eisenbud, grade I,,(¢) > 2. But we always have grade I,,(¢) < pdg R/I,,(¢). Thus grade I,,(¢) =
pd R/I,(¢) = 2; that is, I,,(¢) is a perfect ideal.

Definition. Let (R,m) be Noetherian, local. Let x = x1,...,xq be a system of parameters for R. An R—module M
is called a big Cohen Macaulay module (for z) if x is M—regular. An R—module M is called a balanced big

Cohen Macaulay module if x is M —regular for all system of parameters z of R.

Note. If M is a big Cohen-Macaulay R-module then depth M = dim R. For clearly, depth M > dim R. Let z be
an M-regular sequence. Then (z)M # M. Since (x) is m-primary, we have mM # M. Hence, depth M < dim R.

A brief review of completions

Let R be a ring, M an R—module. Let {M;}$2; be a filtration of M by submodules: My DO My D --- . Any
such filtration defines a linear topology on M by letting the cosets {x + M;};=1 be a fundamental system of open
neighborhoods for all € M. The topology on M is separated (or Hausdorff) if NM; = (0). Given a submodule N of
M there exists an induced linear topology on N given by the filtration {N N M;} and an induced topology on M/N
by {M; + N/N}. Given an ideal I of R, the I-adic topology on M is the one given by the filtration {I"M}. The
module M is said to be complete if every Cauchy sequence in M has a limit in M.

Definition. Let M be an R—module with a linear topology. The completion of M is a linearly topologized
R—module M which is separated and complete, together with a continuous homomorphism ¢ : M — M with the
following universal property: If f : M — M’ is a continuous map and M’ is complete and separated, then there exists

a unique continuous map g : M — M’ such that the following diagram commutes

¢
M— )N
I
3lg
Ml
Fact. Completions exist and are unique.
Note that the map ¢ : M — M is injective if and only if M is separated. Clearly, if M has the discrete topology
then M is separated and complete (and hence, isomorphic to its completion).

If {M;} and {M]} are two filtrations on M and are cofinal, the resulting induced topologies on M are the same. In
particular, if I and J are finitely generated ideals and vI = v/J, the I—adic and J—adic topologies on any module



are the same. Let M be a module with a topology defined by {M;}i>1. We have an inverse system M /M; — M/M;
for all i > j. Then M = limM/M;.

Alternatively, let T' = {{z;} | {z;} is a Cauchy sequence in M}. Then T has a natural R—module structure with
a naturally induced linear topology from M. Let Ty = {{x;} € T | limz; = 0} and M = T/To. Let ¢ : M — M
be given by = +— @, where {z} is the constant sequence and ~ denotes modulo Ty. Then ker ¢ = N; M;. For each
i, let ]\/4\1 = {@ S M | z; € M; for all j}. We get a filtration Z\/i\l D) ]\/4\2 D ... . One can show M is complete and
separated with respect to the topology induced by this filtration and that ¢ : M — M is continuous and has the

required universal property.

Proposition 35. Let A C B be modules where B has a linear topology and A has the induced topology from B. Then
0—A— B— BJ/A— 0 is exact.

Exercise. Suppose M has the I—adic topology. Then "M = I"M for all n. Furthermore, M also has the T—adic
topology.

Remark. Suppose M has the —adic topology. Then I" M /I" ' N = [nM /I+10M 2 [ M/ InF1M = [* M/ M.
This is because the topology induced by the I-adic topology on the last module is discrete. Thus gr; (M) = gr I(]T/[\ ).

Definition. Let R be a ring, M an R—module, 1,...,x, € R. Let I = (x1,...,2,). There is a natural graded
homomorphism 1 : M/IM[Ty, ..., T,] — gr; (M) defined by T; — x;+1>M € IM/I*M. Since {z1+I*M, ..., x,+I*>M}
generates gry(M) (as a gr;(R)—module), v is surjective. We say 1, ..., xy, is M -quasiregular if 1 is an isomorphism
and IM # M.

Facts.

(1) If 24, ...,z is M —quasiregular, so is any permutation.
(2) If & is M —regular then x is M —quasiregular.

(3) If (R, m) is quasilocal, z € m, and M is finite, then the converse of (2) is true.

Theorem 36. Let R be a ring, x = x1,....,2n, € R, I = (21,...,xpn), M an R—module. Let M denote the I—adic
completion of M. The following are equivalent:

(1) z is M —quasiregular.

(2) z is M — quasiregular.

(3) z is M —regular.

Proof. Note that (1) < (2) follows from the fact that gr;(M) = ng(]\/j) and (3) = (2) is true by one of the facts
above. So we need only prove (2) = (3). We assume M is [-adically complete and proceed by induction on n.
For n = 1, suppose x1 is M —quasiregular and z,y = 0. For a given j, z1y € I’M. Note 27 := z, + I°M is a
non-zero-divisor on gr;(M). Suppose y € I*M for some k and let § = y + I**' M. Then 2y € I*t'M/I*2M. Of
course 71y = 0 by assumption, so 4 = 0. Thus, y € I**'M. Hence y € NI M = 0. The same argument shows that
(I*+1M :p 21) = IFM for all k.

Now suppose n > 1. We know x; is M —regular and s, ..., 2, is M/x1 M —quasiregular. We are done by induction
provided M/le is I— adlcally complete. Consider 0 — z1M — M — M/x1M — 0 and complete: 0 — le —
M — M/a:lM — 0. Here le is the completion of z1M with respect to the filtration {I"M Nz1M},>1. By the
above, I"M Nx1M = x1(I"M :pr ¥1) = 211" M. Therefore the topologies on x1 M given by {I"M N x1 M} and
{I"x1 M} are the same, the latter being the I-adic topology on z1M. Now, as z; is M-regular, M = 1M as
R-modules. Since M is I-adically complete, so is z1M. Thus we must have M/zi M = M//:;M . By induction,

X2y ey Tp 18 M /21 M —regular, which implies x4, ..., z, is M —regular. (|

Theorem 37. Let (R, m) be local Noetherian and M a big Cohen-Macaulay module for x = x4, ...,x4. Let M denote
the m—adic completion of M. Then M is a balanced big Cohen-Macaulay module.



Proof. Let yi,...,yq be any system of parameters for R. We need to show y1,...,y4 is ]\/Zfregular. Since m =
VW1, -, ya), the m—adic and (y)—adic topologies on M are the same. So M is also the (y)—adic completion of
M. Now x1,...,zq is M —regular, which implies x1, ..., x4 is ]\/Z—regular. We use induction on d to show y1,...,yq is
M—regular. If d = 1, then V(1) = \/(y1). Since 2 is a non-zero-divisor on M, sois y1 (as 27 € (y1) for some n).
So suppose d > 1. By prime avoidance, choose w not in any minimal prime over (z1, ..., 24—1) or (y1,...,Yq—1). Then
(1, ooy ®g—1,w) and (Y1, ..., ya—1,w) are systems of parameters for R. In R/(x1, ..., £4—1), ZTq and W are both systems of
parameters. Since Tq is ]/\Z/(;El, - :Ed)]\/Z—regular, so is W (by the same argument as d = 1 case). Thus 21, ..., 24_1, w

is ]\//.Tfregular which implies w, x1,...,z4_1 i8S M\fquasiregular (and thus ]\/Zfregular by lemma). Thus 73, ..., T4 is

]/W\/wﬁ—regular. Both 77, ...,Tq—1 and 77, ..., Yg—1 are systems of parameters for R/(w). By induction, 71, ..., Ja—1
is Z/\J\/w]/\/j—regular. Lift to get w,y1, ..., Yq—1 1 M\—regular, which implies y1, ..., Y4—1,w is ]/W\—quasiregular. In
R/(y1,..yYa—1), VW = \/yg which implies g is M /(y1, ..., ya—1) M —regular. |

Example. Let R = k[[z,y]] where k is a field. Let M = R & @ where @ is the quotient field of R/(y). Then x,y is

M —regular but y, z is not. So M is a big Cohen-Macaulay module, but not a balanced one.
Definition. Let R be a ring, I an ideal. Set codimI :=dim R —dim R/I.

Remarks. Suppose R is Noetherian.
(1) ht I < codim I (since ht I +dim R/I < dim R for all ideals I') with equality if R is equidimensional, catenary,
and all maximal ideals have the same height (e.g., R = k[z1, ..., 24]).
(2) If R is a Cohen-Macaulay local ring then ht I = grade I = codim I.
Exercise. Suppose R is Noetherian local and I is an ideal. Then codim I > 7 if and only if I contains z1, ..., x;

which form part of a system of parameters for R.

Definition. Let F. : 0 — Fj LN Fs 1 — - 1, Fy be a complex of finitely generated free R—modules. Define

codim F := inf{codim I, (¢;) —i | i = 1, ..., s}, where the r; are the expected ranks.

Remarks.
(1) If F. is acyclic, then codim F. > 0 (by Buchsbaum-Eisenbud, grade I, (¢;) — ¢ > 0 for all ).
(2) If R is Cohen-Macaulay and local and codim F. > 0 then F. is acyclic (again by Buchsbaum-Eisenbud and
the remarks above).
(3) Cohen-Macaulay is crucial in (2). For example, let R = k[[z,y]]/(«?, zy) and F. : 0 — R % R. Then
I (¢1) =y, codimy = 1, but F. is not acyclic.

Proposition 38. Let (R,m) be local, F. a complex as above. Suppose codim F. > 0. Then F. @ g M s acyclic for
every balanced big Cohen-Macaulay module M.

Proof. For each i, we have codim I, (¢;) > i. By the exercise, I, (¢;) contains part of a system of parameters z1, ..., x;.
Then w1, ...,x; is M —regular (as M is balanced) and so grade(I,,(¢;), M) > i. By Buchsbaum Eisenbud, we have
F ®r M is acyclic. |

Theorem 39. Let (R, m) be a Noetherian local ring possessing a big Cohen-Macaulay module. Let F. : 0 — Fj LR
Foq1— - 2, Fy — 0 with codim F. > 0. Let C = coker ¢1 and assume C # 0. Then for every e € C'\ mC, we have

codim(Annge) < s.

Proof. By Theorem 37, we may assume R has a balanced big Cohen-Macaulay module M. We use induction on
dim R/ Anng e. Suppose dim R/ Annge = 0 and let M be a balanced Cohen-Macaulay module. Then F. ®g M is
acyclic. As before, let M; = coker(¢;+1 ® 1) for i = 0,...,s. (Note My = Fs ®zg M and My = C ®@p M). We
have 0 - M; — F;_1 ®r M — M;_1 — 0 is exact for i = 1,...,s as F. @z M is acyclic. Note depth F;_; @p M =
depth M and so depth M;_; > min{depth M, depth M; — 1}. Thus for all i =0, ..., s, depth M;_; > depth M —i. So



depth M ®p C' = depth My > depth M — s =dim R — s as M is a balanced big Cohen-Macaulay module. It suffices
to show depth M ®r C = 0 as then s > dim R = codim(Annge). Let M ® e denote the submodule of M ®g C
consisting of those elements of the form v ® e for some v € M. Let w € M, w & mM. Then the image of w ® e
in M/mM ®g C/mC' is nonzero. Hence, M ® e # 0. As dim R/ Anne = 0, we have m‘e = 0 for some £, and so
m(M ®e) =0. Thus m € Assg M ® e C Assg M ® C and hence depth M @ C = 0.

Now suppose dim R/ Anng e > 0. Since codim Anng e < dim R, we can assume s < dim R. Let Ag = {p € SpecR |
dimR/p = dim R} and A; = {p € SpecR | Anne C p,dimR/p = dim R/ Annge}. As all the primes in A; are
minimal over Anng e, Ay is finite. Further, since dim R/ Annge > 0 we see m ¢ A;. Let Ao = {p € SpecR | p D
I,.,(¢;),codimp = i for some i}. By assumption on codim F', A, is a finite set. Also as s < dim R, m ¢ As. By prime

avoidance, choose an element x ¢ p for all p € A; U Ay U Ag. Let () denote modulo (z), so F. = F. @ R/(x).

Claim. codimﬁf >0

Proof. There are two cases. First suppose codim I, (¢;) > ¢ + 1. Then dim R/I,,(¢;) < dim R —

i — 1 and so dim R/(I,,(¢;),z) < dimR —i — 1 < dim R/(x) — 4. Thus codim I,.,(¢;) > i. Next

suppose codim I, (¢;) = 4. Then dim R/l (¢;) = dimR — i. As & p for all p € Ay, we see

dim R/(I,,(¢i),x) =dim R —i— 1 < dim R/(z) — i.
Since e ¢ mC, we have € ¢ mC. Now Anngze O (Annge + (z))/(z). Therefore, dim B/ Annze < dim R/(Annge +
(2)) = dim(R/ Annge) — 1 since & p for any p € A;. As x & p for any p € Ag, we have that = is part of a
system of parameters for R. Hence, R/(x) has a big Cohen-Macaulay module (namely M/xM). By induction,
s > codimpz(Annge) = dim R — dim R/ Annge > dimR — 1 — (dim R/ Anng e — 1) = codim Annpe. O

Corollary 40 (Improved New Intersection Theorem, Evans-Griffith ‘81). Let (R, m) is a local ring possessing
a big Cohen-Macaulay module. Let F. be as in Theorem 39 and C' = coker ¢1 # 0. Choose e € C'\ mC. Suppose (F.),
is acyclic for all p #m and A(Re) < co. Then s > dim R.

Proof. Suppose s < dim R. We claim ht I;.,(¢;) > i for all ¢. If not, then there exists j € {1,...,s} and a prime
p 2 Ir;(¢;) such that ht(p) < j < s < dim R. Clearly p # m, so (F.), is acyclic and thus grade I,,(¢;), > j. But
this is a contradiction, since grade I,,(¢;), < htpR, < j. Thus codim F. > 0. By Theorem 39, codim(Anne) < s.

Since A(Re) < oo, we have codim(Anng e) = dim R, a contradiction. O

Corollary 41 (New Intersection Theorem). Let (R, m) be a local ring possessing a big Cohen-Macaulay module.
Let F. be as in Theorem 39 and suppose H;(F.) has finite length for alli. If s < dim R, then F. is exact.

Proof. If s = 0, we have A(Fy) = A(Ho(F.)) < oo. If Fy # then A(R) < oo and thus dim R = 0, a contradiction since
s < dim R. Thus Fy = 0 and F. is exact.

Now assume s > 0. Suppose first that Ho(F.) = 0, that is, F} o, Fy — 0 is exact. Then ¢; splits and ker ¢ is
a (free) direct summand of Fy. Let F' : 0 — Fy — --- — Fy — ker ¢py — 0. Then Ho(F') = Hy(F.), which has finite
length. By induction on s, F’ is exact and thus F is exact.

Now suppose Hy(F.) # 0. Let e € Hyo(F') \ mHy(F.). Certainly A(Re) < co and (F'), is exact for all p # m. By
the Improved New Intersection Theorem, s > dim R, a contradiction. Hence, F. is exact. O

Exercise. (cf. Matsumura, p. 129) Let R be a ring, M an R—module, z1,...,xz, € R. Let I = (z1,...,2z,) and
assume IM # M. Then x, ..., , is M —quasiregular if and only if for every homogenous polynomial F(T1,...,T,,) €
M|Ty, ..., Ty] of degree v such that F(zy,...,z,) € I"T*M for some t, all the coefficients of F' has lie in It M.

Theorem 42 (Monomial Conjecture). Let (R,m) be a local ring possessing a big Cohen Macaulay module and

Z1,...,Tq a system of parameters for R. Then for alln > 1 we have x7 - -zl & (z 1 ...,zZH).

Proof. Let M be a balanced big Cohen Macaulay module. Then z1,...,z4 is M —quasiregular. Suppose z7 ---z}} €

(271, ...,xZJrl) for some n. Then «f - -2 M C (2L, ...,x3+1)M.



Claim. For all t >0, (a7 - af)[*M C (27T, .. x Tt [md—n=14t .

Proof. By multiplication by I it is enough to show for ¢ = 0. Let u € M. We know u(z}---2%) =
mlaz?ﬂ + ... +mdxg+1 for some my,...,mq € M. Let F(T1,...,Tq) = mlTanrl + ..+ de;“. Then
F(I) is homogenous of degree n + 1. Now F(x1,...,24) = (71 x4)"u € I"*M. By the exercise,
m; € I™="=1\f for all i.

Give gr;(M) the natural R/I[T}, ..., Ty]—module structure where T; f = z} f for all f € gr; (M) where x} = z; + 1 €
I/1? C gr;(R). By claim, (+)(T7 -+ T7) gr, (M) C (T7H, ., Tyt gr (M) (the degree t piece of the right hand side is
(2, 2l T M 4 It M /T" ' M and of the left hand side is [(2} - - - 7)) "~ "4M 4 Tt nd+ 0] /1= md+ 10T )
As zq,...,xq is M—quasiregular, gr;(M) =2 M/IM[Ty,...,T;] as an R/I[Ty,...,Ty]—module. Thus (x) implies
(Ty -+ Ty)"M/IMITy, ..., Ty) C (T], . Ty YYM/IMTy, ..., Ty], a contradiction to polynomial division. O

Theorem 43 (Acyclicity Lemma, Peskine-Szpiro ‘74). Let R be a ring of characteristic p > 0 and G. : 0 —
Gy LN Go be a complex of finitely generated free R—modules. Then G. is acyclic if and only if F(G.) is

acyclic.

