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Chapter 0

Where are we going?

Homological algebra first appeared in the study of topological spaces. Roughly speaking,
homology is a way of associating a sequence of abelian groups (or modules, or other more
sophisticated algebraic objects) to another object, for example a topological space. The
homology of a topological space encodes topological information about the space in algebraic
language — this is what algebraic topology is all about.

More formally, we will study complexes and their homology from a more abstract per-
spective. While algebraic topologists are often concerned with complexes of abelian groups,
we will work a bit more generally with complexes of R-modules. The basic assumptions and
notation about rings and modules we will use in this class can be found in Appendix A. As
an appetizer, we begin with some basic homological algebra definitions.

Definition 0.1. A chain complex of R-modules (C•, ∂•), also referred to simply as a
complex, is a sequence of R-modules Ci and R-module homomorphisms

· · · // Cn+1
∂n+1

// Cn
∂n // Cn−1

// · · ·

such that ∂n∂n+1 = 0 for all n. We refer to Cn as the module in homological degree n.
The maps ∂n are the differentials of our complex. We may sometimes omit the differentials
∂n and simply refer to the complex C• or even C; we may also sometimes refer to ∂• as the
differential of C•.

In some contexts, it is important to make a distinction between chain complexes and
co-chain complexes, where the arrows go the opposite way: a co-chain complex would look
like

· · · // Cn−1
∂n // Cn

∂n+1
// Cn+1

// · · · .

We will not need to make such a distinction, so we will call both of these complexes and most
often follow the convention in the definition above. We will say a complex C is bounded
above if Cn = 0 for all n≫ 0, and bounded below if Cn = 0 for all n≪ 0. A bounded
complex is one that is both bounded above and below. If a complex is bounded, we may
sometimes simply write it as a finite complex, say

Cn
∂n // Cn−1

// · · · // Cm.

1
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Remark 0.2. The condition that ∂n∂n+1 = 0 for all n implies that im ∂n+1 ⊆ ker ∂n.

Definition 0.3. The complex (C•, ∂•) is exact at n if im ∂n+1 = ker ∂n. An exact sequence
is a complex that is exact everywhere. More precisely, an exact sequence of R-modules is
a sequence

· · · fn−1
//Mn

fn
//Mn+1

fn+1
// · · ·

of R-modules and R-module homomorphisms such that im fn = ker fn+1 for all n. An exact
sequence of the form

0 // A // B // C // 0

is a short exact sequence, sometimes written ses.

Remark 0.4. The sequence
0 //M

f
// N

is exact if and only if f is injective. Similarly,

M
f
// N // 0

is exact if and only if f is surjective. So

0 // A
f
// B

g
// C // 0

is a short exact sequence if and only if

• f is injective • g is surjective • im f = ker g.

When this is indeed a short exact sequence, we can identify A with its image f(A), and
A = ker g. Moreover, since g is surjective, by the First Isomorphism Theorem we conclude
that C ∼= B/f(A), so we might abuse notation and identify C with B/A.

Notation 0.5. We write A ↠ B to denote a surjective map, and A ↪→ B to denote an
injective map.

Definition 0.6. The cokernel of a map of R-modules A
f−→ B is the module

coker f := B/ im(f).

Remark 0.7. We can rephrase Remark 0.4 in a fancier language: if

0 // A
f
// B

g
// C // 0

is a short exact sequence, then A = ker g and C = coker f .

Example 0.8. Let π be the canonical projection Z −→ Z/2Z. The following is a short
exact sequence:

0 // Z 2 // Z π // Z/2Z // 0 .
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We will most often be interested in complexes of R-modules, where the abelian groups
that show up are all modules over the same ring R.

Example 0.9. Let R = k[x] be a polynomial ring over the field k. The following is a short
exact sequence:

0 // R
·x // R

π // R/(x) // 0 .

The first map is multiplication by x, and the second map is the canonical projection.

Example 0.10. Given an ideal I in a ring R, the inclusion map ι : I → R and the canonical
projection π : R→ R/I give us the following short exact sequence:

0 // I
ι // R

π // R/I // 0.

Example 0.11. Let R = k[x]/(x2). The following complex is exact:

· · · // R
·x // R

·x // R // · · · .

Indeed, the image and the kernel of multiplication by x are both (x).

Sometimes we can show that certain modules vanish or compute them explicitly when
they do not vanish by seeing that they fit in some naturally constructed exact sequence
involving other modules we understand better. We will discuss this in more detail when we
talk about long exact sequences.

Remark 0.12. The complex 0 //M
f
// N // 0 is exact if and only if f is an iso-

morphism.

Remark 0.13. The complex 0 //M // 0 is exact if and only if M = 0.

Historically, chain complexes first appeared in topology. To study a topological space, one
constructs a particular chain complex that arises naturally from information from the space,
and then calculates its homology, which ends up encoding important topological information
in the form of a sequence of abelian groups.

Definition 0.14 (Homology). The homology of the complex (C•, ∂•) is the sequence of
R-modules

Hn(C•) = Hn(C) :=
ker ∂n
im ∂n+1

.

