
LEVEL AND GORENSTEIN PROJECTIVE DIMENSION

LAILA AWADALLA AND THOMAS MARLEY

Abstract. We investigate the relationship between the level of a bounded

complex over a commutative ring with respect to the class of Gorenstein pro-

jective modules and other invariants of the complex or ring, such as projective
dimension, Gorenstein projective dimension, and Krull dimension. The re-

sults build upon work done by J. D. Christensen [7], H. Altmann et al. [1],

and Avramov et al. [4] for levels with respect to the class of finitely generated
projective modules.

1. Introduction

The concept of level in a triangulated category, first defined by Avramov, Buch-
weitz, Iyengar, and Miller [4], is a measure of how many mapping cones (equiva-
lently, extensions) are needed to build an object from a collection of other objects,
up to suspensions, finite sums, and retractions. This concept has its origins in the
works of Beilinson, Bernstein, and Deligne [5], J. D. Christensen [7], Bondal and
Van den Bergh [6], Rouquier [15], and others. In particular, the concept of level is
implicit in Rouquier’s definition of dimension of a triangulated category.

In the case of the bounded derived category of a commutative Noetherian local
ring, levels have been used to establish, among other things, a lower bound on
the sum of the Loewy lengths of the homology modules of (non-acyclic) perfect
complexes ([4, Theorem 10.1]). In this context, it is interesting to compare the
level of an object with other more familiar homological invariants. For instance,
the level of a finitely generated module (considered as a complex concentrated in
degree zero) with respect to the ring is one more than the projective dimension
of the module ([7]; see also [1, Cor. 2.2]). On the other hand, since the level of
an object and its suspension are the same, uniform bounds on levels may exist in
situations where there are no such bounds for homological dimensions. For example,
a local ring is regular if and only if the level with respect to the ring of any bounded
complex with finite homology is at most one more than the dimension of the ring [4,
Theorem 5.5], whereas the projective dimensions of such complexes over a regular
local ring may be arbitrarily large.

In this paper, we study the levels of complexes with respect to the class G of
Gorenstein projective modules in the bounded derived category of a commutative
ring R. It is straightforward to prove that if M is a bounded complex (by which
we always mean homologically bounded) which is not acyclic then

levelGRM 6 GpdRM − inf M + 1,

Date: February 25, 2022.
2010 Mathematics Subject Classification. 13D05; 13D07, 13D09.
Key words and phrases. Level, derived category, ghost lemma, Gorenstein projective.

1



2 L. AWADALLA AND T. MARLEY

where GpdRM is the Gorenstein projective dimension of M and inf M = inf{n |
Hn(M) 6= 0}. (Here we use levelGRM in place of levelGD(R)M ; see Notation 2.6.)
Typically, lower bounds for the level of an object are much harder to obtain. One
of our main results is the following:

Theorem 1.1. Let M be a bounded below complex which is not acyclic. Then

levelGRM > GpdRM − supM + 1.

As an immediate consequence, we obtain the following generalization of [7,
Proposition 4.5] and [1, Cor 2.2]:

Corollary 1.2. Let M be a nonzero R-module of finite Gorenstein projective di-
mension. Then

levelGRM = GpdRM + 1.

As with the proofs of [7, Proposition 4.5] and [1, Cor 2.2], our proof of Theorem
1.1 relies critically on an application of the “Ghost Lemma” (cf. [12, Theorem 3]).
However, the argument here is significantly more complicated, as maps between
(hard) truncations of Gorenstein projective resolutions are not necessarily G-ghost.
As a consequence, we are able to prove the following characterization of Gorenstein
local rings:

Corollary 1.3. Let R be a local Noetherian ring with residue field k. The following
conditions are equivalent:

(a) R is Gorenstein;

(b) levelGR k = dimR+ 1;

(c) levelGRM 6 dimR+ supM − inf M + 1 for all non-acyclic bounded below com-
plexes M .

Finally, as mentioned above, it is known that a commutative Noetherian local
ring R is regular if and only if levelRRM 6 dimR + 1 for every bounded complex
M over R with finitely generated homology ([4, Theorem 5.5]). We show that a

direct analogue of this result for Gorenstein rings and levelGRM in place of levelRRM
does not hold (Example 3.10). However, we are able to establish a global bound on
G-level over arbitrary Gorenstein local rings:

Theorem 1.4. Let R be a Gorenstein local ring of dimension d and M a complex
in Db(R). Then

levelGRM 6 2d+ 2.