Proof. For any ¢ : R™ — R"™ and any r > 0 we see I(¢!")) = I.(¢)"! (where ¢[P! = F(¢)). In particular,

VI (¢) = /I.(¢/P)) and so gradel,(¢) = gradeI,(¢/?)). By Buchsbaum Eisenbud, G. is acyclic if and only if
grade I, (¢;) > i, which is if and only if grade Iri(gzﬁgp]) > ¢ which is if and only if F'(G.) is acyclic. O

Corollary 44. (R,m) local, M a finitely generated R—module and pdp M < oo. Then Torl(RF M) = 0 for all
i > 1.

Proof. Let G. be a finite free resolution of M. By the acyclicity lemma, F(G.) = R" ® G. is a free resolution of
F(M). In particular Tor®(RF, M) = H;(R* ® G.) = 0 for all i > 1. d

Corollary 45 (Kunz, ‘68). Let (R, m) be a reqular local ring. Then R is a flat R—module (that is, F is an exact
functor).

Note that the converse is also true (but harder).

Suppose we have a complex F. : 0 — Fy — .-+ — Fjy with codimension F. > 0. If R is Cohen Macaulay, then F' is
acyclic by Buchsbaum-Eisenbud. If R is the homomorphic image of a Cohen Macaulay ring, then there exists c € R
(not contained in any minimal prime) such that R, is Cohen Macaulay. Then (F.). is acyclic and there exists n such
that C"H;(F) =0 for all ¢ > 0.

Q: Does there exist a non nilpotent element ¢ such that ¢H;(F.) = 0 for all i« > 0 for any complex F. such that
codim F. > 07

The answer is yes in the case that R is the homomorphic image of a Gorenstein ring. The proof of this fact uses

Spectral Sequences, which are discussed in the appendix.

Theorem 46. Let (R,m) be a local ring and F. : 0 — Fy — Fs_; — -+ — Fy — 0 a complex of finitely
generated free R—modules such that \(H;(F.)) < oo for all i. Let I; = Anng H' (R) for i > 0. Then for 0 < i < s,
Iyl ---I,_;H;(F) =0.

Proof. Let x = (x1,...,xz4) be a system of parameters and K the Cech complex of R with respect to z. Then
HY(K') = H{,/(R) = H},(R). Reindex F. as F" : 0 — F’ — F' — ... — F* — 0 (so F' = F,_;). Then
HY(F") = Hy_;(F). We want to prove Iy---I;H/(F") =0 for all j > 0.



Let C be the first quadrant double complex K ® F". First filter by the columns:
TEP? = HI(KP®F)
KP ® HI(F') as K? is flat for all p
HIYF) ifp=0

= as Ry, ® H(F") =0 for all i
0 ifp>0

Thus the sequence ! ET? collapses and we get HPT9(F") = BP9 = HPT9(Tot(C)). Now filter by the rows:

IIEfq _ HZ(K ®FP)
= HIY(K')® FP as FP is free, hence flat
= HZ(R)"™, for n, =rank F,

By definition of I, we see I, T/ EY? = 0 and so I, T/ EP2 = 0 for all p,q as I/ EP? is a subquotient of L ET.

By the main convergence theorem of spectral sequences, /! EY? = HPT4(Tot(C)) = HP+4(F"). Thus for any n € Z,
there exists a filtration {FPH"},cz where H" = H"(F") such that FPH"/FPTIH™ & HEpn=p for all p. As 11 ED?
is a first quadrant spectral sequence, Z/EY"™ ™" = 0 if p < 0 or p > m. Hence the filtration of H™ has the form
0=Frtlgr C FPH™ C --- C F'H™ C FYH™ = H™. Since Iy HE&"_p =0, we have I,,_,FPH" C Frtlfgm and
hence I, 1,1 ---IoH™ = 0. O

Recall for aring R and 2 = @1, ..., 2, € R that the Koszul Complex is defined by K.(z) = ®7_,(0 — R =% R — 0).
The i*"Koszul homology is written H;(x) = H;(K.(z)) for all i, where H;(z) = 0 for i < 0 and i > n. Also recall the

following basic facts of Koszul Homology:

(1) Ho(z) = R/(z)

(2) Hu(z) = (0:r (2))

(3) (2)H;(z) = 0 for all i. In particular, if (R, m) is local and \/(z) = m, then A\(H;(z)) < oo for all i.
(4) Let 2’ = x1,...,x,—1. Then there is a long exact sequence

(5) If (R, m) is local and x € m, then z is a regular sequence if and only if H;(z) =0 for all : > 1.

Corollary 47. Let (R, m) be a local Noetherian ring of dimension d and x1,...,x, part of a system of parameters
for R. Let I, = Anng H (R). Then

(1) Ip---I4—;H;(z) =0

(2) In- - Iy—1 - [((x1- - xp-1) : )/ (21, eeey Tp—1)] = 0.

Proof. (1) Extend 1, ..., 2, to a full system of parameters 1, ..., z4 and induct on d—n. For n = d, \(H;(z)) < oo
for all i (by fact 3 above). Let K' = F" in the previous theorem to get the result.
Suppose n < d. For a given t > 1, let z(t) = @1, ..., xp, x}, . This is part of a system of parameters. By

induction, Iy --I;—;H;(z(t)) = 0. From the long exact sequence in fact 4 above, we have

0 0

where K = H,(z) /!, Hi(z) C H;(x(t)). Since H;(z(t)) is annihilated by Iy - - - Iq—;, we have Iy - - - Ig—_; Hi(z) C
$%+1Hi (z) for all t. Thus by Krull’s Intersection Theorem, Iy - -- I;—; H;(z) = 0.



(2) Induct on n. For n =1, we have (0: z1) = Hy(z1). By part 1, Iy - - I4—1H;i(x1) = 0. So suppose n > 1. From
the long exact sequence

H(2) Ho(z') =2 Hy(z)

N

K

0 0
we know K = (2’ : x,)/(2'). Of course by part 1, we have Iy---Iy_1H,(z) =0and so Iy-- - [4_—1 K =0. O

Lemma 48. Let (S,n) be Gorenstein of dimension d and M a finitely generated S—module. Then dim Ext’ (M, S) <
d—1.

Proof. Let p € Suppp Ext(M, S). So Extg(M,S), = Exty (M,,S,) # 0. Then Exty (M,,S,)" # 0, which implies
Hz()ili%n; S”_i(Mp) # 0 by Local Duality. Then dim S, — ¢ > 0, which implies dim S — dim S/p > 4. Thus dim S/p <
d— 1. O
Theorem 49. Let (R, m) be the homomorphism image of a Gorenstein ring, d = dim R. Let I; = Anng H! (R).
Then dim R/I; < for all i. In particular, dim R/Iy---I;—1 < R (so Iy---I;—1 contain no nilpotent elements).

Proof. Let R = S/J where (S,n) is a local Gorenstein ring of dimension t. By local duality, I; = Anng H{ (R) =
Anng H} (R)" = Anng Ext’ *(R, S). By the lemma, dim S/ Anng Extl (R, S) <t — (t —i) =i. O

Exercise. Let (R, m) be the homomorphic image of a Gorenstein ring with dim R > 0. Then there exists ¢ € m such

that dim R/(¢) < dim R and ¢ - [(#1, ..., &n—1) : n/(Z1, ..., 2n—1)] = O for all partial system of parameters x1, ..., .

Theorem 50 (New Intersection Theorem). Suppose (R, m) is a local ring of characteristicp > 0. Let F. : 0 —
F Pe, - By 1, EFy — 0 be a complez of finitely generated free R—modules such that A(H;(F.)) < co. If s < dim R,

then F. is exact.

Proof. Use induction on s. If s =0, we have 0 — Fy — 0. Since A\(Ho(F.)) < oo, we have A(Fp) < co. Since Fy is a
free module, Fy = 0 or A(R) < oco. If A(R) < o0, then dim R = 0, a contradiction as s < dim R. Thus Fy = 0 and
F. is exact. So suppose s > 0. Note that we can complete R as F. is exact if and only if F is exact. Thus we may

assume R is the homomorphic image of a Gorenstein ring.

Case 1. Ho(F.) = 0. Then ¢; splits and we can form the complex F/ : 0 — Fs — -+ — Fy —
ker ¢1 — 0 where ker ¢ is free. So M(H;(F’)) < oo for all i. By induction, F' is exact and thus F.
is exact.

Case 2. Ho(F.) # 0. Suppose ¢1(F1) ¢ mFy. Then I;(¢1) ¢ m, which implies im ¢; contains a
free direct summand of rank 1. Then we can define ¢} as F; = F]{ & R A Ry = Fj ® R with

¢

0

Then apply the Frobenius functor to F. Note that H;(F'(F')) has finite length for all i as

A= . Now replace F; L2 Fy with F| &, F} and repeat this process until ¢1(F) C mFp.

MH;(F(F))) <ooforalli < (Fgr(F)), is exact for all p #£m
& Fr,((F)p) is exact for all p #m
& (F)p is exact for all p #m
< AH(F)) < oo for all 4.

Let F© denote the Frobenius functor applied e times. Then A(H;(F¢(F.))) < oo for all i. Also
Fe(¢r)(F1) € mPIF, for all e as ¢1(Fy) € mFy. Now Ho(F) = Fy/im¢; — Fo/mF, and



Ho(Fe¢(F)) = Fy/im F¢(¢) — Fo/mP"IFy. Thus Anng Ho(F¢(F)) C Anng Fo/mlP1Fy = m[P7]
By the theorem, Iy - - - I Ho(F¢(F.)) = 0 for all e and thus by Krull’s Intersection Theorem, Iy - - - I, =
(0). O

Lemma 51. For a local ring (R, m) of dimension d and a system of parameters x = x1,...,xq, there exists k such
that for allt >k and alln (z1---24)" & (277, ., 2™,

i

Proof. Recall HY (R) = lei..md/Z?zl Ry, ...5,...z, is generated by {WH > 1} . Now

1 n 1 3 :
G = 0 < Graa = > (mlm’ nE forr, € R,s € Zin Ry, .4,
= there exists ¢ such that (zq---24)* +q =Y rzi(z; - xq) 0 € (257 25" ) in R
& there exists n such that (z1---zq)" € (271, ..., 2] ")
+t +t ol +t 1
Now suppose (z1---xq)" € (277", ...,z;""). Then (z1---xq)" = rix]™ +---+rqey" . In Ry, ...,,, we have Gt =

Z m S ZRzlxlzd Thus mn Hd (R), m = O ThuS

1

————— =0in HZ(R) & there exists n such that (z1---z4)" € (271, ..., 2.

(:El DR xd)t
Since HY (R) # 0, Trrt 7& 0 for some ¢ (and thus for all ¢ > k for some k by multiplication). Thus there exists k
such that for all ¢ > k: and for all n (z1---zq)" & (277, ..., 2 ™). O

Theorem 52 (Monomial Conjecture). Let (R,m) be local of characteristic p and x = x1,...,xq4 a system of

parameters for r. Then for all n we have (z1 - z4)" & (z7T!, . 2.

Pmof Suppose for some n that (zq---24)" = rlx?ﬂ + o+ rdeH Take p®—th powers to get (z1---x4)"" =
b prntl) Ly rh :1: prntl) ¢ (2P zh 4P This contradicts the lemma as we can choose e so p°© is as
large as necessary. O

Definition. Let R be a ring, x1,...,2, € R and M an R—module. Suppose there exists y € M \ (x1,...,x5) M
for some s < n such that xs11y € (x1,...,25)M. Let M' = M @& R*/Rw where w = y — (r1e1 + ... + zse5) (here
€1,...,€s 18 a basis for R and identify M and R® with their images in M & R*). There is an obvious map M — M’
defined by m — (m,0). Given f € M, let f' be the image of f under M — M’'. We say (M, f) — (M', f') is an
z—modification of type s.

More generally,, a sequence of x—modifications (M, ) = (Mo, fo) — (My, f1) — -+ — (M,, f.) = (N, g) where
(Mit1, fit1) is an z—modification of (M, f;) of type s;y1 is called an x—modification of (M, f) of type (s1, ..., Sr).
We say this modification is non-degenerate if g ¢ (z)N.

Lemma 53. Let (N, f) — (N', ') be an x—modification. Suppose there exists an x—reqular modification m. Then
for any R—module homomorphism ¢ : N — M there exists a map ¢ : N' — M such that the diagram below
commautes.

N — N’

e

(z) 7/
l///‘ﬁ’

M

Proof. By definition, there exists y € N \ (1, ...,xs)N such that zs11y € (21, ...,2s)N and N’ = N @ R®*/Rw where
w=y—(x1e1+...+x5es). Then z,410(y) € (z1,...,2s)M. As M is z—regular, ¢(y) = z1m1 +... + xsm, for m; € M.
Define ¢ : N & R®* — M by (n,Y_rie;) — ¢(n) + > rym;. Then p(w) = (y — Y zie;) = ¢(y) — Y rym; = 0. Then
1 : N' — M clearly extends to ¢. Define 1) = ¢'. ]

Proposition 54. Suppose there exists an x—regular R—module M. Then every x—modification of type (s1, ..., Sr) of

(R, 1) is non-degenerate.



Proof. Consider the following diagram obtained by the lemma

(R,1) = (Mo, fo) — (My, f1) —= -+ ——= (M, f,)

1
%o
| -

M

where ¢q is defined by by 1 +— g for some g € M \ zM. As the diagram commutes, ¢,-(f.) = ¢o(1) = g & (x)M. So
fr & (z)M,.. So the modification is non-degenerate. O

Theorem 55. Suppose R is Noetherian, x = x1,...,x, € R, and every x—modification of (R, 1) is non-degenerate.

Then there exists an R—module M such that M is x—regular.

Proof. First define a direct system {Mj, ¢i;}; jen where ¢;; : M; — M, for i < j is defined with My = R and
¢oo = id. Suppose My, ..., M; and ¢;j, for i < k < j have been defined.

Case 1. z is weakly M;—regular. Then stop.

Case 2. z is not weakly Mj;—regular. Choose ¢ least and then s least such that there exists y € M;
with ¢i;(y) & (z1, ..., xs)M; but x5410i;(y) € (z1,...,x5)M;. Let M1 = M; & R°/Rw where w =
$ijy — (3] zie;). Then Mjy is an z—modification of M; of type s. We say step j+1 (M; — M;11)

has index (3, ).

Note that, by construction, every (M, ¢g;(1)) is an z—modification of (R,1). Now if case 1 occurs, we have gz is
weakly Mj—regular and (by hypothesis) ¢g;(1) & (x)M;. So M; # (x)M; which implies z is M;—regular and we
are done. Thus we are in the case that the process iterated indefinitely, gives us a direct system. Note for all 1 < j
that (M;, f) — (Mj, ¢i;(f)) is a (multistep) z—modification. In particular, (M;, ¢o;(1)) is an z—modification of
(R,1) and is thus non-degenerate. Also, each M; is finitely generated and therefore Noetherian. Let M = lim M;
and 1 : M; — M the direct limit maps. So for all ¢ < j we have 1; = 1;¢;;. Recall that every element in M has the
form ;(m;) for some m; € M; and ;(m;) = 0 if and only if there exists j > ¢ such that ¢;;(M;) = 0.

Claim 1. M # (z)M

Proof. We will show ¢o(1) & (z)M. Suppose o(1) = x1ymq + ... + z,m,. Now there exists j and
UL, ooy Uy, € M such that 1;(¢0;(1)) = ¥o(1) = x19j(u1) + ... + p¥j(un) = V(X101 + ... + Tpy).
Thus ¢;(¢o;(1) — (z1u1 + ... + zpu,)) = 0. Therefore there exists k > j such that ¢;i(do;(1) —
> xiu;) = 0 and so ¢ox (1) = ¢x(>_ xiu;) € (x)My. This contradicts the fact that (My, ¢or(1)) is a
non-degenerate x—modification of (R, 1).

Claim 2. For each (i, s) there are only finitely many steps of index (i, s).

Proof. Suppose steps ji < jo < --- have index (¢, s). Consider the maps M; Pin, M;, — Mj;, —---.
For all & > 1 there exist elements y, € M; with ¢, —1(yx) € (21,...,2s)Mj,—1 but ¢, (yx) €

(x1,...,xs) M. Consider the chain of submodules in M :

(1‘17 ~-~7$5)Mi g ¢ij1((x1a ...,:vs)Mjl) g ¢ij2((x17 ...,:vs)Mj ) g e

The containments are proper as y; € ¢, ((z1, ..., xs)Mjx) \ ¢ij,_, (T1, ..., xs) M, ).

Claim 3. Fix i,s. Suppose there exists b € M; such that x5410
in(zq,...,xs) M;. Then ¢;;(b) € (21, ...,x5)M; for j >> 0.

Proof. Its easy to see that if it is true for some j, then it is true for all j/ > j. So suppose ¢;;(b) &
(x1,...,xs)M; for all j > 4. This would mean infinitely many steps of index (4, s), contrary to claim
2.