The nth homology of (C•, ∂•) is Hn(C). The submodules Zn(C•) = Zn(C) := ker ∂n ⊆ Cn
are called cycles, while the submodules Bn(C•) = Bn(C) := im ∂n+1 ⊆ Cn are called
boundaries. One sometimes uses the word boundary to refer an element of Bn(C) (an
n-boundary), and the word cycle to refer to an element of Zn(C) (an n-cycle).

The homology of a complex measures how far our complex is from being exact at each
point. Again, we can talk about the cohomology of a cochain complex instead, which we
write as Hn(C); we will for now not worry about the distinction.

Remark 0.15. Note that (C•, ∂•) is exact at n if and only if Hn(C•) = 0.
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Example 0.16. Let R = k[x]/(x3). Consider the following complex:

F• = · · · // R
·x2 // R

·x2 // R // · · · .

The image of multiplication by x2 is (x2), while the the kernel of multiplication by x2 is
(x) ⊇ (x2). For all n,

Hn(F•) = (x)/(x2) ∼= R/(x).

Example 0.17. Let Z π // Z/2Z be the canonical projection map. Then

C = Z 4 // Z π // Z/2Z
2 1 0

is a complex of abelian groups, since the image of multiplication by 4 is 4Z, and that is
certainly contained in ker π = 2Z. The homology of C is

Hn(C) = 0 for n ⩾ 3

H2(C) =
ker(Z 4−→ Z)
im(0 −→ Z)

=
0

0
= 0

H1(C) =
ker(Z π−→ Z/2Z)
im(Z 4−→ Z)

=
2Z
4Z
∼= Z/2Z

H0(C) =
ker(Z/2Z −→ 0)

im(Z −→ Z/2Z)
=

Z/2Z
Z/2Z

= 0

Hn(C) = 0 for n < 0

Notice that our complex is exact at 2 and 0. The exactness at 2 says that the map Z 4−→ Z
is injective, while exactness at 0 says that π is surjective.

Before we can continue any further into the world of homological algebra, we will need
some categorical language. We will take a short break to introduce category theory, and
then armed with that knowledge we will be ready to study homological algebra.



Chapter 1

Categories for the working
homological algebraist

Most fields in modern mathematics follow the same basic recipe: there is a main type of
object one wants to study – groups, rings, modules, topological spaces, etc – and a natural
notion of arrows between these – group homomorphisms, ring homomorphisms, module ho-
momorphisms, continuous maps, etc. The objects are often sets with some extra structure,
and the arrows are often maps between the objects that preserve whatever that extra struc-
ture is. Category theory is born of this realization, by abstracting the basic notions that
make math and studying them all at the same time. How many times have we felt a sense
of déjà vu when learning about a new field of math? Category theory unifies all those ideas
we have seen over and over in different contexts.

Category theory is an entire field of mathematics in its own right. As such, there is a lot
to say about category theory, and unfortunately it doesn’t all fit in the little time we have
to cover it in this course. You are strongly encouraged to learn more about category theory,
for example from [?] or [?].

Before we go any further, note that there is a long and fun story about why we use the
word collection when describing the objects in a category. Not all collections are allowed
to be sets, an issue that was first discovered by Russel with his famous Russel’s Paradox.1

Russel exposed the fact that one has to be careful with how we formalize set theory. We
follow the ZFC (Zermelo–Fraenkel with choice, short for the Zermelo–Fraenkel axioms plus
the Axiom of Choice) axiomatization of set theory, and while we will not discuss the details
of this formalization here, you are encouraged to read more on the subject.

1.1 Categories

A category consists of a collection of objects and arrows or morphisms between those objects.
While these are often sets and some kind of functions between them, beware that this will
not always be the case. We will use the words morphism and arrows interchangeably, though
arrow has the advantage of reminding us we are not necessarily talking about functions.

1The collection of all sets that don’t contain themselves cannot be a set. Do you see why?

5
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Definition 1.1. A category C consists of three different pieces of data:

• a collection of objects, ob(C ),

• for each two objects, say A and B, a collection HomC (A,B) of arrows or morphisms
from A to B, and

• for each three objects A, B, and C, a composition

HomC (A,B)× HomC (B,C) // HomC (A,C)

(f, g) � // g ◦ f

.

We will often drop the ◦ and write simply gf for g ◦ f .

These ingredients satisfy the following axioms:

1) The HomC (A,B) are all disjoint. In particular, if f is an arrow in C , we can talk
about its source A and its target B as the objects such that f ∈ HomC (A,B).

2) For each object A, there is an identity arrow 1A ∈ HomC (A,A) such that 1A ◦ f = f
and g ◦ 1A = g for all f ∈ HomC (B,A) and all g ∈ HomC (A,B).

3) Composition is associative: f ◦(g◦h) = (f ◦g)◦h for all appropriately chosen arrows.

Notation 1.2. We sometimes write f : A→ B or A
f−→ B for an arrow f ∈ Hom(A,B).