Acknowledgement: The authors would like to thank Lars Christensen and Sri
Iyengar for helpful discussions in the course of working on this project.

2. Preliminaries

Throughout this paper R will denote a commutative ring with identity.

2.1. Complexes and derived categories. We will work with complexes over R,
which we grade homologically:

M := · · · →Mn+1
∂n+1−−−→Mn

∂n−→Mn−1 → · · ·
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For each n we let Zn(X) := ker ∂n, Bn(X) := im ∂n+1, Cn(X) := coker ∂n+1,
and Hn(M) = Zn(M)/Bn(M). We also set supM := sup{n | Hn(M) 6= 0} and
inf M := inf{n | Hn(M) 6= 0}.

We use the notation D(R) to denote the derived category of R. Similarly, we let
D+(R) (respectively, Db(R)) denote the full subcategory of D(R) consisting of all R-
complexes M such that inf M > −∞, (respectively, supM <∞ and inf M > −∞).
We let Df (R) denote the full subcategory of D(R) consisting of all complexes whose

homology is finitely generated in each degree. The subcategories Df
+(R) and Df

b (R)
are defined similarly. We use the symbol ' to denote isomorphism in derived
categories. For any R-complex M we let M# denote the R-complex which is equal
to M as a graded R-module but whose differentials are all zero. We refer the reader
to [2] for any unexplained terminology or notation regarding complexes.

2.2. Gorenstein projective dimension. In this subsection we summarize the
basic properties of Gorenstein projective modules and Gorenstein projective di-
mension for complexes.

Definition 2.1. A complex P of projective R-modules is called totally acyclic if
it is acyclic and HomR(P,L) is also acyclic for every projective R-module L. An
R-module G is called Gorenstein projective if G is isomorphic to the cokernel of
some differential of a totally acyclic complex.

Definition 2.2. ([9, 1.7]) Let M be a complex in D+(R). Let A be the class of all
R-complexes X such that X# is bounded below and Xi is Gorenstein projective
for all i. The Gorenstein projective dimension of M is defined by

GpdRM := inf{supX# | X ∈ A and X 'M in D+(R)}.

Proposition 2.3. ([9, Theorem 3.1]) Let M be a complex in D+(R). The following
are equivalent:

(a) GpdRM 6 n.
(b) n > supM and for any (equivalently, some) R-complex X ∈ A with X ' M ,

the module Cn(X) is Gorenstein projective.

As the terminology suggests, Gorenstein projective dimension can be used to
characterize Gorenstein rings:

Theorem 2.4. ([8, 4.4.5 and 1.4.9]) Let R be a Noetherian local ring with residue
field k. The following are equivalent:

(a) R is Gorenstein;
(b) GpdR k <∞;
(c) GpdRM 6 supM + dimR for all nonzero complexes M in D+(R).

2.3. Levels in triangulated categories. We adopt the notation and terminology
of Section 2 of [4] regarding levels in a triangulated category.

Let T be a triangulated category. A subcategory of T is called strict if it is closed
under isomorphisms in T. A full triangulated subcategory of T is called thick if it
is strict and closed under direct summands. It is readily seen that the intersection
of thick subcategories is again thick. Let C be a nonempty collection of objects of
T. The thick closure of C, denoted thickT(C), is defined to be the intersection of all

thick subcategories of T containing C. We let add(C) (respectively, addΣ(C)) denote
the the intersection of all strict and full subcategories of T which contain C and are
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closed under finite sums (respectively, closed under finite sums and suspensions).
We let smd(C) denote the intersection of all strict and full subcategories of T which
contain C and are closed under direct summands. Let A and B be strict and full
subcategories of T. We define A ? B to be the full subcategory of T whose objects
consist of all objects M of T such that there exists an exact triangle L → M →
N → ΣL where L ∈ A and N ∈ B. Evidently, A ? B is also strict.

For a collection of objects C of T and a nonnegative integer n, we define the nth
thickening of C in T to be the full subcategory of T whose objects are defined as
follows:

thick0
T(C) = {0};

thick1
T(C) = smd(addΣ(C));

thicknT(C) = smd(thickn−1T (C) ? thick1
T(C)) for n > 2.