We will show M is z—regular. Suppose s 1m = zymy + ... + zsmg for mymq,...,ms € M. As before, we get
b,bi,...,bs € M; such that 441 ¢](b) =T 1%(()1) +... .+ T ¢](b5) . Then xs+1¢jk(b) = $1¢jk(b1) + ...+ Is¢jk(bs) for
~—~— ~— —
=m =m1 =ms
k > j. By claim 3, ¢ € (21, ...,x5) M, for £ >> 0 and so applying 1, gives m € (x, ..., z5) M. O
Theorem 56. Suppose R is Noetherian and x = 1, ...,z, € R. TFAE

(1) There exists an R—module M such that x is M —regular (that is, M is x—regular)
(2) Ewvery (z)—modification of (R, 1) is non-degenerate.

Definition. Let z1,...,2, € R and M and R—module. Suppose xsi1y € (x1,...,25)M for some y € M. Let
M’ = (M + R®)/Rw where w =y — (z1€1 + ... + xse5). Then M’ is called a quasi—z—modification of M.

Note. This is a weaker condition than for an x—modification as we do not require y & (21, ..., xs)M. As we will see,

this weaker definition is necessary when using the Frobenius map.

Proposition 57. Let (R,m) be a homomorphic image of a Gorenstein ring. Then there exists ¢ € m such that
dim R/(c¢) < dim R and for all system of parameters z of R and every sequence (R,1) = (My, fo) — -+ — (M, f;)

of quasi-xr—modifications, one has a commutative diagram

(M07f0) I (Mlafl) I —— (Mrafr)

S -

(R’ 1) . (R7 C) - T - (Rv CT)

By commutativity, ¢;(f;) = ¢ for all i.

Proof. Let d = dim R (assume d > 0). Let I; = Anng H! (R). By a previous result, dim R/Iy---I4_1 < dim R.
Choose ¢ € (Ip---I3—1Nm)\Udim r/p—aP- By another result, for all system of parameters z = 1, ..., 24 of R, we have
c((x1, ..y xs) t Ts41) C (21, ..., z5) for all 1 < s < d—1. Construct ¢; inductively. Let ¢g = 1x. Suppose ¢y, ..., ¢; have
been chosen. We have M;11 = M; ® R®*/Rw for some s where zsy1y € (x1,...,25)M and w =y — (z1e1 + ... + z5€5).
Then phi; : M; — R; has x5110;(y) € (1, ..., 25)0:(M;) C (21,...,x5). This implies ¢;(y) € (x1,...,Ts :g Ts4+1) and
so ¢coi(y) € (z1,...,xs). Thus ep;(y) = z1ug + ... + zsu, for some u; € R. Define $i+1 : M; @ R® by m+ > rie; —
coi(m) + > riu;. Note 5”1(10) = ggiﬂ(y — > xie;) = copiy) — > xu; = 0. Therefore, we get an induced map
¢ir1: M; ® R?/Rw — R. Note for m € M; that ¢;,1(m) = c¢;(m). This makes the square commute. a

Notation. Let R be a ring of characteristic p > 0. Given an R—module M, let F(M) := RF @r M, viewed as a
left R—module. Given f € M, let F(f) denote 1® f € F(M). If M = R", say f = > re;. Then F(f) =1® f =
1@ (Y rie) =Y r"(1®e;) =Y r7e; € R™ = F(R™). For this reason, denote F(f) by f? and similarly F¢(f) by
FEa

Note that if f = ryus+...+7,u, for f,u; € M and r; € R, then fP =10 f =103 riu;) = > r?(1Qu;) = Y riul.

Lemma 58. Let char R = p > 0. Suppose (M, f) — (M’', f') is a quasi-z-modification for x = x1,...,x, € R. Then
(F(M), fP) — (F(M"), (f")?P) is a quasi—zP —modification.

Proof. Let M' = M & R®/Rw where 51y = 121 + ... + 525 for y, z; € M and ¢ = y — (x1€1 + ... + 25e5). We have
a short exact sequence 0 — Rw — M ¢ R® — M’ — 0. Apply F we have

F(Rw) % F(M) & F(R®) — F(M') — 0

~—— —

=RF(w) =F(M)®R*
Now im¢ = RF(w) = RwP. Thus F(M') & F(M) ® R®/RwP where wP = y? — > zlel = y? — >~ 2Pe; (since we

identified F'(R®) with R®, we must identify the basis elements e? with e;) and 2% P = 2720 + ... + 222?. O



Theorem 59 (Hochster, 70s). Let (R, m) be a local Noetherian ring of characteristic p > 0. Then R has a balanced
big Cohen Macaulay module.

Proof. Tt is enough to show R has a big Cohen Macaulay module. Since any system of paramters for Ris a
system of parameters for R, we may assume R is complete and therefore the homomorphic image of a Gorenstein
ring. Fix a system of parameters x = x1,...,xq € R. It is enough to show every x—modification for (R,1) is non-
degenerate. Suppose not. Then there exists a sequence of z—modifications (R, 1) = (My, fo) — -+ — (M, f,) where
fr € (x1,...,2q)M,. For any e > 1, (R,1) = (Fe(Mo),fgc) — -+ — (F¢(M,), fP") is a quasi-zP" —modification of
(R,1) and fP" € (:E’fe, ...,xse)Fp(MT). By the proposition, there exists ¢ € R such that dim R/(¢) < dim R and for
all e > 1 there exists a diagram

(Fe(M), f¥') —= = ——= (F*(M,), f¥")

| -

(R7 1) U (R’ CT)

By commutativity of the diagram, ¢,(f?*) = ¢". On the other hand, ¢ = ¢, (f*) € (2%, ..., asge)(bre(Fe(MT.)) CR,

which implies ¢" € ﬂe(mzfﬁ, - xge) = (0), a contradiction as ¢ is not nilpotent. O

Definition. Let R be a domain. The absolute integral closure of R, denoted R*, is the integral closure of R in
a fized algebraic closure of Q(R), the quotient field of R.

Except in trivial cases, Rt is non-Noetherian.

Theorem 60 (Hochster-Huneke, '92). If (R, m) is a local excellent Noetherian domain of characteristic p > 0, then
R* is a balanced big Cohen Macaulay module (in fact, algebra) for R.

Examples of excellent rings include finitely generated algebras over a field and complete rings. Most rings that we

encounter are excellent.

Theorem 61 (Huneke-Lyubeznik, ’06). Let (R, m) be a local domain which is the homomorphic image of a Goren-
stein ring with characteristic p > 0. Then RT is a balanced big Cohen Macaulay algebra.

We will prove this latter result, but first we must prove some preliminary results.

Remarks.

(1) The two theorems above give the existence of balanced big Cohen Macaulay algebras for arbitrary local rings

of characteristic p > 0.

Proof. Let p € Spec R. Then dim R/p = dim R = dim R. Now R/p meets the requirements of one of the
above theorems and thus (R/ p)T is a balanced big Cohen Macaulay algebra for ]:Z/ p and therefore R (as any

system of parameters for R is one for ]:2/ D). |

(2) For a domain R, we have (R"), = (R,)" for all p € Spec R (as Q(R) = Q(R,) and localization commutes
with integral closures)
(3) For (R,m) a domain, I C m, we have IRT # R™T.

Proof. Suppose IRT = R*. Since R" is a ring, this says 1 = i151 +...+igsg for s; € RT. Let S = R|[sq, ..., k).
Then S is a finitely generated R—module and I.S = S, a contradiction to NAK. O

Proposition 62. Let A be a class of catenary Noetherian local domains which is closed under localization. (e.g. A =

{excellent local rings of characteristic p} or A = {local rings which are homomorphic images of Gorenstein rings}.
TFAE



(1) For all local rings (R,m) € A, H.,(R*) =0 for all i < dim R.
(2) For all (R,m) € A, R is a balanced big Cohen Macaulay algebra.

Proof. For (2) = (1), let (R,m) € A and z a system of parameters for R. So H (R*) = H@(R"’). By (2), z is

regular on R* and so grade(z, R*) > Grade(z, R*) > d. By definition of grade, H.(R") = 0 for all i < d.
For (1) = (2), let (R, m) € A.

Claim 1. Let x1,...,x; € m be R —regular. Then H} (R /(z1,...,x;)R") =0 for all i < dim R — j.
Proof. Induct on j. For j = 0, done by (1). For j > 1, use the short exact sequence

0— RY/(x1,...,x; 1)RY =5 RY J(21,...,x; 1 )RY — R /(x1,...,z;)RT — 0.

Using (1), the long exact sequence on homology and the induction hypothesis

H (RY (21, ...z, 1)RY) =5 HL (RY /(21 ..z 1)RY) — HE (R (21, ..y ;) RY) — HEFY(RT J(1, .oy j 1 )RT) =5 -

=0 for i<dim R—j+1 =0 for i<dim R—j
Thus H,(RY/(z1,...,2;)RT) =0 for i < dim R — j.
Consequently, we have the following claim.
Claim 2. If z1,...,z; is Rt —regular and j < dim R, then HY, (RT/(x1,...,z;)RT) = 0.

Let x1,...,zq¢ € m be a system of parameters for R. Induct on j to show xzy,...,x; is RT—regular. As R" is
a domain, the j = 1 case is done. So suppose j > 1. Assume zy,...,z; is Rt —regular and suppose z;;1 is a
zerodivisor on R /(x1,...,2;)R*. Then there exists p € Assg R*/(x1,...,x;)RT with 2;11 € p. Then ** € pR,, €
Assg, (RT),/(z1,...,x;)(RY),. So (>(<)H£Rp((Rp)'*‘/(gcl7 i) (Rp)T) #0.

Claim 3. j < dim R,,.

Proof. Since z1, ..., x4 is a system of parameters for R, ;11 is not in any minimal prime of (z1, ..., z;)
of dimension dim R— j. Suppose dim R, < j. Since R is a catenary local domain, dim R, +dim R/p =
dimR =dimR/p > dim R — j. So z;41 € p and dim R/p — dim R — j, a contradiction.

Now (%) contradicts claim 2 applied to R, € A. O

We will show for R € A = {local domains of char p which are homomorphic images of Gorenstein rings} that
HE (RT) =0 for all i < dim R.

Notation. Let R be a ring, z = 1, ..., z,, and C"(z; R) the Cech complex. So C%(z; R) = EB Ry ;.- Fix
1<ji<-<ji<n
kEwithl <k <mnandlet Ay = {(j1,....Jx)[1 < j1 < - <jr <n}.For J = (ji,...,Jk) € Mg, set xy =z, - xj,, 25 =

¢ ...z¢, and R,, := R . So C(x;R) = ®jen, Ry, and a € C%(xz; R) has the form (;—"p) . Suppose

J1 Jk? Zj1 T 7 ) Jen,
(2
¢ : R — S is a ring homomorphism. Then ¢ induces a chain map

T

0 R Ry, 0

OHSHS@(QH)HO

Tensoring gives a natural chain map q@(a) = (ﬁgbl) . As ¢A> is a chain map, it induces a map on cohomology

¢ H{,y(R) — Hj,\(S) defined by @+ ¢(a).
Let ¢ : R — R defined by r — r? be the Frobenius map. This gives a natural map on local cohomology:
% H{(R) — Hi(R) defined by a = (?) o = (W) .

If R — S (that is, R is a subring of S), then we can consider C"(z; R) as a subcomplex of C"(z;.5). This gives rise
to natural maps H(,,(R) — H(,(S) for all i.



Remark. Let R be a domain, = x1,...,2, € R and y = y1,...,yn € R. Suppose y;|z; for all i. Then there are

natural chain maps

0 R Ry, 0
0 R Ry, 0

where the diagram commutes. Tensoring gives a natural chain map C"(y; R) — C"(z; R). Since R is a domain,
Ry, — R, is injective for all J. Thus C"(y; R) — C"(x; R) is injective, that is C"(y; R) is a subcomplex of C"(z; R).
e Special Case: Let y; = 1 for all i. Then C"(1; R) is a subcomplex of C"(z; R) for all z But the i** cohomology

of C"(1; R) is Hgl)R(R) =0 for all . Thus C"(1; R) is an exact complex.

Hence if a € C?(z; R) has the form (%2

T)Je[\v and is a cycle, then « is a boundary.

Proposition 63. Let R be a Noetherian domain of characteristic p. Let K = Q(R) and K a fived algebraic closure.
Let I = (z1,..,z,) be an ideal of R. Let w = Hi(R) and suppose the submodule > .o Rw?" is finitely generated.

Then there exists R C S C K where S is a finite R—module such that w goes to zero under the natural map
HY{(R) — HY(S).

Proof. Since Epri is finitely generated (and hence Noetherian), there exists an equation of the form w?’ =
re_qwP '+ ...+ 1w for r; € R, that is, w?" — (rs,lwpkl + ... +rw) = 0. Let a be a cycle in C?(x, R) which lifts
w. Then o — (rs,laps_l + ...+ i) = 9(P) for some 3 = (;—g) € C'"Y(z; R).

We need to find a finite extension S or R such that the {mage of @ in C'(z;S) is a boundary. Let ¢g(T) =
TP _ (rs_le’k1 + ...+ nmT) € R[T]. So g(a) — 8(;—%) = 0. For each J € A;_1, let z; be an indeterminate

over R. Consider the equation (a:f])ps (g (%) - ;—é) = 0, a monic polynomial in R[z;]. Let u;y € K be a root
) = L for all J. Let §' = (u) e Ci~\(a; R') for

of this polynomial. Then u; is integral over R. Thus g ( % o

T
R’ = R[uy|J € Xi_1]. Therefore g(8') = (;—i]) = 0.
Let o/ = a — 9(8') € C¥(x; R'). It remains to find a finite extension S of R’ such that o’ is a boundary in
C"(x;S) as then « is a boundary. Since taking p* powers induces a chain map on C"(z; R) — C"(z; R), we see that

gO(y) = Ag(y) for all y € C"(z; R). Then
g(a’) = g(a) = gd(8') = g(a) — g(8') = g(er) — O(B) = 0.

Let o' = (cs)jea, for c;j € R}, . Now g(cy) = 0 for all J and thus c; are integral over R'. Let S = R'[cs|J € A].

<

This is a finite extension over R’ and hence over R. Now o/ = (c;) € C%(z'S) is a cycle. As all components of o’ are

in S, we see o is also a boundary in C"(z;S). Thus the image of w in H%(S) is zero. O

Let ¢ : R — S be a ring homomorphism and z = z1,...,x,, € R. Then one has a natural map of chain complexes
¢:C(z;R) — C(¢(x); S). Let fr: R — Rand fs: S — S be the Frobenius maps. Then we have a commutative
diagram

¢

R

R S
i fr \L fs
¢
R——S
This yields a commutative square of cochain complexes and taking homology, we have for all ¢

i o i
Hiy)(R) —— Hiy,)(5)

-

i o i
Hy)(R) —— Hiy,)(5)



Let R be a ring. An R—algebra S which is finitely generated as an R—module will be called finite R—algebra.
Let R be a domain, K = Q(R), and K a fixed algebraic closure of K. Let

A(R) = {S a finite R—algebra, R C S C K}.

If S € A(R), then S is integral over R. Thus Q(S) is algebraic over K which implies Q(S) = K. Therefore,
A(S) € A(R). Recall R" is the integral closure of R in K, that is, Rt = Ugea(r)S = limgea(r)yS- So

C'(z;RT) = C'(z; R) ® R* = C'(2; R) ®r (limsen(r)S) = im(C" (z; R) ®& S) = limsea(r) H{,)(S)-

Thus H{, (R*) = H'(imC"(2; 5)) = limsen(r) H{, (S). In particular, H ) (R*) = 0if and only if for all a € H{,(S5)
for S € A(R) there exists T' € A(S) C A(R) such that o maps to zero in the map H@)(S) — H@)( ).

Theorem 64 (Huneke, Lyubeznik). Let (R,m) be a Noetherian local domain of characteristic p > 0, which is the
homomorphic image of a Gorenstein local ring (A,n). Let d = dim R. For each i < d and S € A(R), there erists
T € A(S) such that the natural map H: (S) — H.(T) is zero.

Proof. Without loss of generality, we may assume dim A = d. Induct on d. Since R is a domain, the d =0and d =1
cases are trivial. So assume d > 1 and that the theorem holds for all R with dim R < d and the above hypotheses.
Fix i < d and S € A(R).

Claim. For all p € Spec A\ {n}, there exists S(p) € A(S) such that for all T € A(S(p)), the natural
map Exti_i(T7 A)p — Extff‘_i(S, A), is zero, where the map is induced by the inclusion S — T.

Proof. Fix p € Spec A\ {n} and let ¢t = dim A/p > 0. Then dim R, = dim A, = dim A —dim A/p =
d—t < d. Note S, € A(R)) and i —t < d —t = dim R,,. By the induction hypothesis, there exists
S, € A(S,) such that H;iz_%f,(sp) — H;}}i (S) is zero (x). Write S, = Sp[21, ..., z¢] where z; are integral
over S, and thus over R,. We can multiply each z; be any element in R\ p and thus assume each
z; is integral over R. Let S(p) = S[z1, ..., ze] € A(S). Note S(p), = S,. We'll show S(p) works. Let
T € A(S(p)). The inclusions S — S(p) — T induce natural maps

Ext (T, A) — Exts(S(p), A) L Ext (S, A).