Exercise 1. Prove that every element in a category has a unique identity morphism.

Here are some categories you have likely encountered before:

Example 1.3.

1) The category Set with objects all sets and arrows all functions between sets.

2) The category Grp whose objects are the collection of all groups, and whose arrows
are all the homomorphisms of groups. The identity arrows are the identity homomor-
phisms.

3) The category Ab with objects all abelian groups, and arrows the homomorphisms of
abelian groups. The identity arrows are the identity homomorphisms.

4) The category Ring of rings and ring homomorphisms. Contrary to what you may
expect, this is not nearly as important as the next one.

5) The category R-mod of left modules over a fixed ring R and with R-module homo-
morphisms. Sometimes one writes R-Mod for this category, and reserve R-mod for
the category of finitely generated R-modules with R-module homomorphisms. When
R = k is a field, the objects in the category k-Mod are k-vector spaces, and the arrows
are linear transformations; we may instead refer to this category as Vect-k.
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6) The category Top of topological spaces and continuous functions.

One may consider many variations of the categories above. Here are some variations on
vector spaces:

Example 1.4. Let k be a field.

1) The collection of finite dimensional k-vector spaces with all linear transformations is a
category.

2) The collection of all n-dimensional k-vector spaces with all linear transformations is a
category.

3) The collection of all k-vector spaces (or n-dimensional vector spaces) with linear iso-
morphisms is a category.

4) The collection of all k-vector spaces (or n-dimensional vector spaces) with nonzero
linear transformations is not a category, since it is not closed under composition.

5) The collection of all n-dimensional vector spaces with linear transformations of deter-
minant 0 is not a category, since it does not have identity maps.

Here is an important variation of Set:

Example 1.5. The category Set∗ of pointed sets has objects all pairs (X, x) of sets X and
points x ∈ X, and for two pointed sets (X, x) and (Y, y), the morphisms from (X, x) to (Y, y)
are functions f : X → Y such that f(x) = y, with the usual composition of functions.

Example 1.6. The empty category has no objects and no arrows.

While the collections of objects and arrows might not actually be sets, sometimes they
are.

Definition 1.7. A category C is locally small if for all objects A and B in C , HomC (A,B)
is a set. A category C is small if it is locally small and the collection of all objects in C is
a set.

In fact, one can define a small category as one where the collection of all arrows is a set.
It follows immediately that the collection of all objects is also a set, since it must be a subset
of the set of arrows – for each object, there is an identity arrow.

Many important categories are at least locally small. For example, Set is locally small
but not small. In a locally small category, we can now refer to its Hom-sets.

Categories where the objects are sets with some extra structure and the arrows are some
kind of functions between the objects are called concrete. Not all categories are concrete.

Example 1.8. Given a partially ordered set (X,⩽), we can regard X itself as a category:
the objects are the elements of X, and for each x and y in X, HomX(x, y) is either a singleton
if x ⩽ y or empty if x ̸⩽ y. There is only one possible way to define composition, and the
transitive property of ⩽ guarantees that the composition of arrows is indeed well-defined: if
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there is an arrow i→ j and an arrow j → k, then i ⩽ j and j ⩽ k, so i ⩽ k and thus there
is a unique arrow i→ k. This category is clearly locally small, since all nonempty Hom-sets
are in fact singletons. It is in fact small, since the objects are by construction the set X. We
will denote this poset category by PO(X).

Example 1.9. For each positive integer n, the category n has n objects 0, 1, . . . , n− 1 and
Hom(i, j) is either empty if i > j or a singleton if i ⩽ j. As Example 1.8, composition is
defined in the only way possible, and things work out. This is the poset category for the
poset ({0, 1, . . . , n− 1},⩽) with the usual ⩽.

Example 1.10. Fix a field k. We define a category Mat-k with objects all positive integers,
and given two positive integers a and b, the Hom-set Hom(a, b) consists of all b× a matrices
with entries in k. The composition rule is given by product of matrices: given A ∈ Hom(a, b)
and B ∈ Hom(b, c), the composition B ◦ A is the matrix BA ∈ Hom(a, c). For each object
a, its identity arrow is given by the a× a identity matrix.

Example 1.11. Let G be a directed graph. We can construct a category from G as follows:
the objects are the vertices of G, and the arrows are directed paths in the graph G. In this
category, composition of arrows corresponds to concatenation of paths. For each object A,
the identity arrow corresponds to the empty path from A to A.

Remark 1.12. A locally small category with just one element is completely determined by
its unique Hom-set; it thus consists of a set S with an associative operation that has an
identity element, which in this class is what we call a semigroup.2

A key insight we get from category theory is that many important concepts can be un-
derstood through diagrams. Homological algebra is in many ways the study of commutative
diagrams. One way to formalize what a diagram is involves talking about functors, which
we will discuss in Section 1.2; here is a more down to earth definition.

Definition 1.13. A diagram in a category C is a directed multigraph whose vertices are
objects in C and whose arrows/edges are morphisms in C . A commutative diagram in C is
a diagram in which for each pair of vertices A and B, any two paths from A to B compose
to the same morphism.