It is straightforward to show that thicknT(C) ⊆ thickn+1
T (C) for all n > 0 and that

thickT(C) =
⋃
n>0

thicknT(C).

For an object M of T we define the C-level of M in T by

levelCT M := inf{n > 0 |M ∈ thicknT(C)}.

Note that levelCT(M) <∞ if and only if M ∈ thickT(C).
We list a few basic properties regarding levels:

Proposition 2.5. (cf. [4, Lemma 2.4]) Let T be a triangulated category and C a
nonempty collection of objects of T. Let L, M and N be objects of T.

(1) levelCT M = levelCT N if M is isomorphic to N .

(2) levelCT M = levelCT(ΣsM) for all integers s.

(3) levelCT M = levelDT M where D = smd(add(C)).

(4) levelCT M = levelCS M for any thick subcategory S of T containing C.

(5) levelCT V 6 levelCT U + levelCT W whenever U → V → W → ΣU is an exact
triangle in T.

(6) levelCT(M ⊕N) = max{levelCT M, levelCT N}.

Notation 2.6. Let C be a collection of objects in D(R) and M an R-complex. We

let levelCRM denote levelCD(R)M . Then by part (4) of Proposition 2.5, levelCRM =

levelCT M for any thick subcategory T of D(R) containing C. In the case C consists

of a single object, say C = {A}, we denote levelCRM by levelARM . Note that

levelRRM = levelP̃RM , where P̃ is the class of finitely generated projective modules,

since P̃ = smd(addR) and by Proposition 2.5(3). We’ll reserve the symbol P to

denote the class of all projective R-modules. Analogously, we let G (respectively, G̃)
denote the class of all Gorenstein projective modules (respectively, finitely generated
Gorenstein projective modules).

The next result follows readily from Proposition 2.5:

Corollary 2.7. Let C be a collection of objects of D(R) and M an R-complex.
Then
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levelCRM 6 inf

{∑
i∈Z

levelCR Li | L 'M in D(R)

}
.

In particular, if M ' L in D(R) and Li ∈ thick1
D(R)(C) for all i, then

levelCRM 6 supL# − inf L# + 1.

As a consequence, we have:

Corollary 2.8. Let M be a nonzero complex in D+(R). Then

levelPRM 6 pdRM − inf M + 1.

Moreover, if R is Noetherian and M is in Df
+(R) then

levelP̃RM 6 pdRM − inf M + 1.

Identical inequalities hold with G and G̃ in place of P and P̃, respectively, and
GpdRM in place of pdRM .

2.4. Ghost maps and the Ghost Lemma.

Definition 2.9. Let T be a thick subcategory of D(R) and C a collection of objects
from T. A morphism f : M → N in T is called C-ghost (respectively, C-coghost)
if the induced maps ExtnR(A,M) → ExtnR(A,N) (respectively, ExtnR(N,A) →
ExtnR(M,A)) are zero for all n and all complexes A in C.

Remark 2.10. If R is Noetherian and M and N are in Df (R) then f is P-coghost if

and only if f is P̃-coghost, since the functors ExtnR(M,−) and ExtnR(N,−) commute
with (arbitrary) direct sums.

A key tool for obtaining lower bounds on levels is the following result, known as
the “Ghost Lemma”. It was first proved by G. Kelly in 1965 [12, Theorem 3]. (See
also [15, Lemma 4.11].) There is a version for both ghost maps and coghost maps:

Theorem 2.11. Let T be a triangulated category, C a collection of objects of T, and
fi : Xi → Xi+1 for 0 6 i 6 n−1 a sequence of maps in T such that fn−1fn−2 · · · f0
is a nonzero morphism in T.

(a) (Ghost Lemma) If each fi is C-ghost then levelCT X0 > n+ 1.

(b) (Coghost Lemma) If each fi is C-coghost then levelCT Xn > n+ 1.

There is an important converse to the Coghost Lemma in the case T = Df
b (R)

proved by Oppermann and Šťov́ıček [14, Theorem 24]:

Theorem 2.12. Suppose R is Noetherian, M and C are objects in Df
b (R), and that

levelCRM > n+1 for some n > 1. Then there exist C-coghost maps fi : Mi →Mi+1

for 0 6 i 6 n−1 in Df
b (R) with Mn = M and fn−1fn−2 · · · f0 a nonzero morphism.

We note that a converse of the Ghost Lemma for Df
b (R) has been proved by J.