Now localize and note it is enough to show v, = 0, that is, show the map ¢, : Extfi;i(gp, Ap) —
Extj;i(Sp,Ap) is zero. Let (—)Y = Homy,(—, Ea,(Ap,pAp)). Then it is enough to show 1 = 0,
that is, Hzg‘i_pt)_(d_l)(Sp) — ng‘i_pt)_(d_z)(gp) is zero. This is true by (*) and thus the claim holds.

Now Ext?%(S, A) is a finitely generated A—module. Let T' = {Py, ..., P;} = Assa Ext} (S, A) \ {n}. If I = @, then
Ext% (S, A) has finite length. Otherwise, let B = S[S(P), ..., S(P;)] € K. As each S(P;) is a finite integral extension,
B is and thus B € A(S). In fact, B € A(S(P;)) for all j. Thus the natural maps Ext% (B,A)pj — Ext47(S, A)p,
are zero for all j by the claim.

Let ¢ : Extj_i(B, A) — Ex‘cil‘_i(S’7 A) be the natural map induced by S < B and let U := im ¢. Since Assq U \
{n} CT and U, = 0 for all P € A, we have Assy U C {n}. Therefore Aa(U) < co. Let (—)¥ = Homa(—, Ea(A/n))
and note A4 (U"Y) < co. We have

Ext4 (B, A)

™,
N

Ext4 (S, A)



and applying (=) we get

Hi(S) ——="~ Hi,(B)
U\/
O / \ 0

which implies im ¢ 22 U and thus A(im ) < co. Recall ¢ commutes with the Frobenius maps fg : H2 (S) — H¢ (S)
defined by o — aP. Therefore, for all a € H}! (5), we see ¢(a)? = fr(v(a)) = ¥(fr(a)) € imy. Thus for all
B € im1p, we have (P° € im ) for all e. As \(im ) Moo, we know im 1) is Noetherian and thus Y >0 RBP" is finitely
generated for all 8. By the proposition, for all § € im, there exists Tg € A(8) such that g 0 under the map
H! (B) — H} (Ts). Let imy = RB1 +...+ RB: and T = B[T}p,,...,Tp,] C A(B) C A(S). Thus im ¢ goes to zero under
the map H! (B) — H_ (T). Therefore, H! (B) — H_ (T) is zero and thus H! (95) Y, H! (B) — H! (T) is zero. O

Corollary 65. With R as above, H: (R*) =0 for all i < d and thus R" is a big Cohen Macaulay algebra.

Let x = x1,...,2, and y = y1,...,Ym be indeterminants over Z. Let S C Z[z,y]. We say S has a solution of
height n in a Noetherian ring R if there exists a = a1, ...,a, € R and b = b1, ..., b,, € R such that

(1) f(a,b)=0forall fe S
(2) ht(aR = n.

Theorem 66 (Hochster’s Finiteness Theorem). Suppose a set S C Z[x,y| has a solution of height n in some
Noetherian ring containing a field. Then S has a solution of height n in an affine domain R over a finite field
(so R = k[T, ...,Ty]/p for some finite k). In particular, S has a solution (a,b) in a Noetherian local domain R of

characteristic p > 0 where a is a system of parameters for R.
Proof. Uses Artin approximation and Henselization. O

For the following, we will make use of Proposition 54 and Theorem 56 where we replace x—modification with

quasi—z—modification.

Proposition 67. Fiz r,n > 1 and integers si,...,8, such that 1 < s; < n — 1 for all i. Then there exists a

set S C Z[x1,...;Tn, Y1,y Ym| (where S and m depend on si,...,s.) such that given any ring R and elements
a=ai,...an € R, TFAE

(1) There exists a degenerate quasi—a—modification of (R, 1) of type (s1, ..., $r)
(2) There exists b=by,...,bm € R such that f(a,b) =0 for all f € S.

Sketch of proof. Suppose (R,1) = (Mo, fo) — -+ — (M,, f) is a degenerate quasi—a—modification (that is, f. €
(a)M) of type (s1,...,8-). Then M; 1 — M; is an a—modification of type s;, that is, M; = M;_1 & F;/Rw; where
F; is free with basis {ef,..,el,} and w; = y; \ Y51, ajel for y; € My with as,41y; € (a1,...,a5,)Mi—1. Now
M; = ®{F;/>"| Rw; where F; = R. Each y; can be written in terms of the basis elements of @©fF;. Then each w;
can be expressed similarly. The condition as, +1y; € (a1, ..., as,)M;_1 can be expressed in terms of the basis elements.
Degeneracy means 1 = e € (a1, ..., a,) M, which gives another equation in terms of the basis elements. Each equation
among the basis elements gives one equation in the ring R for each basis element. Replace all coefficients by variables

(replace a}s with zs and all other coefficients with ys). This gives a set of equations in Z[z, y]. O

Corollary 68. If (R,m) is a Noetherian local ring contain a field, then R has a balanced big Cohen Macaulay

module.



Proof. Let x = x1, ..., z,, be a system of parameters for R. It is enough to show every quasi—z—modification of (R, 1)
is non-degenerate. Suppose not. Then there exists a degenerate x—modification of (R, 1) of type si,..., 8. Then
the set S described in the proposition has a solution in R of height n. By Hochster’s Finiteness Theorem, S has a

solution of height n in some local ring of characteristic p of dim n. This contradicts Proposition 54. ]

Theorem 69 (Bass’ Conjecture). Let (R,m) be a Noetherian local ring. Suppose R has a nonzero finitely generated

module of finite injective dimension. Then R is Cohen Macaulay.

To prove Bass’ Conjecture, we need first need several lemmas and a proposition that will allow us to use the New
Intersection Theorem. First, recall the following facts.
Facts.
(1) (R,m) Noetherian. If M is finitely generated and idg M < oo, then idg M = depth R.
(2) R Noetherian, M finitely generated, ¢ C p primes with ht(q/p) = n. If p;(q, M) # 0, then p;yn(p, M) # 0
where p;(p, M) := dimy,p) Ext’ép (k(p), M) for k(p) = R,/pR,.

Lemma 70. Let (R,m) be Noetherian and M a finitely generated R—modules such that idg M < co. Then for all
p € Supp M, dim R/p + depth R, = depth R.

Proof. Next time. U
Lemma 71. Let R be Noetherian and M a finitely generated R—module. Then Suppp M = U; Suppp Extlk(M7 R).

Proof. Recall Grade M := inf{i| Ext, (M, R) # 0} and Grade M = Grade R/ Anng M = depthpyy,, v B < oo if
Ann M # R, that is, if M # 0. Thus M # 0 if and only if EXtZR(M, R) # 0 for some . Therefore, M, # 0 if and only
if Exty (Mp, Ry) # 0. O

Lemma 72. Let (R, m) be a complete Noetherian ring and M, N R—modules. Suppose N is finitely generated or Ar-
tinian. Then for alli there exist natural isomorphisms Ext's(M, N) 2 Torl (M, NV)Y where (—)" = Hompg(—, Er(R/m)).

Proof. Let F. be a projective resolution of M. Then as NVV = N, we have

Tor®(M,NV)Y = H,(F @z NV)Y = Hi(F @ N¥)V) = Hi(Homg(F. @ NV, E))
~ H'(Hompg(F,Homg(NV,E))) = H(Homg(F,N)) = EXt%(M7 N).

K

O

Lemma 73. Let (R, m) be a complete Noetherian local ring. Then for all finitely generated or Artinian R—modules
C, there exists a natural isomorphism Hompg(E,C) = Homg(Hompg(C, F), R) = (CV)*.

Proof.
Homp(E,C) = Hompg(E,CVV)=Homg(E,Homg(CV,F)) = Homgr(F ® CV,E) =2 Homgr(CV @ E, F)
= HomR(Cv,HomR(E,E)) = HomR(CV,R)
O

Proposition 74. Let (R,m) be a complete Noetherian local ring and T a finitely generated R—module of finite
injective dimension. Let M = Ext'zm(E,T) where r = depth R. Then M is finitely generated, pd M = r — depth T,
and Supp M = SuppT.

Proof. Let I : 0 — I° — ... — I” — 0 be a minimal injective resolution of T (since r = depth R = idg T'). Recall

; R, ifp=m
each I' = @pespec RER(R/p)*®T). Let E = Er(R/m) and note Hompg(E, E(R/p)) = . Apply
0, ifp#m
Homp(E,—) to I":
0 — Homp(E,I°) — --- — Hompg(E,I") — 0
— —

— Ruo(m,T) —Rur(m,T)



This gives a free resolution (1)F" = Hompg(F,I') where F? = R*(™T) Now F" is a complex of finitely generated
E, ifp=m .
R—modules. Recall H (E(R/p)) = . Thus H;, (I') = E*(™T) and so (2)F" = Hompg(E, H (I')).
0, ifp#m
Note that from (1), Ext%(F,T) = H'(F").
Claim 1. Exth(E,T) =0 for all i < r.
Proof. By Lemma 72, Ext',(E, T) = Tor(E,TV)". Now TV is Artinian and thus

TV = Up>1(0 :pv m™) = li_n)1HomR(R/m",Tv) = lim Homp(R/m", Homg(T, E)) .

=T,

Note \(T},) < 0o as A(T/m™T)oc. Thus we have Tor®(E,TV)Y = Tor;(F, lim7;,)" = (lim Tor®(E,T),))Y =
lim Tor(E,T,,))V = lim Torf(Ty,, E)Y = Ext%(T,,R) by Lemma 72. As \(T,) < oo, we see
— — —
ExtR (T, R) =0 for all i < r.
Thus F" is a finite free resolution of M = Ext’r(E,T') and also M is finitely generated.
Claim 2. Exth(M,R) = H!~(T)Y
Proof. From (2) and Lemma 73, we see F* = Hompg(E, HS,(I')) = Homg(H®(I')V,R) as H2,(I') is a

complex of Artinian modules. Thus
Hompz(F', R) = Homp(Homp(HS, (I')V, R), R) = [H2 (I')V]*™* = H2 (I')Y

as HY, (I')" is a bounded complex of finitely generated free R—modules. Since F" is a free resolution
of M,

Ext% (M, R) = H,_;(Homg(F',R)) = H,_;(H (') = H " (H°(I'))¥ = H"(T)".

Thus if i > 7 — depth T, then 7 — i < depthT and so Ext»(M, R) = H}~(T)" = 0. Since HIP!T(T) £ 0, we see
ExtSfdePthT(M, R) #0. Thus pdg M = r — depth T since pdp M < cc.
By Lemma 71 and Claim 2, we see Supp M = U; Supp Ext's (M, R) = U; Supp HJ/(T)V.
Claim 3. Suppp T = U; Suppy H: (T)".
Proof. Let R = S/J where (S, n) is Gorenstein of dimension d. By local duality, H: (T)" = H}(T)V =
Ext%™(T, S). Let (—) denote mod J. So Suppr T = Suppg T = U;Suppg Ext’ (T, S) = U;Supp Hi (T)V =
U; Suppg, H;,(T)".
Thus Supp M = Supp7. (]

Recall for (R, m) local T' # 0 a finite generated R—module with idg T < oo that idg T = depth R = sup{i| Exths(R/m,T) #

0}.
Lemma 75. Let (R,m) be Noetherian and T a finitely generated R—modules such that idg T < oco. Then for all
p € Suppr T with dim R/p =1, depth R > depth R,, + 1.
Proof. Choose x € m\p. Consider the short exact sequence (x)0 — R/px R/p — R/(p,x) — 0. Note A\(R/(p,x)) < o0
and dim R/p = 1. Since p € Suppyp T we see T), # 0 and s := idg, T, = depth R, = sup{i| Ext(R/p,T), # 0} by
above. In particular, Exty(R/p,T) # 0. Applying Homp(—,T) to (x) gives

EXtE(R/p, T) L EXtE(R/pa T) - EXt}?_l(R/(p’ Jf), T) —

—_—— ——

=0

By Nakayama’s Lemma, multiplication by = is not surjective. Thus Ext%™(R/(p,x),T) # 0. By induction on the
length, we have Ext?l(R/m, T) # 0. Thus depthR =idg T > s + 1 = depth R, + 1. a

Theorem 76. Let (R,m) be Noetherian and T # 0 a finitely generated R—module such idgT < oo. Then R is
Cohen Macaulay.



Proof. WLOG, assume R is complete. We will induct on the dimension of 7. If dimT = 0, then there exists a
finitely generated R—module M such that pdp M < oo and dim M = 0 by the Proposition. Let F. be a minimal
free resolution of M. Say F. : 0 — Fy — --- — Fy — 0. Then A\(H;(F.)) = AM(M) if i = 0 and is zero for i > 0. As
M # 0, F. is not exact. So pdp M = s > dim R. By the Auslander Buchsbaum formula, pdp M < depth R and thus
dim R = depth R.
Assume dim T > 0. Let M be a finitely generated R—module such that pd M < oo and Supp M = Supp T and let

q € Spec R such that dim R/q = dim R.

Case 1. dim M /gM > 0. Choose p € Suppyp M/qM such that dim R/p = 1. Clearly p D q. As R

is catenary, dim R/p + ht(p/q) = dimR/q = dim R. Then dim R, > ht(p/q) = dim R — 1. Since

dim R, # dim R, we have dim R, = dim R — 1. Since p € Supp M = Supp7, the lemma implies

depth R > depth R, + 1. Since dim7, < dim 7, induction gives that R, is Cohen Macaulay. So

dim R = dim R, + 1 = depth R, + 1 < depth R. Thus R is Cohen Macaulay.

Case 2. dim M/qM = 0. Let F. be a minimal free resolution of M. Say F. : 0 — Fs — --- — Fy — 0.

Apply —® R/q: 0 — Fs/qFs — -+ — Fy/qFy — 0. Then H;(F. ® R/q) = Torf%(M7 R/q), which

implies Supp H;(F. ® R/q) = m and thus A(H;(F. ® R/q)) < co. Also, Hy(F. ® R/q) = M /qM # 0.

So F. ® R/q is not exact. By New Intersection Theorem, s = pdy M > dim R/q = dim R. Then

depth R > pdp M > dim R. Thus R is Cohen Macaulay. U

Conjecture (Direct Summand Conjecture). Let R be a regular local ring and suppose R C .S where S is a finite

R—algebra. Then R is a direct summand of S as an R—module (that is, the inclusion map i : R — S splits).
We say “DSC holds for R” when the direct summand conjecture is true for all S O R.
Proposition 77. Let R be a regular local ring containing a field of characteristic 0. Then DSC holds for R.

Proof. Let R C S where S is a finite R—algebra.
Claim. Tt suffices to prove DSC holds in the case S is a domain.
Proof. Since S is integral over R, dim R = dim S = d. Let p € Spec S such that dim R/p = d. Then
S/p is integral and finite over R/pN R. So d = dimS/p = dim R/p N R = dim R. As R is a regular
local ring, R is a domain. So p N R = (0). We have ¢ : R L8 S/p and so we may consider
R C S/p for S/p finite R—algebra. If DSC held for domains, then there would exist ¢ : S/p — R
such that ¢’ = 1. Let £: S ™ S/p £ R. Then ¢i = 1.
Now assume S is a domain. Let K = Q(R), L = Q(S). Then £ := [L : K] < co and L/K is separable (char K = 0).
Let 01, ..., 04 be the distinct k—embeddings (that is, field maps that fix K) of L into K. Then Trk : L — K is given
by Tri(a) = Y1, oi(@).
Claim. For all s € S, Trk(S) C R.
Proof. As S/R is integral, each s € S satisfies an equation s" + r,_10;(s)" "1 + ... + 1o = 0. So each
0;(s) is integral over R and thus Trk(s) is integral over R. But regular local rings are integrally
closed in their quotient fields. Since Trk(S) C K, we get Trk (S) C R.
For r € R, Trk (r) = fr. Let p = %Trf{ : S — R. Then p is R—linear and p(r) = r for all r € R, that is, pi = 1y for
i:R—S. |

Remark. Let R < S be rings and suppose this inclusion splits (as R—modules). Then for all ideals I C R, we have
ISNR=1.

Proof. Let p : S — R be the splitting map. Let a € IS N R. Then a = 151 + ... + igs; for ¢; € I,s; € S. Then
a=p(a) =1i1p(s1) + ... +ixp(sk) € I as p(s;) € R. Thus IS N R C I. As the other containment is clear, done. O

Corollary 78. The monomial conjecture holds for all local Tings containing a field of characteristic zero.



Proof. Let (S, m) be alocal ring of dimension d and 1, ..., z4 a system of parameters. We want to show (z1, ..., 2}) &
(zp . 2" for all n > 1. Tt suffices to show (z1,...,24)" & (277, ..., 27™1)S where S is the m—adic completion.
Since x1,...,x4 form a system of parameters in hatS, we may assume S is complete. Let K be a coeflicient field
for S (char K = 0). By a corollary to the Cohen Structure theorem, S over K[z1,...,x4] =: R is a finite extension
as xi,..,Tq is a system of parameters. Since dim R = dim S = d, we see R is a regular local ring. Suppose
(1,0 g)™ € (2T a:sH)S for some n. As DSC holds for R, the remark implies (1, ..., z4)" € (271, ..., xZH)R,

a contradiction to #1 on Homework Set 1 as R is Cohen Macaulay. (]

Theorem 79. Let (R, m) be a regular local ring of dimension d and let x1, ..., xq form a reqular system of parameters
(so m = (x1,...,x2q)). Suppose R C S for a finite R—algebra S. Then R is a direct summand of S if and only if
(21,0, zq)" & (27T, 2 tHS for all n.