Example 1.14. The diagram

A

u

��

f
// B

g

��

C v
// D

commutes if and only if gf = vu.

There are some special types of arrows we will want to consider.

Definition 1.15. Let C be any category.

2Some authors prefer the term monoid.
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• An arrow f ∈ HomC (A,B) is left invertible if there exists g ∈ HomC (B,A) such that
gf = 1A. In this case, we say that g is the left inverse of f . So g is a left inverse of
f if the diagram

A

1A ��

f
// B

g

��

A

commutes.

• An arrow f ∈ HomC (A,B) is right invertible if there exists g ∈ HomC (B,A) such
that fg = 1B. In this case, we say that g is the right inverse of f . So g is a right
inverse of f if the diagram

B

1B   

g
// A

f

��

B

commutes.

• An arrow f ∈ HomC (A,B) is an isomorphism if there exists g ∈ HomC (B,A) such
that gf = 1A and fg = 1B. Unsurprisingly, such an arrow g is called the inverse of f .
We say two objects A and B are isomorphic if there exists an isomorphism A→ B.

• An arrow f ∈ Hom(B,C) is monic, a monomorphism, or a mono if for all arrows

A
g1
//

g2
// B

f
// C

if fg1 = fg2 then g1 = g2.

• Similarly, an arrow f ∈ Hom(A,B) is an epi or an epimorphism if for all arrows

A
f
// B

g1
//

g2
// C

if g1f = g2f then g1 = g2.

Here are some examples:

Exercise 2. Show that in Set, the monos coincide with the injective functions and the epis
coincide with the surjective functions.

Example 1.16.

1) In Grp, Ring, and R-Mod the isomorphisms are the morphisms that are bijective
functions.

2) In contrast, in Top the isomorphisms are the homeomorphisms, which are the bijective
continuous functions with continuous inverses. These are not the same thing as just
the bijective continuous functions.
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Exercise 3. Show that in any category, every isomorphism is both epi and mono.

Exercise 4. Show that the usual inclusion Z −→ Q is an epi in the category Ring.

This should feel weird: it says being epi and being surjective are not the same thing.
Similarly, being monic and being injective are not the same thing.

Exercise 5. Show that the canonical projection Q −→ Q/Z is a mono in the category of
divisible abelian groups.3

Exercise 6. Show that given any poset P , in the poset category of P every morphism is
both monic and epic, but no nonidentity morphism has a left or right inverse.

There are some special types of objects we will want to consider.

Definition 1.17. Let C be a category. An initial object in C is an object i such that for
every object x in C , HomC (i, x) is a singleton, meaning there exists a unique arrow i −→ x.
A terminal object in C is an object t such that for every object x in C , HomC (x, t) is a
singleton, meaning there exists a unique arrow x −→ t. A zero object in C is an object
that is both initial and terminal.

Exercise 7. Initial objects are unique up to unique isomorphism. Terminal objects are
unique up to unique isomorphism.

So we can talk about the initial object, the terminal object, and the zero object, if they
exist.

Example 1.18.

a) The empty set is initial in Set. Any singleton is terminal. Since the empty set and a
singleton are not isomorphic in Set, there is no zero object in Set.

b) The 0 module is the zero object in R-Mod.

c) The trivial group {e} is the zero object in Grp.

d) In the category of rings, Z is the initial object, but there is no terminal object unless
we allow the 0 ring.

e) There are no initial nor terminal objects in the category of fields.

We will now continue to follow a familiar pattern and define the related concepts one can
guess should be defined.

Definition 1.19. A subcategory C of a category D consists of a subcollection of the
objects of D and a subcollection of the morphisms of D such that the following hold:

• For every object C in C , the arrow 1C ∈ HomD(C,C) is an arrow in C .

3An abelian group A is divisible if for every a ∈ A and every positive integer n there exists b ∈ A such
that nb = a.
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• For every arrow in C , its source and target in D are objects in C .

• For every pair of arrows f and g in C such that fg is an arrow that makes sense in D ,
fg is an arrow in C .

In particular, C is a category in its own right.

Example 1.20. The category of finitely generated R-modules with R-module homomor-
phisms is a subcategory of R-Mod.

Definition 1.21. A subcategory C of D is a full subcategory if C includes all of the
arrows in D between any two objects in C .

Example 1.22.

a) The category Ab of abelian groups is a full subcategory of Grp.

b) Since every group is a set, and every homomorphism is a function, Grp is a subcategory
of Set. However, not every function between two groups is a group homomorphism,
so Grp is not a full subcategory of Set.

c) The category whose objects are all sets and with arrows all bijections is a subcategory
of Set that is not full.

Here is another way of constructing a new category out of an old one.

Definition 1.23. Let C be a category. The opposite category of C , denoted C op, is a
category whose objects are the objects of C , and such that each arrow f ∈ HomC op(A,B) is
the same as some arrow in HomC (B,A). The composition fg of two morphisms f and g in
C op is defined as the composition gf in C .