Letz in the case R is a quotient of a Gorenstein ring of finite dimension [13, 2.13].
However, it is unknown whether such a result holds for all commutative Noetherian
rings.
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3. Main Results

We begin with a couple of technical results:

Lemma 3.1. Consider a diagram of R-modules and R-linear maps with exact rows
and such that the squares commute:

0 A B C 0

0 D E F 0.

f

α

g

β
∃φ

γ

i j

Suppose that

(1) there exists an R-linear map φ : B → D such that α = φf , and
(2) the induced map Ext1R(F,D)→ Ext1R(C,D) is injective.

Then the bottom row splits.

Proof. Applying HomR(−, D) we get a commutative diagram with exact rows:

HomR(E,D) HomR(D,D) Ext1R(F,D)

HomR(B,D) HomR(A,D) Ext1R(C,D)

i∗ δ

α∗

f∗
ε

Note that α∗(1D) = α = φf = f∗(φ) ∈ im f∗ = ker ε. Thus 1D ∈ ker δ = im i∗,
by the assumed injectivity of the right-most vertical map. That is, 1D = σi for
some σ : E → D. �

Lemma 3.2. Let f : P → Q be a quasi-isomorphism of R-complexes of Gorenstein
projective modules such that P# and Q# are bounded below. Then for any R-module
M of finite projective dimension and for all integers i > 1 and all v, we have the
following isomorphisms induced by f :

(a) ExtiR(Cv(Q),M) ∼= ExtiR(Cv(P ),M);
(b) ExtiR(Bv(Q),M) ∼= ExtiR(Bv(P ),M).

Proof. Let n = min{inf P#, inf Q#}. Both isomorphisms clearly hold for all i and
v < n. Let j > n and assume the isomorphisms hold for all i > 1 and all v < j.
We have the following commutative diagram where the vertical arrows are induced
by f :

0 Hj(P ) Cj(P ) Bj−1(P ) 0

0 Hj(Q) Cj(Q) Bj−1(Q) 0.

Since f is a quasi-isomorphism, the left-most vertical arrow is an isomorphism.
From the long exact sequences on ExtiR(−,M) and using the induction hypothesis
for v = j − 1, we see that ExtiR(Cj(Q),M) ∼= ExtiR(Cj(P ),M) for all i > 1 by the
Five Lemma.

Consider now the commutative diagram
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0 Bj(P ) Pj Cj(P ) 0

0 Bj(Q) Qj Cj(Q) 0

where again the vertical maps are induced by f . From the induced long exact
sequences on ExtiR(−,M), the isomorphisms ExtiR(Cj(Q),M) ∼= ExtiR(Cj(P ),M)

for all i > 1, and ExtiR(Pj ,M) = ExtiR(Qj ,M) = 0 for all i > 1 by [9, Lemma 2.1],

we obtain that ExtiR(Bj(Q),M) ∼= ExtiR(Bj(P ),M) for all i > 1. �

Theorem 3.3. Let M be a nonzero object in D+(R). Then

levelGRM > GpdRM − supM + 1.

Moreover, if R is Noetherian and M is in Df
+(R), then

levelG̃RM > GpdRM − supM + 1.

Proof. We prove the first statement. The second statement is proved similarly.
We may assume levelGR(M) < ∞. Hence GpdRM < ∞ by Proposition ??. Set

n := supM , ` := inf M and g := GpdRM . Certainly g > n > ` as M 6' 0. If g = n
then the inequality is clear, as M 6' 0. Suppose now that g > n. By [10, Theorem
3.1], there exists an R-complex X such that X 'M in D+(R), Xi = 0 for i > g or
i < `, Xi is projective for all i 6= n, and Xn is Gorenstein projective. Without loss
of generality, we may replace M with X in the theorem.

For any integer i let φi : X>i → X>i+1 be the natural map of truncated com-
plexes.

Claim 1: For all i > n we have φi is G-ghost.

Proof of Claim 1: It suffices to prove that for all i > n, the maps ExtjR(A,X>i)→
ExtjR(A,X>i+1) are zero for all j and all A ∈ G. Note that X>i ' Σi Ci(X) for all

i > n. Hence, it suffices to prove that for any i > n the map ExtjR(A,Ci(X)) →
Extj+1

R (A,Ci+1(X)) is zero for all j and all A ∈ G. Since A and Ci(X) are modules,
this is clear for all j < 0. If j > 0 and i > n, we note that pdR Ci+1(X) <∞ since

Xk is projective for all k > i+ 1. Hence, Extj+1
R (A,Ci+1(X)) = 0 for all A ∈ G by

[9, Lemma 2.1].