Corollary 80. Suppose the monomial conjecture holds for all local rings. Then DSC holds for all reqular local rings.

Proof. Let (R,m) be a regular local ring and m = (21, ...,x4) where d = dim R. Let R C S for a finite R—algebra
S. By the theorem, R < S splits if and only if (x1,...,24)" & (277, ..., st)S for all n. As before, we may assume
S is a domain. Let p € Spec S such that p is minimal over (21, ...,24)S. Since R is integrally closed in Q(R), the
going down theorem holds for S/R (see Mastumura, Theorem 9.4). Thus htp = htp N R = htm = d. So x1,...,x4
is a system of parameters for S,. By the monomial conjecture, (z1,...,z4)" ¢ (z7, ..., 2%"")S, for all n and so
(21, ey wa)™ & (27T . 20 T1)S. Thus DSC holds for all regular local rings. O

Remark. The proof also shows that DSC holds for regular local rings of characteristic p > 0.

Corollary 81. The existence of big Cohen Macaulay modules implies the Direct Summand Conjecture (via the

Monomial Conjecture).

Exercise. Let R be a ring and M an R—module. Let a; + M D as + My O --- be a descending chain of cosets in
M (so a; € M and M; are submodules of M). Then (1) M; D My DO --- and (2) the chain of cosets stabilizes if and
only if the chain of submodules stabilizes. In particular, if M is Artinian, every descending chain of cosets stabilizes.

Thus Na; + M; is a coset and thus is nonempty.

Proof of Theorem 79. The forward direction has already been shown as if R < S splits, then IS N R = I for all
ideals I of R. In particular, take I = (271, ...,xZH).

So we just need to show the backward implication. Recall that R a direct summand of S means there exists
p: S — R such that poi = 1 where ¢ : R — S is the inclusio map. This happens if and only if the natural
map Homp(S,R) — Hompg(R,R) = R defined by p — poi = p|g is surjective. That is, Homp(S,R) ® R —
Homp(R,R) ® R is surjective. Since S is finitely presented and R — R is faithfully flat, this is if and only if
Homﬁi(S’, ]:2) — Homﬁ,/(]%7 R) is surjective, that is, ¢ : R — S splits. Also, m = (z1,...,24) R implies m = (zq, ..., ;vd)]%.
If (21, ...,2q)" € (27, 27T)S for some n, then (z1,...,xq4)" € (z7,..,22™)SN S = (27, .., 2"™)S (since
S — § is faithfully flat and IS NS =TI ), a contradiction. Thus we may assume R is complete.

For t > 1, define (z*) = («4, ...,2%), Ry = R/(z"), St = S/(z")S, and 4 : R, — S;.

Claim. For every t, i; is a split injection.

Proof. As (z') is regular, R; is a zero-dimensional Gorenstein ring. Thus soc Ry = (0 :z, m) is a one-
dimensional R/m—vector space. Note (x1 ---24)!~! # 0 in R; as the monomial conjecture holds for
regular local rings. However mW =0 in R;. Thus soc Ry = R/m - W Suppose
keri; # 0. Then keri; contains something in the socle. Since dimy soc R; = 1, keri; 2 soc R;. Thus
i((z1--2q) ) =0in S/(2')S and so (x1,...,74)' "1 € (2')S, a contradiction. Thus i, is injective.
As R, is zero-dimensional Gorenstein, we see R is injective. Now R, LN S; is exact with R; injective

and so it splits.



Note {(z")}+>1 is cofinal with {m™},>1. Thus R = R= imR;. Let 8,y : Ry — Ry defined by r+(z') — r+ (z'1)
be the natural surjection. Then limR; = {(r¢) € []Rt|6¢t—1(r¢) = r¢—; for all t}. Now R =N R; where r — (ry) for

re =1+ (z'). As Hompg(S, —) commutes with inverse limits, we have
Homp(S, R) = Hompg(S, @Rt) = @HOHIR(S, R;) = lim Homp, (St, Ry).

As any map p : Sy — R; induces a map p: S;—1 — R;_1, let m—1 = Homg, (S;, R;) — Hompg, ,(Si—1, Ri—1). Now
the inverse limit
@HomRt(St,Rt) = {(¢4)|ths : St — Ry, w110+ = 1y for all t}.

Finally we have an isomorphism Hompg(S, R) — lim Hompg, (S¢, R;) defined by ¢ — (3;) where the inverse map is
defined for (¢¢) € Him(St, Ry) by (¢1)(r) = (¢1(r4)) € imR; = R for r = (1) € limR;. To show i : R — S splits, it
suffices to find R;—homomorphisms v, : Sy — Rp such that m_19¢; = ¥;—1 and 143, = 1g, for all ¢. If so, by (1) we
have (psi;) € lim Hompg, (St, Ry) = Hompg(S, R). Let ¢ = (¢) : & — R. Then ¢i = 1p as for r = (r¢) € R, we see
Pi(r) = () = (Ye(re)) = (Prie(re)) = (r+) = 1 by (2) of the exercise. Thus we just need to find ;.

We know i, : Ry — S; splits for all ¢. Let p; be a splitting. We know 4} : Hompg, (St, R;) — Hompg, (R;, R;) defined
by 1 + iy is surjective. Now 1), : Sy — Ry is a splitting map for i, if and only if ¢y € (i7) "1 (1g,) = ps+keri; =: Dy,
a coset in Hompg, (S;, R;). Certainly, m,—1(D;) C D;_; for all t. For each ¢, let E; := N;>ommet1 -+ T (Disit1)-
Note that we have a descending chain of cosets Dy D 7t(Dig1) 2 mmeqy1(Diye) 2 -+ in Hompg, (St, R:) which
is Artinian (as dim R; = 0 and S; is a finitely generated R;—module). Therefore, by the exercise, E; # . Say
(*)Ey = memipr -+ Tigi(Digiv1) for some ¢ (which depends on t. Note that m—1(E;) = Ey—q for all ¢ (this follows
from the definition and from (x)). Choose ¥ € Ey. So ¢ : S — Ry splits 41. By the chain, there exists 1y € Fy
such that ma(1)2) = 1;. Continue to get the desired maps. (|

Conjecture (Small Cohen Macaulay Module Conjecture (SCM)). If (R, m) is a complete local ring, then R

has a maximal Cohen Macaulay module.

Note that SCM implies the Big Cohen Macaulay module conjecture. The conjecture is easy to see in several cases:

e dim R = 0 (then R is Cohen Macaulay)
e dim R =1 (then R/p is a maximal Cohen Macaulay module for p € Min R)
e dim R = 2 Nagata gave an example of a two-dimensional local domain R which is not universally catenary

(and thus does not have a maximal Cohen Macaulay module by [BH] 2.1.14).
Proposition 82. Let (R, m) be complete of dimension two. Then R has a maximal Cohen Macaulay module.

Proof. By passing to R/p for p € Spec R with dim R/p = 2, we may assume R is a complete domain. Let R’ be the
integral closure of R in Q(R). Then R’ is a finitely generated R—module and hence a Noetherian local domain. So
R’ is normal, which implies it is Sy and R;. As dim R’ = 2, it is Cohen Macaulay and thus depthp R’ = 2. Thus R’

is a maximal Cohen Macaulay algebra. ]

Proposition 83. Let R be a ring, I a finitely generated ideal. Suppose n € N and Hi(R) = 0 for all i > n. Then

(1) HY{(M) =0 for alli > n and for all R—modules M
(2) H}(M) =2 H}(R)® M for all R—modules M

Proof. (1) Let ¢ = inf{¢{|H:(M) = 0 for all i > ¢, R-modules M}. Since I is finitely generated, H:(M) for all
i > p(l). So ¢ < p(I). It suffices to show ¢ < m. If not, ¢ > m and there exists an R—module M such that
H{(M) # 0. Consider the short exact sequence 0 — L — F' — M — 0 where F' is free. Since F' = @R, we
see Hi(F) = 0 for all i > n. Then the long exact sequence on homology gives Hy™'(L) # 0, a contradiction
to the definition of C. Thus ¢ < n.



(2) For any i, Hi(—) is covariant, additive and multiplicative. So if F L9, Gisa map of free R—modules, then

Hj((aiz))
_—

=

=
<
1R @

. 1®(aij) .
Hi(R)or —<Hi(R) @ RG

As Hi(M) = 0 for all i > n for all R—modules M, H?(—) is right exact. Let M be an R—modules and
F — G — M — 0 exact with F,G free. Then we have

Hy (F) H(G) Hy (M) 0
|
lm lm v
H}R)®F  H}(R)®G — H}(R)® M —0

Corollary 84. Let R be a ring, I an ideal, and n € Z. TFAE
(1) Hi(R) =0 for alli >n
(2) HY(R/p) =0 for all p € Spec R and i >n
(3) Hi(R/p) =0 for allp e MinR and i > n

Proof. Note that (1) = (2) and (3) = (2) follow from the proposition. For (2) = (1), take a prime filtration of R
with factors isomorphic to R/p and take local cohomology. ]

Definition. Let R be a ring and I an ideal containing a non-zerodivisor in R (that is, I is a regular ideal). Let Q
be the total quotient ring of R. We define the ideal transform of I to be D(I) := U,>1(R @ I") = {q € Q|¢I™ C

R for some n}.

Note.
(1) D(I) is a subring of ) containing R.
(2) D(I) is almost never Noetherian, even if R is.
(3) If I = (a1,...,ax), then D(I) = U, (R :q (a¥,...,a}))

Proposition 85. Let R be a Noetherian ring and I a finitely generated regular ideal. Let S = D(I). Then
(1) HY(S)=H}(S)=0
(2) HY(S) = H{(R) for all i > 2.

Proof. (1) Let z € I be a non-zerodivisor on R. Then z is a non-zerodivisor on Q and hence on S. So H?(S) = 0.
Consider the short exact sequence 0 — S = S — S/x.S — 0 and apply local cohomology: 0 — HY(S/xS) —
H}(S) = H}(S). If HY(S/xS) = 0, then multiplication by z is injective. But 2 € I and every element
in H}(S) is annihilated by a power of I and thus by a power of x. Then H}(S) = 0. So it is enough to
show HY(S/xS) = 0. Let y € S such that I"y C xS for some n (so § € HY(S/xS)). If we show y € xS
then H?(S/xzS) = 0. So write I = (ay,...,ax) where a; is a non-zerodivisor for all i. Then for all i there
exists s; such that af'y = xs;. In Q, we see y = % =z (‘%‘) for all 7. It is enough to show 5—? € S. Now
zsi _ TS

o = — for all 4,7. As x is a non-zerodivisor, this says u := 2% =
;

n
Y a a

, i L9

such that Is; C R for all i. Then a?[zu = I's; C R for all 1, which implies (a?,...@ﬁ)ﬂu C R and thus
(a7, . af ) u C R. Thus u € S and y = 2u € xS. Therefore HY(S/xS) = 0.

(2) Consider the short exact sequence 0 — R — S — S/R — 0. For all 5 € S/R there exists n such that I"s = 0.

Thus H?(S/R) = S/R and H:(S/R) =0 for all i > 1. Applying Hi(—) to our short exact sequence gives

for all ¢,j. As s; € S, there exists ¢

0—S/R— H}(R) — H}(S) —0— H?(R) —» H}(S) -0 — ---



Theorem 86 (Hochster '83; Katz, Huneke, Marley '06). Let R be Noetherian and I = (z,y). Then TFAE
(1) Hf(R) =0
(2) (xy)™ € (2™, y" ) for some n.

Proof. First suppose H7(R) = 0. As H?(R) & Ry, /R, + R,, we see ziy =0in R;y/R; + Ry. Thus Iiy = g7 £ 7 for
n+l—1 — Txéyn+é 4 an+2y£ c (anré’ynJrE)'

Now suppose (2) holds. Since Hi(R) = 0 for all i > 2 (as I is two-generated) and the corollary implies H?(R) = 0

some n and for r, s € R. Then there exists ¢ such that (zy)

if and only if H?(R/p) = 0 for all p € Spec R, we may assume R is a domain and I is a regular ideal. Let S = D(I).
Then its enough to show HZ(S) = 0 as H?(S) = H?(R). To do so, it is enough to show IS = S = (1)S. We have
(xy)™ = ra"t! + zy" ! for some r,s € R. So 1 = y%a: + 2y in Q. To get 1 € IS, we need only show ﬁ, o €S

Now a"*! =a" — sy € R. So & € (R:q (z"*!,y"*1)) C . Similarly for . O
Corollary 87. The monomial conjecture and the direct summand conjecture hold in dimension 2.
Proof. For (R, m) local and I = (z,y) a system of parameters, we see H7(R) # 0. |

Definition. Let (C,d) and (D,d’) be chain complexes. A homotopy s from C to D is a set of maps s, : Cr, — Dy yq
for each n. Two chain maps f,g: C — D are called homotopic if there exists a homotopy s from C to D such that

for alln fr — gn = sp_1dn +d;, | 5p.

Theorem 88 (Comparison Theorem). Let C,D be chain complexes such that C; = D; = 0 for all i < 0. Let
€:Co— X and 0 : Dy — Y be augmentation maps. Suppose

(1) C; is projective for all i
(2) Co = X — 0 is a complex
(3) Do 5 Y =0 is exact

Then given any map f_1 : X — Y there exists a chain map f : C — D lifting f_1. Furthermore, any two liftings are

homotopic.

Definition (Hochster '83). A local ring R(,m) of dimension d satisfies CE if for every projective resolution P.
of k = R/m and for every system of paramters x1,...,x, and every chain map f : K.(x) — P. lifting the canonical
surjection f_1 : R/(xz) — R/m, one has fg # 0.

Conjecture. Fvery local ring satisfies CE.

Theorem 89. If a local ring (R, m) has a big Cohen Macaulay module, then R satisfies CE (e.g., every local ring
containing a field satisfies CE).

Proof. Fix a system of parameters = 1, ..., z4 for R and let P. be a projective resolution of k. Let f : K.(z) — P. be
a lifting of f_; : R/(z) — R/m and suppose f; = 0. Let M be an R—module which is a big Cohen Macaulay module
for . Note K.(z, M) = K.(z) ® M is acyclic and M # (x)M. As (x) is m—primatry, there exists y € M \ (z) M such
that my C (z)M (to find y, take z € M \ ()M so A(R/z) < oo and choose y € socz). Let g_1 : R/m — M/(x)M
be defined by 1 +— 7. By the comparison theorem, there exists gg : Py — Ko(z, M) which lifts g_1. Then o = go f :
K.(z) — K.(z, M) liftsa_1 =g_10f_1: R/(x) = M/(x)M. Since fq =0, we see ag = 0. Let p: R — M be defined
by 1 — y. Consider the composition of chain maps o’ : K.(z) & K.(z) ®r R 190, i () @p M =K (z, M). Note
(/) : R — M is defined by 1 — y. So o also lifts g_1f_1 and so @ and o’ are homotopic, say with homotopy s.
Then since ag = 0 we see o) = o) — ad = 0sq + sq-10 = s4-10. Thus y = afj(1) = s4-10(1) = sd,l(Z‘f xie;) =
> xisa—1(e;) € (x)M, a contradiction as y was chosen to be not in (z)M. Thus fq # 0 and CE holds. O



Proposition 90. A local ring (R,m,k) of dimension d satisfies CE if and only if for every system of parameters
xr = 21,...,xq and every complex F. : -+ — F;11 — F; — .-+ — Fy — 0 where F; is finitely generated free and for
every chain map f : K.(z) — F. such that the induced map fg : Ho(K.(z)) ® R/m — Ho(F.) ® R/m is not zero, we
have fq # 0.

Proof. For the backward direction, it suffices to show that if CE holds where P. is a minimal resolution of k, then CE
holds for every resolution of k. Suppose CE holds for every chain map f : K.(z) — F. which lifts R/(z) — R/m and
where F. is a minimal resolution of k. Let g : K.(x) — P. be a lifting where P. is an arbitrary projective resolution
of k. By the comparision theorem, there exists a chain map h : P. — F. which lifts the identity map on R/m. Then
hg : K.(z) — F. lifts R/(z) — R/m. As CE holds for F., hqgq # 0. Therefore g4 # 0 and CE holds for P.

For the forward direction, let f : K.(x) — F be as in the hypothesis. Let y = fo(1) € Fp. Then the image g
of y in Hy(F) ® R/m is non-zero. Choose a projective 7 : Ho(F.) ® R/m — R/m such that 7(y) = 1 # 0. Let
€: Fy —» Fy/im¢, — Fy/im¢; ® R/m = R/m. Then e(y) = 1. Let P. be a projective resolution of k. By the
comparison theorem, there exists a chain map g : F© — P. lifting 1;. Then gf : K.(z) — P lifts the canonical
surjection R/(x) — R/m. Since CE holds, gqfs # 0 and so fq # 0. O

Corollary 91. Let ¢ : (R,m) — (S,n) be a local homomorphism such that dim R = dim S and vmS = n. If CE
holds for S, it holds for R.

Proof. If there is a counter example to CE for R, then apply — ® S to find a counterexample for S using the

propostion. O
Corollary 92. To show CE holds for R, it suffices to show CE holds for IA%/p forpe Min R with dim ]:Z/p = dim R.