Many objects and concepts one might want to describe are obtained from existing ones
by flipping the arrows. Opposite categories give us the formal framework to talk about such
things. We will often want to refer to dual notions, which will essentially mean considering
the same notion in a category C and in the opposite category C op; in practice, this means
we should flip all the arrows involved. We will see examples of this later on.

The dual category construction gives us a formal framework to talk about dual notions.
We will often make a statement in a category C and make comments about the dual state-
ment; in practice, this corresponds to simply switching the way all arrows go. Here are
some examples of dual notions and statements:

source target
epi mono

g is a right inverse for f g is a left inverse for f
f is invertible f is invertible
initial objects terminal objects
homology cohomology
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The prefix co- is often used to denote the dual of something, such as in cohomology.
Note that the dual of the dual is the original statement; formally, (C op)op = C . Sometimes
we can easily prove a statement by dualizing; however, this is not always straightforward,
and one needs to carefully dualize all portions of the statement in question. Nevertheless,
Sanders MacLane, one of the fathers of category theory, wrote that “If any statement about a
category is deducible from the axioms for a category, the dual statement is likely deducible”
[?]. One of the upshots of duality is that any theorem in category theory must simultaneously
prove two theorems: the original statement and its dual. But for this to hold, we need proofs
that use the abstraction of a purely categorical proof.

Opposite categories are more interesting than they might appear at first; there is more
than just flipping all the arrows. For example, consider the opposite category of Set. For
any nonempty set X, there is a unique morphism in Set (a function) i : ∅ → X, but there
are no functions X → ∅, so iop: ∅ → X is not a function. Thus thinking about Setop is a bit
difficult. One can show that this is the category of complete atomic Boolean algebras – but
we won’t concern ourselves with what that means.

1.2 Functors

Many mathematical constructions are functorial, in the sense that they behave well with
respect to morphisms. In the formalism of category theory, this means that we can think of
a functorial construction as a functor.

Definition 1.24. Let C and D be categories. A covariant functor F : C −→ D is
a mapping that assigns to each object A in C an object F (A) in D , and to each arrow
f ∈ HomC (A,B) an arrow F (f) ∈ HomD(F (A), F (B)), such that

• F preserves composition: F (fg) = F (f)F (g) for all composable arrows f and g in C .

• F preserves the identity arrows: F (1A) = 1F (A) for all objects A in C .

A contravariant functor F: C −→ D is a mapping that assigns to each object A in C an
object F (A) in D , and to each arrow f ∈ HomC (A,B) an arrow F (f) ∈ HomD(F (B), F (A)),
such that

• F preserves composition: F (fg) = F (g)F (f) for all composable arrows f and g in C .

• F preserves the identity arrows: F (1A) = 1F (A) for all objects A in C .

So a contravariant functor is a functor that flips all the arrows. We can also describe a
contravariant functor as a covariant functor from C to the opposite category of D , Dop.

Remark 1.25. A contravariant functor F : C −→ D can be thought of as a covariant functor
C op −→ D , or also as a covariant functor C −→ Dop. If using one of these conventions, one
needs to be careful, however, when composing functors, so that the respective sources and
targets match up correctly. While we haven’t specially discussed how one composes functors,
it should be clear that applying a functor F : C −→ D and G : D −→ E is the same as
applying a functor C −→ E , which we can write as GF .
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For example, if F : C −→ D and G : D −→ E are both contravariant functors, the
composition GF : C −→ E is a covariant functor, since

A

f
��

F (A) GF (A)

GF (f)
��

// //

B F (B)

F (f)

OO

GF (B)

So we could think of F as a covariant functor C −→ Dop and G as a covariant functor
Dop −→ E . Similarly, if F : C −→ D is a covariant functor and G : D −→ E is a
contravariant functor, GF : C −→ E is a contravariant functor. In this case, we can think
of G as a covariant functor D −→ E op, so that GF is now a covariant functor C −→ E op.

Exercise 8. Show that functors preserve isomorphisms.

Remark 1.26. Any functor sends isos to isos, since it preserves compositions and identities.

Example 1.27. Here are some examples of functors you may have encountered before.

a) Many categories one may think about are concrete categories, where the objects are
sets with some extra structure, and the arrows are functions between those sets that
preserved that extra structure. The forgetful functor from such a category to Set
is the functor that, just as the name says, forgets that extra structure, and sees only
the underlying sets and functions of sets. For example, the forgetful functor Gr −→
Set sends each group to its underlying set, and each group homomorphism to the
corresponding function of sets.

b) The identity functor 1C on any category C does what the name suggests: it sends each
object to itself and each arrow to itself.

c) Given an object C in a category C , the constant functor at C is the functor ∆C :
C → C that sends every object to C every arrow to 1C .

d) Given a group G, the subgroup [G,G] of G generated by the set of commutators

{ghg−1h−1 | g, h ∈ G}

is a normal subgroup, and the quotient Gab := G/[G,G] is called the abelianiza-
tion of G. The group Gab is abelian. Given a group homomorphism f : G → H,
f automatically takes commutators to commutators, so it induces a homomorphism
f̃ : Gab → Hab. More precisely, abelianization gives a covariant functor from Grp to
Ab.