Let ρ be the natural truncation map X → X>n and φ′n = φnρ. As φn is G-ghost
so is φ′n. Now let ψ = φg−1φg−2 · · ·φn+1φ

′
n : X → X>g. Then ψ is a composition

of g − n G-ghost maps.

Claim 2: ψ induces a nonzero morphism in D+(R).

Proof of Claim 2: Suppose ψ = 0 in D+(R). Choose a semi-projective resolution
σ : P → X with inf P# = inf X# = ` (cf. [2, 1.7]). Then ψσ : P → X>g

induces the zero morphism D+(R). Since P is semi-projective, this implies ψσ is
null-homotopic. This means there exists a map τ : Pg−1 → Xg such that σg = τ∂Pg
where ∂Pg : Pg → Pg−1 is the nth differential of the complex P . (Here we are using
that Xi = 0 for i > g.) Hence we obtain the following diagram where the squares

commute and τ∂Pg = σg:
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0 Cg(P ) Pg−1 Cg−1(P ) 0

0 Xg Xg−1 Cg−1(X) 0

∂P
g

σg σg−1
τ σg−1

∂X
g

Note that both rows are exact, as g > n = supX = supP . Now σ : P → X
is a quasi-isomorphism of complexes of Gorenstein projective modules and where
inf P = inf X is finite. As Xg is projective we have by Lemma 3.2(a) that the

induced map Ext1R(Cg−1(X), Xg)→ Ext1R(Cg−1(P ), Xg) is an isomorphism. Hence,
by Lemma 3.1 we get that the map ∂Xg splits. Thus, Cg−1(X) is isomorphic to
a direct summand of Xg−1, which is Gorenstein projective. Hence, Cg−1(X) is
Gorenstein projective. As g − 1 > n = supX, this implies g = GpdRX 6 g − 1 by
Proposition 2.3, a contradiction.

Since ψ : X → X>g is a composition of g − n G-ghost maps and is nonzero in

D+(R), we have by the Ghost Lemma (Theorem 2.11) that levelGR(X) > g − n+ 1.

As levelGRX = levelGRM , this concludes the proof. �

Remark 3.4. After a preliminary version of this paper appeared, R. Takahashi
pointed out to the authors that in the case M is a module, an alternative proof of
Theorem 3.3 can be obtained using [3, Theorem 1.2].

As an immediate consequence, we have the following generalization of [7, Propo-
sition 4.5] and [1, Cor 2.2]:

Corollary 3.5. For a nonzero R-module M we have

levelGRM = GpdRM + 1.

If in addition R is Noetherian and M is finitely generated, we have

levelG̃RM = GpdRM + 1.

Proof. These statements follow readily from Theorem 3.3 and Corollary 2.8. �

An interesting question is whether levelPRM (respectively, levelGRM) coincides

with levelP̃RM (respectively, levelG̃RM) for complexes M in Df
+(R). We get an

affirmative answer for P-level using the converse Coghost Lemma:

Proposition 3.6. Let R be Noetherian and M an object in Df
+(R). Then

levelPRM = levelP̃RM.

Proof. We first note that if M is not (homologically) bounded above both quan-

tities must be infinite. Thus, we may assume M is in Df
b (R). The inequality

levelPRM 6 levelP̃RM is clear. The reverse inequality is clear if levelP̃RM 6 1. Sup-

pose levelP̃RM = n > 2. It suffices to prove levelPRM > n. By the converse coghost

lemma, there exist P̃-coghost maps fi : Mi → Mi+1 for 0 6 i 6 n − 1 in Df
b (R)

with Mn = M and fn−1fn−2 · · · f0 a nonzero morphism. As noted in Remark 2.10,
the maps fi are also P-coghost. Since fn−1fn−2 · · · f0 is a nonzero morphism we

obtain that levelPRM > n by the Coghost Lemma. �
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For the case of G-level, we can answer the question affirmatively in the case of
modules using Corollary 3.5:

Proposition 3.7. Let M be an R-module.

(a) If levelPRM <∞ then levelPRM = levelGRM .