Conjecture (Improved New Interesection Conjecture (INIC)). Let (R,m) be local of dimension d. Suppose
F :0— F; LN Fy — Fy — 0 is a complez of finitely generated free R—modules such that \(H;(F.)) < oo for
alli >0, Ho(F.) # 0, and Ho(F.) has a minimal generator z such that A(Rz) < co. Then s > d.

Theorem 93. Suppose (R,m) satisfies CE. Then INIC holds for R.

Proof. Let F. be as in INIC. Let M = coker ¢; = Ho(F.) and d = dim R. Let z € M \mM such that A(Rz)Moo. Then
there exists to such that (z1,...,24)" C Anng Rz (x). Let Z; = ker ¢; and B; = im ¢; 41 for i > 1. As M\(Z;/B;) Moo,
there exists ¢ such that (x1,...,24)°Z; C B;. By the Artin Rees Lemma, for all ¢ > 1 there exists ¢; such that
(21, .y za) iF; N Z; C (w1, .., 24)°Z; C By. Let t = max{to, ..., ts}. We will construct a chain map f. : K.(z!) — F.
Let y € Fy such that § = 2z in Ho(F.). Define fo : R = K.(z')g — Fy by 1 — y.

P i Ey 0

.

K(z')) =R ——= K (z')o=R—0

Let {e1,...,eq} be a basis for K.(z');. Then fod1(e;) = fo(z}) = zty. Note () implies (z1,...,z4)'y C By = im ¢y.
Thus fod(e;) € Bo. So there exists u; € Fy such that ¢;(u;) = xly. Define f1 : K.(z') — Fy by fi(e;) = u;. Then the

diagram commutes. Now suppose we have defined f, ..., f;.

Pit1 bi
Fi fi i

fiT fi+1T
Oit1

0;
e K@i 2 K2t~ K)o — -

implies that f;0;11(w;) C (2%,...,24)F; N Z; C B;. Thus there exists v; € F; 41 such that ¢;41(vj) = f;0;41(w;) for
all j. Define f; 17 in the obvious way. This gives the desired chain map.

Let {w1,...,we} be a basis for K(z');4+1. Then 9;41(w;) C (af,...,z%) K.(z");, which together with diagram chasing



Note fg : Ho(K.(2')) = R/(z') — Ho(F) = M sends T — 5 = z. So f§ : Ho(K.(z")) ® k — M ® k sends
1®1— 2®1 #0as 2 € M\ mM. By the above proposition since CE holds for R, we have f; # 0 and thus s > d. O

Lemma 94. Let (R, m) be local. Then R satisfies CE if and only if for all system of parameters x and for all projective
resolutions P. of k and for all chain maps f. : K.(z) — P. lifting R/(z) — k, we have f4(1) & (21, ...,24)Py.

Proof. The backward direction is clear. For the forward direction, suppose fq(1) = z1u; + ... + zquq,u; € Py.

Consider

[oF] bd—1
Py Py

de fa—1 T
ad ad—l

0—= K (z)g — K (z)g-1 —> -+~

where 94(1) = (x1, ..., 24). Define s : K.()4—1 — P4 by e; — u;. Define a map f: K.(z) — F by fa=fa—s94=0
and fd,l = fq_1 — ¢gs and ﬂ = f; for all i < d — 1. Note

f0a = fa-104 — 04504 = fa—104 — dpafa =0

as the square commutes. Since fd = 0, the last square commutes. Now ¢d71fd71 = ¢a—-1(fa—1 — ®aS) = Ga—1fa-1 =
fa—204_1. Thus the second to last square commutes. So f : K.(z) — F. is a chain map and lifts R/(z) — k. Thus
f¢ is the canonical surjection. But fz = 0, a contradiction as R satifies CE. O

Recall if z = z1,...,2, € R and t,s > 1 then there exists a chain map u(t,s) : K.(z'**) — K.(z') such that
u(t,s)o = 1g and u(t, s), is given by multiplication by (x7...x,)°.

Theorem 95. Suppose CE holds for (R, m). Then the monomial conjecture holds for (R, m).

Proof. Let x = x1, ..., 24 be a system of parameters for R and ¢t > 1. We need to show (z1 - -+ z4) & (96?17 . xf;rl). Let
P be a projective resolution of k and f : K.(z) — P. which lifts R/(X) — R/m. Let p:= pu(1,t) : K.(z'™) — K.(z).
Since po = 1p we see fu: K.(z'™) — P lifts R/(z) — R/m. On the other hand

(Fma(1) = fana(l) = fal(@r -+ 2a)") = (@1 2) fa(1) & (@17, 2l )Py
by the Lemma. Thus (z1---24) € (x§+17 ---vxfi—H)' H

Remark. Hochster (’83) proves that if the Direct Summand Conjecture holds for all regular local rings (A, n) of
characteristic p > 0 then CE holds for all local rings (R, m) of characteristic p. Since they are both true in the
characteristic zero case, we have

DSC = CE = MC = DSC.

Another Construction of the Koszul Complex. Let R be a ring, F' = R™. Let f : FF — R defined by e; — x; be

R—linear. For i > 1 define d(f); : F* — A"'F by (u,...,u;) — Z;Zl(—l)j+1f(uj)u1 Ao A A A g

One can check this map is multilinear and alternating. Thus we get an induced map 9(f); : /\iF — /\ii1 F.

The sequence 0 — A" F — --- — A°F — 0 is K.(z; R). Now suppose ¢ : G — F is an R—linear map where
G = R™. By the Functorial property of A, we get induced maps ¢; = A'(¢) : A'(G) — A'(F) defined by
up A Aug = dur) Ao Ad(u;). Let g = f¢p: G — R and y; = g(e;) where {eq,...,e,,} is a basis for S.

Claim. ¢ : K.(y) — K.(z) is a chain map.

Proof. We need only show 9(f);¢; = ¢;—10(g); to show that the following diagram commutes:

i a(9): i
NG—=NG

o L

JE T T
NF—=NF



Chasing elements, we see

Gic10(g)i(ur A= Awg) = dimr (3(—=1)7 g(uy)ug A - Atij Neee A u;)
(1T fp(ug)dlur) A A p(ug) Ao A pluy)
= O(f)i(pur) A~ A p(u;))

O(f)ii(ur A -+ ANuy).

Note that for a domain R, if we have h : L S M % N then rankh = rankimh < min{rank f,rank g}
min{rank M, rank L}(«). Let f : F — G be a map of finitely generated free R—modules. Then rank f = min{r
0/Z,11(f) = 0}. Now f induces maps \' f : A°F — A" G defined by ug A---Au; — f(ur) A=A fluw;). I {eg, ..., e}
is a basis for F' then {e;, A--- Aejlj1 < -+ < j;} is a basis for A F. So \'F is free of rank (""). Fix a basis

{u1,...,u,} for G and let A = (a;;) be the matrix representation for f with respect to the chosen basis.

<
>

Exercise. The matrix representing /\Z f with respect to the bases above is given by the i x i minors of A. Specifically,
the coefficient of ug, A --- A uy, in the expression of (A’ f)(ej, A --- Ae;,) is the i x i minor determined by rows
k1, ..., k; and columns ji, ..., ji. Thus I (/\i f) — I,(f). Thus I;(F) = 0 if and only if A’ f = 0 and so rank f =
min{r > 0| A" f = 0}.

Definition. Let R be a ring and M and R—module with x € M. The order ideal of x is Or(x) = {¢(x)|p € M* =
Hompg (M, R)}.

Remarks.

(1) Og(x) is an ideal.

(2) If M is finitely presented, then Hompg(M, R)s = Homp, (Mg, Rg) for all multiplicatively closed sets S. Thus
Or(z)s = ORg (%).

(3) More generally, let f : R — S be aring homomorphism. Then there exists a natural map Homg(M, R)®rS —
Homg(M ®gr S, S). Thus for z € M, Or(z)S C Og(z®1) (note that when S is flat, this become an equality).
In particular, if I C R, then Og(x) - R/I C Og,;(T).

(4) Suppose M = A@® B and = = (a,b). Then M* = A* @ B* and so Og(x) = Ogr(a) + Og(b).

(5) If z € IM for an ideal I, then Og(x) C I. In particular, if z € mM for some maximal ideal of R then Og(z)
is a proper ideal.

(6) Let M = R™ and = = (21, ..., Z,. Then Ogr(z) = (21, ..., 2p).

(7) If R is Noetherian, M = R™ and x € mM for some maximal ideal then ht Or(z) < n = rank M (by Krulls
Principal Ideal Theorem and Remark 6).

Definition. For a Noetherian ring R and finitely generated R—module M, define bigrank M = max{ur,(Mp,)[p €
Min R}.

If R is a domain, then bigrank M = rank M.

Theorem 96 (Eisenbud-Evans, ’76). Let (R,m) be a local ring, M a finitely generated R—module and x € mM.
Suppose R satisfies CE, then ht Or(X) = bigrank M.

Proof. Let p € Min R such that ht Og(z) = ht Or(x)R/p. By Remark 3, Or(z)R/p € Og/y(Z). Thus ht Ogr(z) <
ht Og/,(Z). Note also

bigrank M > ug,(M,) = pr,(My/pMy) = pir, /pr, (My/pM,) = rankg,,(M/p) = bigrankR/p(M/pM).

Thus we may assume R is a domain. Let h = ht Ogr(X). Then codim Og(z) > h. So there exists a system of
parameters zy,...,xq for R such that x1,...,x, € Ogr(z). Let M’ = M & R* " and 2’ = z + (241, ...,74). Then
Or(2') = Or(2)+Ogr(ht1, -, d) = Or(x)+(Th41, ..., £q), which is m—primary. Clearly rank M’ = rank M +d —h.



So if we prove ht Og(2') < rank M’ then d < rank M +d—h, that is, h < rank M. So without loss of generality, suppose
ht Or(x) = d. We need to show rank M > d. Let x1,...,xq be a system of parameters such that 1, ...,24 C Og(x).
Then there exists a; € M* such that a;(x) = x; for all 4. Define a : M — R? =: F by u +— (a1 (u), ..., aq(u)). Let
m = (Y1, ..., Yn). Since x € mM there exists uj,...,u, € M such that x = 3 y;u;. Define 7 : R* =: G — M by

e; — u;. Note w(y1,...,yn) = x. Let f = am: G — F and note that the following squares commute.

(:El,..,,md) « (z17'~'7:1:d)
R——— " s F Apply (—) F* R
_

IRT fT lf* llR
R G B

(Y150-5Yn) g (Y15e-5Yn)

Note rank f* = rank f < rank M by (x). By the remarks on the Koszul complex, f induces a chain map f:K. () —
K .(y) given by N(f) : N"F* — A\ 'G*. Let P. be a projective resolution of k = R/m and ¢ : K.(y) — P. lift the
identity map R/(y) — k. Then ¢f : K.(z) — P is a chain map lifting R/(z — k. By CE, ¢q /\df = (¢f)a # 0. Thus
/\d f # 0 and so rank f > d. Thus rank M > rank f > d. O



APPENDIX A. HOMEWORK PROBLEMS

A.1. Homework Set 1.

(1) (Justin) Prove the monomial conjecture for Cohen-Macaulay local rings.

Proof. Since R is Cohen Macaulay, x1, ..., x4 is R—regular. Let I = (x1,...,74). Recall gr;(R) = &2, /I+!
is Z—graded and in degree zero is R/I.
Claim. The map ¢ : (R/I)[X1, ..., X4] — gr;(R) defined by X; — &; € I/I? is an isomorphism.
Proof. This map is homogenous, thus we only need to check the isomorphism for homogenous
elements. For surjectivity, note that a homogenous element of gr;(R) lives in I%/I°T! for
some s. The element is an (R/I)—linear combination of s—fold products of x1,...,24. The
same combination in (R/I)[X1, ..., X4] works.
For injectivity, supposed F' € (R/I)[X1, ..., Xg4] is homogenous of degree s. Say F' = > /4 apn, X™.
Under ¢, F maps to I5/5TL. If ¢(F) = 0, then ¢(F) € I**! when we life to R. Thus
S an,x™ € I°+L. By the following theorem, a; € I when we lift to R. Thus a; =0 € R/I.
Theorem (Rees). If I = (1, ..., 24) is an R—regular sequence and F € R[Xj, ..., X4] is homoge-
nous of degree s with F(z1,...,24) € I°T! then F has coefficients in I.
Suppose xt - - -z € (24T, .. 25T, Look at gr, (R)/(«4H, ..., 2 gr (R) = (R/I)[ X1, ..., Xa) /(XTT, ., XETY).
By the isomorphism, we know X! --- X% ¢ (X1, .., X!*!) as they are variables. Thus X{--- X’ € 0 on the
right hand side, yet zf - - - 2!, = 0 on the left hand side, a contradiction. g

(2) (Hamid) Let (R,m) be a quasi-localr ing. Let M be an R—module and suppose F. and G. are two free
resolutions of M consisting of finitely generated free R—modules. Suppose F. is minimal. Prove that there

exists an exact complex H. of finitely generated free R—modules such that G. = F. @ H. as complexes.

Proof. Consider the following diagram

—_—

(03

B

ol
L

Composing gives us [ o «, which is null homotopic to 1 by the comparison theorem. Thus o « is an

isomorphism which implies « splits. O

(3) (Laura) Let M be a finitely presented R—module and F} 2, Fy = M — 0 and G, 2, Gy — M — 0 two
presentations of M. Let r = rank Fy and s = rank Gy. Prove that I,_;(¢) = I,_;(¢). [Note: This result
allows us to call I,_;(¢) the i*" Fitting Ideal of M.]

Proof. We may assume R is local as I,._;(¢) = Is_;(¢) if and only if they are locally equal. Furthermore,
since we can compare both of these presentations to a fixed minimal one, we may assume F} — Fy — M — 0
is minimal. Extend these presentations to free resolutions of M of finitely generated free R—modules F.
and G.. By exercise 2, there exists an exact complex H. of finitely generated free R—modules such that
G.2F ®H.Say H : --- — H 5 Hy — 0. Note Gy = Fy @ Hy which implies p : rank Hy = s — 7.
As 7 is surjective, choose bases for Hy; and Hj such that 7 is represented by the matrix (I,0). Note that



(4)

(5)

0
FoH : - — F®H; A, Fy® Hy — 0 where A = (? > is a free resolution of M as H. is exact. Since
T

G. = F @ H., wesee ) = ¢ 00 . |
0 I, 0

(Xuan) Let R be a ring and M a finitely presented R—module. Let F) 2, Fy — M — 0 be a presentation
for M. Prove that M is projective if and only if I;(¢) is generated by an idempotent for each j.

Proof. For the forward direction, suppose M is projective. Then M,, is a free R,,—module, hence projective
with rank. By Corollary 17, there exists r such that I,.(¢)my, = Ry and Ly 1(¢)y, = 0. Note - - C T4 2(d)m C
—_——

=0

I 41(@)m = I+ (¢)m C -+ and so Ij(¢)m = Ry, or 0 for all j and all m.
———

——
:C’(}aim. J a:f?nitely generated ideal, J,, = 0 or R,,,. Then J is generated by an idempotent.
Proof. 1f J,, =0 then (0:J) € m. IF J,, = R,, then J € m. So (0: J) + J € m which implies
(0:J)=R. Choose i€ (0:J)and j € J sothat i+ j =1 and ij = 0. Then j(1 —j) =0
which implies j2 = j. For all x € J we see (1 — j)x = 0 which implies 2 = jz and so J = (j).
For the backward direction, let p € Spec R. We claim idempotents in R, are either 0 or 1. Note I,.(¢), =
I.(¢)R,, where the left side is generated by idempotents by assumption. Now M, is projective R,—module
and is thus locally free. So M is finitely generated. Take r equal to the maximum such that I,.(¢), = R,
and Ir41(¢)p, = 0. U

(Brian) Let A be an n x m matrix with entries from a commutative ring R. Prove that the system Ax =0
has a nontrivial solution if and only if there exists a nonzero element z € R such that zI,,(A) = 0. (This is

a theorem due to McCoy.)

Proof. Recall from last time for F, G finitely generated free and ¢ : F' — G with » = rank F' that F @r M —
G ®pr M is injective if and only if grade(I,.(¢), M) > 1. Now its enough to show R™ A R s injective if and
only if there does not exists z € R\ {0} such that zI,,(A) = 0. Replace M with R in our recall statement
and note grade(I,,(A), R) > 1 if and only if Anng([,,(A)) = 0. O

(Katie) Let R be a ring, F; LN Fy — M — 0 a presentation, and r = rank Fy. Prove that I,.(¢) C Anng M.

Proof. Let m = rank F.. If r > m, then I,.(¢) = 0. So assume r < m. Let ¢’ be an r x r submatrix of ¢
and M’ = coker ¢/. Then Ann(M’) C Ann(M). So it is enough to show I, (¢) C Ann(M) and thus we may
assume m = r. Note I,.(¢)) = det ¥ and so its enough to show det(¢)) C Ann(M). Now det ¥ (I,.) = ¢ - adj(1)).

é *
R" R" M 0
J/ / @L (det ¢)I,. idet "
adj(
R" R" M 0
By diagram chasing, we see * is zero and thus =x is zero. Thus det ¢ € Ann M. O

(Lori) Let R be a ring, Fy 2, Fy — M — 0 a presentation, and r = rank Fy. Prove that I,.(¢) C Anng M.