e) The unit group functor −∗ : Ring → Grp sends a ring R to its group of units R∗. To
see this is indeed a functor, we should check it behaves well on morphisms; and indeed
if f : R→ S is a ring homomorphism, and u ∈ R∗ is a unit in R, then

f(u)f(u−1) = f(uu−1) = f(1R) = 1S,

so f(u) is a unit in S. Thus f induces a function R∗ → S∗ given by restriction of f to
R∗, which must therefore be a group homomorphism since f preserves products.
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f) Fix a field k. Given a vector space V , the set V ∗ of linear transformations from V
to k is a k-vector space, the dual vector space of V . If φ : W → V is a linear
transformation and ℓ : V → k is an element of V ∗, then ℓ ◦ φ : W → k is in W ∗. Doing
this for all elements ℓ ∈ V ∗ gives a function φ∗ : V ∗ → W ∗, and one can show that
φ∗ is a linear transformation. The assignment that sends each vector space V to its
dual vector space V ∗ and each linear transformation φ to φ∗ is a contravariant functor
Vect-k → Vect-k.

g) Localization is a functor. Let R be a ring and W be a multiplicatively closed set in
R. The localization at W induces a a functor R-mod −→ W−1R-mod: this functor
sends each R-module M to W−1M , and each R-module homomorphism α : M → N
to the R-module homomorphism W−1α : W−1M → W−1N .

Remark 1.28. If we apply a covariant functor to a diagram, then we get a diagram of the
same shape:

A

u

��

f
// B

g

��

F (A)

F (u)
��

F (f)
// F (B)

F (g)
��

F //

C v
// D F (C)

F (v)
// F (D)

However, if we apply a contravariant functor to the same diagram, we get a similar diagram
but with the arrows reversed:

A

u

��

f
// B

g

��

F (A) F (B)
F (f)
oo

F //

C v
// D F (C)

F (u)

OO

F (D)
F (v)
oo

F (g)

OO

Definition 1.29. The category Cat has objects all small categories and arrows all functors
between them.

If we think about functors as functions between categories, it’s natural to consider what
would be the appropriate versions of the notions of injective or surjective.

Definition 1.30. A covariant functor F : C −→ D between locally small categories is

• faithful if all the functions of sets

HomC (A,B) // HomD(F (A), F (B))

f � // F (f)
are injective.

• full if all the functions of sets

HomC (A,B) // HomD(F (A), F (B))

f � // F (f)
are surjective.
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• fully faithful if it is full and faithful.

• essentially surjective if every object d in D is isomorphic to F (c) for some c in C .

• an embedding if it is fully faithful and injective on objects.

Example 1.31. The forgetful functor R-Mod −→ Set is faithful since any two maps of
R-modules with the same source and target coincide if and only if they are the same function
of sets. This functor is not full, since not every function between the underlying sets of two
R-modules is an R-module homomorphism.

Remark 1.32. A fully faithful functor is not necessarily injective on objects, but it is
injective on objects up to isomorphism.

Remark 1.33. A subcategory C of D is full if the inclusion functor C −→ D is full.

Exercise 9. Show that every fully faithful functor F : C → D reflects isos:

a) If f is an arrow in C such that F (f) is an iso, then f is an iso.

b) If F (X) and F (Y ) are isomorphic, then the objects X and Y are isomorphic in C .

Note that the converses of these statements hold for any functor.

To close this section, here are the two of the most important functors we will discuss this
semester:

Definition 1.34. Let C be a locally small category. An object A in C induces two Hom
functors:

• The covariant functor HomC (A,−) : C −→ Set is defined as follows:

C // Set

on objects: X � // HomC (A,X)

B

f
��

HomC (A,B)

��

∋ g
_

��
on arrows: //

C HomC (A,C) ∋ f ◦ g

We read HomC (A,−) as Hom from A, and may refer to this functor as the covariant
functor represented by A. Given an arrow f in C , we write f∗ := HomC (A, f). It is
easier to see what f∗ does through the following commutative diagram:

A
g

//

f∗(g)=fg

$$

B

f

��

f∗ = HomC (A, f) :

C
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• The contravariant functor HomC (−, B) : C −→ Set is defined as follows:

C // Set

on objects: X � // HomC (X,B)

A

f
��

HomC (A,B) ∋ g ◦ f
on arrows: //

C HomC (C,B)

OO

∋ g
_

OO

We read HomC (−, B) as Hom to B, and we may refer to this functor as the contravari-
ant functor represented by B. Given an arrow f in C , we write f ∗ := HomC (−, B).
It is easier to see what f ∗ does through the following commutative diagram:

A
f

//

f∗(g)=gf
$$

C

g

��

f ∗ = HomC (f,B) :

B

Exercise 10. Check that Hom(A,−) and Hom(−, B) are indeed functors.

We will be particularly interested in the Hom-functors in the category R-mod, which we
will study in detail in a later chapter.