(b) If R is Noetherian and M is finitely generated then levelGRM = levelG̃RM.

(c) If R is Noetherian and levelP̃RM <∞, then levelP̃RM = levelG̃RM.

Proof. We may assume M is nonzero. For the first assertion, we have by [1, Cor 2.2]

that levelPRM = pdRM + 1. Thus, pdRM < ∞. Then by [11, Proposition 2.27],
we have GpdRM = pdRM . The result now follows from Corollary 3.5. The second
assertion follows immediately from Corollary 3.5. The third statement follows from
the first two, along with Proposition 3.6. �

Another consequence of Theorem 3.3 is the following characterization of Goren-
stein local rings:

Corollary 3.8. Let R be a local Noetherian ring with residue field k. The following
conditions are equivalent:

(a) R is Gorenstein;

(b) levelGR k <∞;

(c) levelGR k = dimR+ 1;

(d) levelGRM 6 dimR+ supM − inf M + 1 for all nonzero complexes M in D+(R).

(e) levelG̃RM 6 dimR+ supM − inf M + 1 for all nonzero complexes M in Df
+(R).

Proof. This follows from Theorem 2.4, Theorem 3.3, Corollary 2.8 and Corollary
3.5. �

In [4], the following upper bound on level with respect to R is proved:

Theorem 3.9. ([4, Theorem 5.5]) Let R be Noetherian and M a nonzero complex

in Df
b (R). Then

levelP̃RM 6 pdR H(M) + 1,

where H(M) is considered as a module concentrated in degree zero, not as a complex.

In particular, if R is regular of finite dimension, then levelRR(M) 6 dimR+ 1.

One can ask whether either inequality holds if projective dimension is replaced

by Gorenstein projective dimension, and level with respect to P̃ replaced by level

with respect to G̃. The answer is no, as the following example demonstrates:

Example 3.10. Let k be a field and R = k[x]/(x2) and F the complex

0→ R
x−→ R→ 0,

where the modules R sit in homological degrees 1 and 0. Note that H(F ) is finitely
generated and nonzero. Since R is a zero-dimensional Gorenstein ring, we have
GpdR H(F ) = 0. (As in Theorem 3.9, we are considering H(F ) as a module con-

centrated in degree zero, not as a complex.) We claim that levelG̃R(F ) = 2. From

Corollary 2.8, we have that levelG̃R(F ) 6 GpdR F + 1 6 2. Suppose levelG̃R(F ) 6 1.
Then F ' T in D(R), where T is a bounded complex of finitely generated Goren-
stein projective modules with zero differentials. Since T has zero differentials, we
have T ' H(T ) in D(R). Thus, F ' T ' H(T ) ' H(F ) in D(R). Since F is
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semi-projective, this means there exists a quasi-isomorphism σ : F → H(F ). Let
t = σ1(1) ∈ H(F )1 = xR. The induced map on homology σ∗1 : xR → xR is multi-
plication by t, which is the zero map. This contradicts that σ∗1 is an isomorphism.

Hence, levelG̃R(F ) = 2.

The following result provides a global bound on the levels of complexes with
respect to G over a Gorenstein ring:

Theorem 3.11. Let R be a Noetherian Gorenstein ring and M a complex in Db(R).
Then

levelGRM 6 2(dimR+ 1).

Similarly, if M is a complex in Df
b (R) then levelG̃RM 6 2(dimR+ 1).

Proof. Let Z and B be the subcomplexes of M consisting of the cycles and bound-
aries of M , respectively. The we have a short exact sequence of complexes

0→ Z →M → ΣB → 0,

which induces an exact triangle Z → M → ΣB → ΣZ in Db(R). Note that Z and

B are bounded complexes with zero differentials. Furthermore, if M is in Df
b (R),

we can assume Z and B are finitely generated by replacing M , if necessary, with a
semi-projective resolution consisting of finitely generated projective modules in each
degree. As G is Gorenstein, GpdR L 6 dimR for every R-module L. By Corollary

2.8, levelGR L 6 dimR + 1, and if L is finitely generated, levelG̃R L 6 dimR + 1.

Since level is invariant under direct sums and suspensions, we see that levelGR Z and

levelGRB are each bounded above by dimR+ 1; similarly for levelG̃R Z and levelG̃RB

in the case M is in Df
b (R). The theorem now follows by part (5) of Proposition

2.5. �
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