Proof. Let A be a matrix representation for ¢. Now Fy = R" and say F; = R™. Let A; be a j X j submatrix of
A,d=det Aj, and z € Ann M. We want to show dz € I;+1(¢). Let B be the r x (m+7) matrix (AzI,). This
gives R™+T L, R™ — coker B — 0 where coker B = R"/im B = R"/im A + xR" = coker A and zR" € im A.
A; 0
By exercise 3, I,_;(¢) = I,_;(B) for all i. Consider I;11(B) and take the (j+1) % (j+1) submatrix < ! )

* T



which has determinant equal to (det A;)z = dz. Thus dx € I;11(¢). Thus I,(¢) D AnunMI,_1(¢) D --- D

(Ann M)"Ip(¢) = (Ann M)". O

(8) (Silvia) Let R be a semi-local ring and P a finitely generated projective R—module. Prove that P is free if

and only if for all maximal ideals m and n of R, rankg,, P, =rankg, P,.

Proof. Let R be a semi-local ring and let my, ..., m; be the maximal ideals of R. Let P be a finitely generated
projective R-module.
(=) Suppose P is free, i.e. P = R™ for some n > 0. Since localization commutes with direct sums, we
have: Py, = (R")m, = Ry, which implies rankp, Pn, =n foralli=1,... ¢t
(«) Conversely, suppose rankp,, Pn, = n foralli =1, ..., ¢. As P is a finitely generated projective
R-module, P is locally free, i.e. for each i we have Py, = R} for all i. Use Lemma 12.2 in [BH] with N = P
to find u € P such that ¥ & m; Py, for all i (note that the condition Py, € m; Py, is satisfied). Thus ¥ is in
a minimal generating set for Py, (by NAK) for all . Use induction on n.
(i) Assume n = 1.
Then Py, is free of rank 1 for all 4, and {%} is a basis for Py, and we can write P, = R, % for all 4.
Let ¢ : R — P be the R-module homomorphism given by ¢(1) = w, and consider the following exact

sequence 0 — K — R 2 p_ C — 0. Localize at a maximal ideal m; to get:

b

0 K, R Pr,

i i sz: 07

where ¢, is an isomorphism. Thus K, = 0 = Cy,; for all maximal ideals m; of R and hence K =0 = C.
Thus P = R, i.e. P is free of rank 1.
(ii) Assume the claim holds for n — 1, i.e. if M is a finitely generated projective R-module such that
rankp,  Pm =n — 1 for all maximal ideals m of R, then M is free.
Since P, = Ry, and {%} is part of a basis, (P/Ru)m, is free of rank n — 1 for all i. As P is finitely
generated, so is P/Ru. Since P/Ru is finitely generated and locally free (and R Noetherian), P/Ru is
projective. By induction, P/Ru is free of rank n — 1. Moreover Ru = R is free of rank 1. Now consider
the exact sequence 0 — Ru — P — P/Ru — 0. As P/Ru is projective, the sequence splits. Thus
P = Ru® P/Ru is free of rank n. -
(9) (Nick) Let R be a ring, M an R—module, and x an indeterminate over R. Suppose f(x) € R[z] is a zero-
divisor on M[z] = M ®pr R[z]. Prove there exists a nonzero element u € M such that f(z)u = 0 (that is, all

the coefficients of f annihilate u).

Proof. There exists g(x) € M(z) such that f(z)g(x) = 0. Then Zf:o fixt - Zf:o g;x? = 0. We will induct
on k+ 0. If k+ ¢ = 0, then take u = go. Suppose k + ¢ > 0. Then frgr = 0. Set g(x) = frg(x). If g(z) # 0,
then degg(z) < deg g(x). Now f(x)g(z) = f(x) - g(z) fx. Thus there exists 0 # @ € Rfrgo+ -+ Rfrge—1 C
Rgo + --- + Rge with uf(x) = 0. If g(x) = 0, then f; - g; = 0 for all 4. Let f(z) = f(x) — fpa®. If
F(z) = 0 then f(z) = fyz* and u = gp. If not, deg(F(x)) < deg f(z) and F(@)g(z) = [(x) — fia*g(x) =
f(x)g(z) — frg(x)x® = 0. So there exists u € Rgo + ... + Rge such that uf(x) = 0. Then fru = 0 since
frg; =0 for all 4. Set u = . O

A.2. Homework Set 2.
(1) (Katie) Let R be a Noetherian local ring of dimension d and I an ideal of R. Prove that codim I > ¢ if and

only if I contains 1, ..., z; which form part of a system of parameters for R.

(2) (Justin) Let (R, m) be a Noetherian local ring and F. a complex 0 — Fy — Fs_1 — -+ — Fy — 0 consisting
of finitely generated free modules in each degree and such that all the homology has finite length. Let M
be an R—module and J; := Anng H! (M) for i > 0. Prove that for each i > 0, JoJ; - -+ Js_; annihilates
H;(F @ M).



Proof. Take K to be the Cech complex on a system of parameters z and reindex F. by F" where F' = F,_;.
Define a double complex by C := K" ® F" ® M. We will now examine spectral sequences.

First filter by the columns:

IpPt = HIKPRF @ M)
KP @ HI(F" ® M) as K? is flat for all p
HYF @ M) ifp=0

KP @ HU(F ® M) ifp>0
We want to show K? @ HY(F* ® M) = 0 for p > 0. Then the sequence ! Ef? will collapse and we will get
HPHI(F @ M) =! Erd = HP+(Tot(C)).
Claim. H1(F" ® M) is m—torsion (and so KP @ HY(F" ®@ M) =0 for p > 0).
Proof. Let G =5 M be a projective resolution of M, indexed cohomologically. Consider the

double complex F" ® G". Filtering by columns gives us

FPo M, ifq=0
0, if g >0

TEPI = HUFP @ G) = FP @ HY(G') =

as G is a projective resolution of M. Thus IIES’Q = HPT4(F" ® M). Filtering by rows gives
us

IIEf’q — Hq(F- R G;D) [a] Hq(F) ® GP =~ (Hq(F-))mp
where m,, = rank GP. So /! E¥"? is m—torsion as each H?(F") has finite length. Thus ! EP¢

are m—torsion.
Now, consider the filtration of H" = H"(F" Q@ M) :

0=F"""H"C F"H" C---F'H" = H"
with FIH"/FH1 " = T Ein=i For each i, there exists ¢; such that m% I EL"=1 = 0. So
mb -..mf H™ = 0, that is, H" is m—torsion. O
Now filter by rows:
HEM = HYK ® (FFoM))
HY(K ® M"»), where n, = rank F?
HE (M)

By hypothesis, J, - 1T EP? = 0. Since ! EP:9 is a subquotient of // EP'?, we also have J, - 11 EP = 0.
By the main convergence theorem of spectral sequences, L EP? = HP+4(Tot(C)) =2 HP4(F" @ M). Thus
for any n € Z, there exists a filtration { FP H"},,cz where H" = H"(F") such that FPH" /FP+Lgn =!I prn—p

for all p. As I EP? is a first quadrant spectral sequence, I/ EY'" P = 0 if p < 0 or p > m. Hence the filtration
of H™ has the form 0 = F**1H» C FrH* C ... C F1 g™ C FOH™ = H™. Since In—p ”E&"‘p = 0, we have
Jn—pFPH™ C FPTH™ and hence J,,J,—1 - JoH™ = 0. ]

(3) (Nick) Let (R, m) be a Cohen Macaulay ring and z1, ..., x4 a system of parameters for R. Prove that for any

positive integers nq, ..., ng,

d
A(R/(I?lv 73930[) = (H nz) )‘(R/(Ila axd))

Proof. Induct on N := > n; > d. For N = d, we see n; = 1 for all i and we are done. So suppose N > d.
Then there exists ¢ with n; > 2. Without loss of generality, reindex so ng > 2. Let

I= (a7, . ah?), I = (217, ...,mZi’ll,xgdfl),I” = (21, . 27 ).



We have a short exact sequence 0 — I/I' — R/I — R/I' — 0.
Claim. I/I' =2 R/I"
Proof. Define ¢ : R — I/I' by r +— ra™¢~! + I. Note ¢ is surjective. Thus it is enough to show

ker ¢ = I". Clearly, ker ¢ O I". So let yy € ker ¢. Then yz™¢~1 € I. Say ya"¢~! = Z?:l a;x;".

Then (y — agzq)z® " = Z,tll a;zlt € (z, ... zy*)"), which is regular. Furthermore,
(77, ...,argi’ll,xsd_l) is regular. Thus y — apzq € (27, ...,2,;"7") and so y € I”. a
Now A(R/I) = A(R/T") + A(R/I") = ny - - ng—1(na — DA(R/(z)) +n1 - - naa MR/ (z)) = n1 - - naA(R/(z)).

O

(4) (Laura) Let (R, m) be a regular local ring of characteristic p > 0 and M an R—module of finite length. Prove
that A(F(M)) = p?\(M), where d = dim R.

Proof. Induct on A(M). If A(M) =1, then M = R/m. As R is a regular local ring, m = (1, ..., x4) where z

form a system of parameters. Then
MF(M)) = MF(R/(x1, ., z4))) = MR/ (2}, ... 7)) = p* MR/ (21, ..., za)) = p*N(M)

by Nick’s exercise. Now suppose A(M) > 0 and choose N C M with A\(N) < A(M). We have a short
exact sequence 0 - N — M — M/N — 0. As R is regular, F is exact and thus 0 — F(N) — F(M) —
F(M/N) — 0 is exact. By assitivity of length, we thus have

AF(M)) = MF(N)) + AF(M/N)) = p?AN) + p?A(M/N) = p?A(M). O
(5) (Lori) Let R be a regular local ring and I an ideal of R. Prove that F(H}(R)) = Hi(R) for all .

Proof. Let I = (z1,...,x,) and recall Hi(R) = H*(C"(z)) where C" is the Cech complex. As R is regular, F is
exact. Note that 0 — ker ¢; — C} &, C;y1 — coker ¢; — 0 is exact. This yields the following commutative

diagram with exact rows.

0 — F(ker ¢;) F(CY) F(C") —— F(coker ¢;) — 0
0 — ker F(¢;) F(CY F(CHY) —— coker F(¢;) — 0

By the Five Lemma, we have F(ker ¢;) = ker F/(¢;) and F(coker ¢;) = coker F'(¢;). So F(C*t!)/F(im ¢;) =
F(C*'/im ¢;) = F(coker ¢;) = coker F(¢;) = F(C**1)/im F(¢;), which implies F(im ¢;) = im F(¢;). This

yields another commutative diagram with exact rows

0 —— F(im¢;) — F(ker¢;) —— F(H'(C")) —= 0

lu im

0 — im(F(¢;)) — ker F(¢;) — H'(F(C")) —= 0
By the Five Lemma, we have F(H'(C")) = H'(F(C"))(x).
Furthermore, we have the following commutative diagram with exact rows

0 — ker ¢; Ct o oian coker ¢ —> ()

-l

0 —— kerF(gbi) - > F(C’l) - > F(C’i+1) —— coker F((bz) — 0

By the Five Lemma, we have ker¢; = ker F(¢;) and coker ¢; = coker F(¢;). Thus we have H'(C") =
HY(F(C")) = F(H'(C")) by (). O



(6) (Brian) Let ¢ : R — S be a homomorphism of commutative rings. For an R—module M, let S ®, M denote
the left S—module S ®zp M where S is viewed as a right R—module via ¢ (i.e., s ® rm = s¢(r) ® m). In
this context, if ¢ : R — R is a Frobenius map, then R ®,4 M is F(M), the Frobenius functor applied to
M. By the associative property of tensor products, if ¢ : R — S and ¥ : S — T are ring homomorphisms,
then T ®y (S ®¢ M) = T ®y¢ M. Use this approach to show that Frobenius commutes with localization and

completion.

Proof. We will prove the result for localization. The proof for completions is similar. Let ¢ : R — R be

the Frobenius map, ¢ : R — Rg the natural map, and gz~5 : Rg — Rg the Frobenius map of Rg. Note that
Yo = g as vo(r) = P(r7) = T = ¢ (§) = ¢u(r). Now,
Fr, (Ms) = Rs @ (Rs @y M) = Rs @5, M = Rs @yy M = Rg @y (R®y M) = (Fr(M))s. O

(7) (Xuan) Let (R,m) be a local ring of characteristic p > 0 and M a finitely generated R—module such that
M = F(M). Prove that M is free.

Proof. As M is finitely presented, we have free modules F' and G so that F — G — M — 0 is a minimal
presentation. Applying Frobenius, we get F — G — F(M) — 0. Now I; = Ij[p] CIyCI;ClIj Thus I; = I7
which implies I; = 0 by NAK. Thus M is projective and hence free. |

(8) (Silvia) Let R be a ring of characteristic p > 0 and S a multiplicatively closed set of R. Prove that F(Rg) =
Rg. More generally, let M be a flat R—module. Prove that F'(M) is flat.

Proof. Define ¢ : RF x S — Rg by (r, %) — %p. Then ¢ is R—balanced (that is, ¢ is additive in each

component and for all u € R we have ¢ (ru, %) =¢ (r, “—b“))

RFXRSHRF@)RS

l¢ ///
/_/

Rs

By definition of tensor product, there exists a unique group homomorphism « : R¥ ® Rg — Rg such that the
diagram above commutes. Also « (ur ® %) = ux (T ® %) and so « is an R—module homomorphism. Define
B:Rs — RY ®p Rg by T a1 ® %. Then 3 is an R—module homomorphism and one can check aff =1
and Ba = 1. Thus Rs = R ® Rs = F(Rg).

Now assume M is flat. By Lazard’s Theorem, M = h_H)l(Ml,(b;) where M; are finitely generated free

modules. Thus
F(M) = R" @ lim(M;, ¢%) = imR" @ (M;, ¢}) = lim(F(M;), F(¢})) = lim(M;, (%)),

As M; are finitely generated free, M; is flat. As the direct limit of flat modules is flat, we are done. O

(9) (Hamid) Let R be a Noetherian ring of characteristic p > 0. Prove that the Frobenius functor is faithful; i.e.,
F(M) =0 if and only if M = 0.

Proof. Clearly, if M = 0 then F(M) = 0. So suppose F(M) = 0. Recall M = 0 if and only if M, = 0 and
Frobenius commutes with localization. Thus we may assume (R, m) is local. Similarly, M = 0 if and only if
R ® R = 0 and Frobenius commutes with completion. Thus we may assume R is a complete local ring and
hence the homomorphic image of a regular local ring @ of characteristic p. Say R = @Q/I and consider M as

a ()—module. We have the following commutative diagram where fo and fr are the Frobenius maps and 7



is the natural surjection
Q—>Q/I=R
lf@ lfR
Q—>Q/I=R
Now 0 =F(M)=(M®rQ/I)®RF. Also 0 = (M ®qQF)®qQ/I as M® Q¥ is I—torsion (Q/I — M — 0

exact implies @M/I[p] — M®QF — 0is exact). Thus M @ Q¥ = 0. If M # 0, then there exists 0 # = € M.
Then 0 — (2) ® QF — M ® QF is exact, which implies 2 = 0, a contradiction. |



APPENDIX B. COHOMOLOGICAL SPECTRAL SEQUENCES

The following is based from notes taken from Weibel’s An Introduction to Homological Algebra.

Definition. A cohomological spectral sequence starting with {E,} is a family {E?9},>, of objects, together with
maps dP : EP? — EPTTa=r guch that dyd, =0 and EYY, = H(E,) = ker(d??)/im(dp—9t7=1).

Evdy Erd, Erd)

Definition. A cohomological spectral sequence {EP1},>, is said to be bounded below if for each n there exists

s = s(n) such that EP? = 0 for all p < s. The spectral sequence is said to be bounded if for each n there are only

finitely many non-zero terms EP? with p 4+ ¢ = n.

bounded below bounded

Note that 1%* and 3"¢ quadrant spectral sequences are bounded, and 2"¢ quadrant spectral sequences are bounded

below.

B.1. Convergence. Note that E{, is a subquotient of the previous term E??. Define Z”{, = ker(d??) and B?{, =
im(dP~"977=1) for r > a. Further set ZP? = EPY and BP? = (. Then EP? = ZP9/BP4.

Claim. The following is a nested family of subobjects of EP9 :
OZngg ngqufil g...ngjlrl ngQQ...gzgq:E(I;q

Proof. Induct on r. For r = ¢, we have 0 = BE9 C ZP? = EP4. For r > a, we know Z%{, C EPY, C ZP? and

BP? C BP{,. Thus we have

0B m B, g
A
|
|

0— B, — 771, EM, 0

By a generalization of the Five Lemma, done.
Define BP? = U BP? and ZP? = NP4 ZP9. Then set EPI = ZP1/BP4.
Note that if {EP?} is bounded below, then Z24 = ZP1? for all large r. If {EP?} is bounded, then EZ? = EP? for all

large 7.