1.3 Natural transformations

Definition 1.35. Let F and G be covariant functors C −→ D . A natural transfor-
mation between F and G is a mapping that to each object A in C assigns an arrow
ηA ∈ HomD(F (A), G(A)) such that for all f ∈ HomC (A,B), the diagram

F (A)

F (f)

��

ηA // G(A)

G(f)

��

F (B) ηB
// G(B)

commutes. We sometimes write

C
F

))

G

66�� η D

or simply η : F =⇒ G to indicate that η is a natural transformation from F to G.

Definition 1.36. Let F and G be contravariant functors C −→ D . A natural trans-
formation between F and G is a mapping that to each object A in C assigns an arrow
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ηA ∈ HomD(F (A), G(A)) such that for all f ∈ HomC (A,B), the diagram

F (A)
ηA // G(A)

F (B)

F (f)

OO

ηB
// G(B)

G(f)

OO

commutes.

Often, when studying a particular topic, we sometimes say a certain map is natural to
mean that there is actually a natural transformation behind it.

Example 1.37. Recall the abelianization functor we discussed in Example 1.27. The
abelianization comes equipped with a natural projection map πG : G −→ Gab, the usual
quotient map from G to a normal subgroup. Here we mean natural in two different ways:
both that this is the common sense map to consider, and that this is in fact coming from a
natural transformation. What’s happening behind the scenes is that abelianization is a func-
tor ab: Grp −→Grp. On objects, the abelianizations functor is defined as G 7→ Gab. Given

an arrow, meaning a group homomorphism G
f−→ H, one can check that [G,G] is contained

in the kernel of πHf , so πHf factors through Gab, and there exists a group homomorphism
f ab making the following diagram commute:

G
πG //

f

��

Gab

fab

��

H πH
// Hab

.

So the abelianization functor takes the arrow f to f ab. The commutativity of the diagram
above says that π− is a natural transformation π between the identity functor on Grp and
the abelianization functor, which we can write more compactly as

Grp
id

**

ab

44�� π Grp .

Example 1.38. The determinant gives rise to a natural transformation. Fix an integer
n ⩾ 1, and consider the GLn functor

GLn : Ring→ Grp

that takes each ring R to the group GLn of invertible n× n matrices with entries in R, and
that takes each ring homomorphism f : R→ S to the map

GLn(f) : GLn(R)→ GLn(S)

that applies f to all the entries of each matrix A ∈ GLn(R), and which can be shown to be
a group homomorphism. We claim that the determinant is a natural transformation from
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GLn to the unit functor (−)∗ we defined in Example 1.27. First, note that the determinant
of an invertible matrix is a unit, so the determinant gives a map GLn(R)→ R∗. Moreover,
given any ring homomorphism f : R→ S, we have a commutative diagram

GLn(R)

f

��

det // R∗

f

��

GLn(S) det
// S∗.

Above we identified f with both the map GLn(f) obtained by applying f to all coordinates of
A and the restriction of f to the unit groups, meaning the image of f under the units functor.
This commutative diagram just encodes the fact that taking determinants commutes with
applying f : for any invertible n× n matrix A,

f(det(A)) = det(f(A)).

Definition 1.39. A natural isomorphism is a natural transformation η where each ηA is
an isomorphism.

Exercise 11. Show that a natural transformation η : F =⇒ G is a natural isomorphism if
and only if there exists a natural transformation µ : G =⇒ F such that η ◦µ is the identity
natural isomorphism on G and µ ◦ η is the identity natural isomorphism on F .

Warning: there are many theorems that say that a particular isomorphism is natural;
however, not all isomorphisms are natural! Whenever S is an infinite set, the sets S × S are
in bijection S, but no such bijection can be natural. Details below.

Exercise 12. Let Set∞ be the full subcategory of Set consisting of all infinite sets. Let

F : Set∞ → Set∞

be the functor that on objects is given by the rule F (S) = S×S, and on morphisms is given
by F (f) = (f, f). Show that there is no natural isomorphism η : F ⇒ 1Set∞ .

Definition 1.40. Let F,G : C −→ D be two functors between the categories C and D . We
write

Nat(F,G) = {natural transformations F =⇒ G}.

Given two categories C and D , one can build a functor category4 with objects all covariant
functors C −→ D , and arrows the corresponding natural transformations. This category is
denoted DC . Sometimes one writes Hom(F,G) for Nat(F,G), but we will avoid that, as it
might make things even more confusing.

For the functor category to truly be a category, though, we need to know how to compose
natural transformations.

4Yes, the madness is neverending.
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Remark 1.41. Consider natural transformations

C
F

))

G

66�� φ D and C
G

))

H

55�� η D .

We can compose them for form a new natural transformation

C
F

))

H

55�� ηφ D .

For each object C in C , ηφ sends C to the arrow

F (C)
φC // G(C)

ηC // H(C).