Definition. Let {EP?},>, be a bounded below spectral sequence. We say EP? converges to H* = {H™} if for each

n we have a filtration (i.e., a chain of submodules of H™)
0=F'H"CF"'H"C...C FPH'H" C FPH" C---C H"

such that EPY = FPHPYL [ FPTLHPT qnd U,FPH™ = H™. In this case, we write EP1 = HPT9,

: : : Z[2Z, ifp,q=0
Remark. H* need not be unique, even if the spectral sequence is bounded. For example, let E}? =
0, otherwise

and dP? = 0 for all p,q,r. Then {EP?} is a first quadrant spectral sequence with F2? = Z /27 for all p,q > 0. So
EY = (2/22)"1* and EBY = (Z/20+9H17).

Definition. The spectral sequence {EPq,.} collapses at E, (r > 2) if there is exactly one non-zero row or column

in the lattice EP9.

Notes.

(1) If the spectral sequence collapses at E,., then E, = E.
(2) Suppose EPY = H™ and the spectral sequence collapses at E,. Then H* is unique. In fact, H" is the unique

non-zero EP? with p + ¢ = n.

Proof. As EP?1 = 0 for all p # ¢, we see FPH"™ = 0 for all p # ¢. So H"” = F C H"™. Since E¢ =
Fegprtl Jpetigrta = FeH™ we see B¢ = H™. O

Remarks.

(1) Suppose a spectral sequence converting to H* has F¥? = 0 unless p = h or h+1 (i.e., we have two non-zero
columns). So B = HP4. Note db? = 0 for all p,q and so EE? = EP? for all p,q. Also, B4t c gn»
h+ln—h—1 o phn—h
and H"/E, " =N

Proof. By definition, EL" ™" = FtHh/FtH1H" . Since EMt2h=(+2) — () we see F"*2H" = 0. Thus EM! h—
(h + 1) ~ phtlpn C H™. Similarly, Hn/Eg-l-l,n—h—l o Eg’n_h. .

Thus we have the exact sequence 0 — EXTE"=h=1  gn  BLn= 0 for all n.
(2) Suppose a spectral sequence converging to H* has E5Y? = 0 unless ¢ = s or s + 1 (i.e., we have two non-zero
rows). So Eb? = Hp + q. Note db? = 0 for all ¢ # s+1. Then E?Y = E?? = ker(d5?)/ im(d5~>%""). As above,
ENT** C H™ and H"/E}~° = E} 1t In addition, En—2- 1+ = ker(Ep 1o+ 22, pros+ls) apq

Ey~% = By~ /im(Ey 535! &, EJ~*%). Putting this together, we get a long exact for all n : sequence

_ —5— d — —5— d —
e HT 1 _)E;L s—2,s+1 d2 E;L s,s_)Hn_>E£L s—1,5s4+1 a2 E;L s—‘—l,s_>

(3) Suppose {E, }P? is a first quadrant spectral sequence converging to H*. Then H" = Eg 0 and there is an exact
sequence 0 — Ey° — H' — E! LN E>Y — H2. Similarly, suppose {EP4} is a third quadrant spectral
sequence converging to H*. Then H? = Eg,o and there is an exact sequence H 2 — E;Q’O b, Egﬁl —

H=' — E~10 — 0. These are called the exact sequences of low degree.

Definition. A filtration F on a chain complex C° is an ordered family of chain subcomplexes --- C FPTIC C
FPC C --- of C. The filtration is exhaustive if U,FPC = C. The filtration is bounded below if for each n there
exists s = s(n) such that FPC™ =0 for p > s.

Theorem 97. A filtration F of a chain complex C* naturally determines a spectral sequence starting with Ef? =
FPCPYa/prHiCPta gnd BV = HPTI(ES™). The maps dP4 are induced by the differential of C.

Proof. Weibel, page 133. |



Theorem 98. Suppose C" is a chain complex and F is a filtration of C". Suppose F' is bounded below and exhaustive.

Then the spectral sequence EV? associated to F is bounded below and converges to H*(C') :
EV! = HPT9(FPC/FPTIC) = HPTI(O).
Proof. Weibel, page 136. ]

B.2. Spectral sequences of Double Complexes. Let C' = C** be a double complex:

dv du dU
h dp
— (P14 P cprtlg —>
dy dy do

such that d,d, = dpdp, = dpdy + dydp, = 0. The total complex Tot(C) of C is defined by Tot(C)" = @pyg=nCP?
and d : Tot(C)™ — Tot(C)™ is given by d = dj, + d,. There are two natural filtrations of Tot(C') which give rise to
two spectral sequences.
First, we may filter the total complex by columns: For each n, let X * be the double subcomplex of C** defined

cra) ifp>n
by X291 = Let 1F™ Tot(C) be the total complex of X}*. Clearly, F™ Tot(C) is a subcomplex

0, otherwise.
of Tot(C) and F"*! Tot(C) C! F" Tot(C) for all n. As Tot(C) is a direct sum of CP?’s, this filtration is always
exhaustive. Also {F™ Tot(C) is bounded below provided C** is. This filtration gives rise to a spectral sequence
{I EP4} starting with

TEY =T FrTot(CyP /' PP Tot(CyPH = @ €9/ &P i = Cr,
i+j=p+q,i>p i+j=p+q,i=2p+1

The maps do are just the vertical differentials d, of C** and so !E}? = HJ(CP*). The maps d; : HI(CP*) —
HZ(CP*1*) are induced by the horizontal differentials and so 'EY? = HY HZ(C). By the theorem above, if C' is a
bounded below double complex, then this spectral sequence converged to H*(Tot(C)) :

TEP = HPHI(C) = HP(Tot(0)).

Similarly, we can filter Tot(C) by the rows of C : for each n let Y,** be the double subcomplex of C** defined

crd, ifgz=n .
by Y4 = Let 1/ F" Tot(C) be the total complex of Y,**. Then I/ F" Tot(C) is a subcomplex
0, otherwise.

of Tot(C) and ! Fn+1 Tot(C) CH F™ Tot(C). As before, this is an exhaustive filtration of Tot(C) and is bounded
below if C** is bounded above. This filtration gives rise to another spectral sequence {// EP9} beginning with
HER <1 FrTot(C)PH /PP Tot(C) = €Y/ &y Cil = o,
i+j=p+q,j2p i+j=p+q,j2p+1
The differentials dy are the horizontal differentials and so /7 EY? = HJ'(C*?). The maps d; are the vertical differentials
of C and so "/E}? = HPHJ(C). Again by the theorem above, if C' is a bounded above double complex, then this



spectral sequence converges to H*(Tot(C)) :
HER = HPH(C) = HPT(Tot(C)).
B.3. Applications.

Theorem 99 (Universal Coefficient Theorem for Cohomology). Let P. be a bounded below chain complex of
projective R—modules such that each d(P,) is also projective. Then for every n and every R—module M there exists
an ezact sequence 0 — Exth(H,_1(P), M) — H"(Homg(P, M)) — Homg(H,(P), M) — 0.

Proof. Let P.=--+ — P,y1 — P,oP,—1 — -+ — P, — 0. Let I' be an injective resolution of M and C** the double
complex defined by CP? = Hompg(P,, I?). Note that C is a bounded double complex. Now CP* = Homp(P,, ") and

SO

Homg(P,, M), ifqg=0
TEPi — H9(CP*) = Extl (P, M) = & (P, M), it g
0, otherwise.

since P, is projective. Thus E7? collapses and H* is unique. Now

Iqu = HP(HI(C)) = HP(Hompg(P, M)), ifq= 0
0, otherwise.
Since ' E}? = HPT4(Tot(C)), we see H"(Tot(C)) = H"(Hompg(P, M)) as H* is unique.

Now /' = H}(C*P) = HY(Hompg(P.,I?)) = Hompg(H,(P),I?) since Hompg(—,I?) is exact. Then /E}? =
HP (Homp(H,(P),I')) = Ext?,(H,(P), M). Thus we have Ext?,(H,(P), M) = H?*(Homp (P, M)).

Recall that each d(P,) is projective and thus ker(d,,) is projective for all n and pdy H,(P) <1 for all n (consider
the short exact sequence 0 — d(Pn4+1) — ker(d,) — H,(P) — 0). Hence Ext},(Hy(P), M) = 0 for all p > 2. So
HEPT = 0 for all p # 0,1. Therefore we have a two column spectral sequence. By Remark 1, there exists exact
sequences

0 — Extp(H,_1(P), M) — H"(Hompg (P, M)) — Homp(H, (P), M) — 0
for all n. 0

Theorem 100 (Base-change for Ext). Let f : R — S be a ring map. Then there is a first quadrant spectral
sequence E5? = Ext% (A, Ext% (S, B)) = Exth (A, B) for all S—modules A and R—modules B.

Proof. Let P. - A — 0 be a projective S—resolution of A and 0 — B — I an injective R—resolution of B. Let
CP1 = Hompg(P,, I?). Then C** is a first quadrant double complex.

HEY = gl(C*) = H](Homg(P,IP))
_ HZ(HOHIR(P ®gr S, IP)) as P. is projective
= Hj(Homg(P.,Hompg(S,I?)))
= Ext%(A, Homp(S,I?))

Since I? is an injective R—module, Homg(.S, I?) is an injective S—module. Thus

1 _ Homg (A, Hompg(S,I?)), ifq=0

0, otherwise.

Thus the spectral sequence collapses at F;. Now

"B = HY(H(O)
= HP(Homg(A,Homp(S,I)))ifg=0
= HP(Hompg(A,I))



Exth(A,B), ifqg=0

So EY? = and therefore H"(Tot(C)) = Extz (A, B).

0, otherwise.
Similarly, we have I EYY = HI(C?P*) = Hd(Hompg(P,,I')) = HI(Hompg(P,®rS, I')) = HI(Homg(P,, Homg(S,I'))).
As P, is a projective S—module, Homg(P,, —) is an exact functor. Thus

TEP? = Homg(P,, H(Homg(S,I'))) = Homg(P,, Ext%(S, B)).
Now 'E}? = HY HY(C) = HY (Homg(P.,Ext% (S, B))) = Exth (A, Ext% (S, B)). Therefore,

Ext (A, Ext%(S, B)) = Exth (A, B).

B.4. Grothendieck Spectral Sequences.

Definition. Let C° be a complex. A right Cartan-FEilenberg resolution of C" is an upper half-plane double

complex I** together with an augmentation chain map C* — I*0 such that

(1) FEach IP? is an injective module
(2) If CP =0 then the column IP* =0
(3) The induced maps on the boundaries and cohomology 0 — BP(C) — BPY(I) — BPY(I) — -+ and 0 —
H?(C) — HP(C) — HPY(C) — --- are injective resolutions, where B"4(I) = im(IP~14 dn, IP1, 7P4(T) =
ker(IP9 2 [p+1.9) and HPI(I) = ZP9(I)/BP(I).
Remark. If I is a right Cartan-Eilenberg resolution of C' then 0 — ZP(C) — ZP°(I) — ZPY(I) — --- and

0— CP — [P0 — [Pl — ... are injective resolutions.
Lemma 101. FEvery complex has a right Cartan Eilenberg resolution.
Proof. The analogous statement for left Cartan Eilenberg resolutions is proved in Wiebel. ]

Definition. An object B of a category B is F—acyclic if the right derived functor of F wvanishes on B, that is
R'F(B) =0 for all i # 0.

Theorem 102 (Grothendieck Spectral Sequence #1). Let A, B,C be abelian categories such that A,B have
enough injectives. Suppose G : A — B and F : B — C are left exact covariant functors. Suppose G sends

injective objects of A to F—acyclic objects of B. Then there is a convergent first quadrant spectral sequence
HEPM(RPF)(RIG)(A) = RPYI(FG)(A) for every object A in A. The exzact sequence of low degree terms is

0 — (R'F)(GA) — RY(FG)(A) — F(R'G(A)) — (R*F)(GA) — R*(FG)(A).

Proof. The exact sequence of low degree terms follows from Remark 3 above. Let 0 — A — J° be an injective
resolution of A (in the category A). Apply the functor G to J* and let I** be a Cartan-Eilenberg resolution of G(J")
in the category B. Let X** be the double complex F(I**). Now IP* is an injective resolution of G(J?) and so

"BY! = HI(XP") = H{(F(I"™)) = R"F(G(J")).

As J? is an injective object of A, G(JP) is F—acyclic, that is R'F(G(J7)) = 0 for i > 0. Thus the spectral sequence
FG)(JP), if ¢ =0,

collapses at E; and we have I ETY = (FG)(J?), if q So
0, otherwise.

RP(FG)(A), if g =0,
"By = HY (H{(X)) = ,
0, otherwise.



Therefore HP*(Tot(X)) & RPTI(FG)(A). Now ' EV? = H}(X*P) = H](F(I*P)). As I** is a right Cartan-Eilenberg
resolution of G(J"), the kernels, boundaries, and homologies of the complex I*? are all injective objects of B. Thus
HI(F(I*P)) = F(H}(I*?)). Now H}(I) is an injective resolution of H(G(J")) = RY(G)(A). Therefore

MBSt = HYH}(X) = HY(F(H}/(I))) = (R"F)(RIG)(A).

Hence (RPF)(RIG)(A) = RPTI(FG)(A). O

Examples.

(1) Let A = B = C be the category of R—modules and J C I ideals of R. Let F = Hompg(R/I,—) and
G = HY(—). Then G sends injectives to injectives. Since FG = Hompg(R/I,—), we get

EY = Exth(R/I, HY(M)) = Extb (R/I, M)

for all R—modules M.

(2) (Base-change of Ext) Let A be the category of R—modules and B = C the category of R/.J—modules for some
ideal J of R. Suppose I O J. Let F' = Hompg,;(R/I,—) and G = Homg(R/J,—). Then F'G = Homg(R/I, —)
and thus

EP? = Ext?,

% (R/TExt}(R/J, M)) = Ext};™(R/I, M).

Definition. Let C. be a complex. A left Cartan-FEilenberg resolution of C. is an upper-half plane double complex

P.. together with an augmentation map P,y — C, such that

(1) Each P, is projective

(2) If Cp =0 then the column Py, =0

(3) The induced maps on the boundaries and homology - - - — Bpq(P) — Bpo(P) — B,(C) — 0 and - - - H,1 (P) —
Hyo(P) — Hp(C) — 0 are projective resolutions (and thus the induced maps --- — Zp1(P) — Zyo(P) —

Z,(C) =0 and --- — Py; — Py — Cp, — 0 are projective resolutions).

Lemma 103. Every complex has a left Cartan-Filenberg resolution.

Theorem 104 (Grothendieck Spectral Sequence #2). Let A, B, and C be abelian categories such that A and
B have enough projectives. Suppose G : A — B is a right covariant functor and F : B — C a contravariant left exact
functor. Suppose G sends projective objects of A to F—acyclic objects of B. Then there is a first quadrant spectral
sequence EY? = (RP)(L,G)(M) = RPYI(FG)(M) for every object M in A. The exact sequence of low degree terms
is

0— (R'F)(GM) — RY(FG)(M) — F(L,G(M)) — (R*F)(GM) — R*(FG)(M).

Proof. The exact sequence of low degree terms follows from Remark 3 above. Let P. — m be a projective resolution

of M in the category A. Let Q.. be a left Cartan-Eilenberg resolution of G(P.) in the category B. Let X** be the

double complex F(Q..). Then X** is a first quadrant double complex and L EY? = HZ(XP*). since Q. is a projective

resolution of G(P,), HI(XP*) = HI(F(Qp«)) = (RYF)(G(P,)). Since P, is projective, G(P,) is F—acyclic and so
FG(P,), ifq=0

TEYT = Thus the spectral sequence collapses and
0, otherwise.

RP(FG)(M), if g=0
0, otherwise.

Therefore H"(Tot(X)) = R"(FG)(M). Now "EY = H]}(X*P) = H](F(Q.p)). As Q.. is a left Cartan Eilen-

berg resolution of G(P), the horizontal kernels, boundaries, and homology of Q,, are all projective objects of

B. Thus H}(F(Q.p)) = F(H!MQ.p)). Now H(Q) is a projective resolution of Hy(G(P)) = L,G(M). Therefore



MEYHYH}(X) = HY(F(Hy(Q))) = (RPF)(LyG)(M) and

(RPF)(L,G)(M) = RPTI(FG)(M).

O
Example. Let ¢ : R — S be a ring map. Let A be the category of R—modules and B = C the category of
S—modules. Let G: A— Bbe —®g S and F : B — C be Homg(—, N) for some S—module N. For any R—module
M, (FG)(M) = Homg(M ®g S, N) = Hompg(M, Homg(S, N)) = Hompr(M, N). Also G takes projective R—modules
to projective S—modules. Thus there exists a first quadrant spectral sequence

E5? = Ext}(Torf (S, M), N) = Ext}, (M, N)

for all r—modules M and S—modules N.

Theorem 105 (Grothendieck Spectral Sequence #3). Let A, B,C be abelian categories such that A has enough
projectives and B has enough injectives. Suppose G : A — B is a contravariant left exact functor and F': B — C is a
covariant left exact functor. Suppose G sends projective objects of A to F—acyclic objects of B. Then there is a first
quadrant spectral sequence E5® = (RPF)(RYG)(M) = RPT4(FG)(M) for all objects M in A. The ezact sequence of

low degree terms is
0 — (R'F)(GM) — RYFG)(M) — F(R'G(M)) — (R?*F)(GM) — R*(FG)(M).

Proof. Similar to that of Grothendieck Spectral Sequence #1, except start with a projective resolution of M instead

of an injective resolution. O