This makes the diagram

F (A)
φA //

F (f)

��

G(A)
ηA //

G(f)

��

H(A)

H(f)

��

F (B) φB

// G(B) ηB
// H(B)

commute; replacing the horizontal arrows with the composition gives us the commutative
diagram

F (A)
ηAφA //

F (f)
��

H(A)

H(f)
��

F (B) ηBφB

// H(B)

which encodes the fact that ηφ is a natural transformation.

Definition 1.42. Two categories C and D are equivalent if there exist functors F : C → D
and G : D → C and two natural isomorphisms α : GF =⇒ 1C and β : FG =⇒ 1D . We
say that a functor F : C → D is an equivalence of categories if there exists a functor G
and natural isomorphisms α and β as above.

If one assumes the Axiom of Choice, this is the right notion of isomorphism of two cate-
gories (though not in the categorical sense!); better said, two categories that are equivalent
are essentially the same. Note that this does not mean that there is a bijection between the
objects of C and the objects of D . In fact, one can show that a functor is an equivalence
of categories if and only if it is fully faithful and essentially surjective – though this fact
requires the Axiom of Choice!

Exercise 13. Let C be the category with one object C and a unique arrow 1C . Let D
be the category with two objects D1 and D2 and four arrows: the identities 1Di

and two
isomorphisms α : D1 → D2 and β : D2 → D1. Let E be the category with two objects E1

and E2 and only two arrows, 1E1 and 1E2 .

a) Show that C and D are equivalent categories.
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b) Show that C and E are not equivalent categories.

The functors that are naturally isomorphic to some Hom functor are important.

Definition 1.43. A covariant functor F : C −→ Set is representable if there exists an
object A in C such that F is naturally isomorphic to HomC (A,−). A contravariant functor
F : C −→ Set is representable if there exists an object B in C such that F is naturally
isomorphic to HomC (−, B).

Example 1.44. We claim that the identity functor Set −→ Set is representable. Let 1 be
a singleton set. Given any set X, there is a bijection between elements x ∈ X and functions
1 −→ X sending the one element in 1 to each x. Moreover, given any other set Y , and a
function f : X −→ Y , our bijections make the following diagram commute:

HomSet(1, X)

f∗
��

∼= // X

f

��

HomSet(1, Y )
∼= // Y.

This data gives a natural isomorphism between the identity functor and HomSet(1,−).

Exercise 14. Show that the forgetful functor Grp −→ Set is representable.

Exercise 15. Given a ring R, show that the forgetful functor R-mod −→ Set is repre-
sentable.

The Yoneda Lemma tells us that in order to study a locally small category C , it is in
many ways sufficient to study the category of functors from C to Set, and that representable
functors are the most important functors of all.

1.4 The Yoneda Lemma

Even though this is only a short introduction to category theory, we would be remiss not to
mention the Yoneda Lemma, arguably the most important statement in category theory.

Theorem 1.45 (Yoneda Lemma). Let C be a locally small category, and fix an object A in
C . Let F : C −→ Set be a covariant functor. Then there is a bijection

Nat(HomC (A,−), F )
γ
// F (A) .

Moreover, this correspondence is natural in both A and F .
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Proof. Let φ be a natural transformation in Nat(HomC (A,−), F ). The proof is essentially
the following diagram:

HomC (A,A)

φA

��

HomC (A,f)
// HomC (A,X)

φX

��

1A_

��

� // f
_

��

u � // (F (f))u = φX(f)

F (A)
F (f)

// F (X)

Our bijection will be defined by

γ(φ) := φA(1A).

We should first check that this makes sense: arrows in Set are just functions between sets,
and so φA is a function of sets HomC (A,A) −→ F (A). Also, HomC (A,A) is a set that
contains at least the element 1A, and φA(1A) is some element in the set F (A).

Given any fixed arrow f ∈ HomC (A,X), the fact that φ is a natural transformation
translates into the outer commutative diagram. In particular, the functions of sets F (f)φA
and φX HomC (A, f) coincide, and must in particular take 1A to the same element in F (X).
This is the commutativity of the inner diagram, with u := φA(1A).

The commutativity of the diagram above says that φ is completely determined by φA(1A),
since for any other object X in C and any arrow f ∈ HomC (A,X), we necessarily have
φX(f) = F (f)φA(1A). Thus if φ and η are distinct natural transformations, then there
exists some object X and some f ∈ HomC (A,X) such that

φX(f) ̸= ηX(f), so F (f)φA(1A) ̸= F (f)ηA(1A) and thus φA(1A) ̸= ηA(1A).

In particular, our map γ(φ) = φA(1A) is injective.
Moreover, note that each choice of u ∈ F (A) gives rise to a different natural transfor-

mation φ by setting φX(f) = F (f)u. To check that this is in fact a natural transformation,
one needs to check that for all arrows g : X → Y , the diagram

HomC (A,X)
φX //

g∗
��

// F (X)

F (g)
��

HomC (A, Y ) φY

//// F (Y )
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commutes. And indeed, given any f ∈ HomC (A,X),

F (g) ◦ φX(f) = F (g)F (f)u by definition of φ

= F (gf)u since F is a functor

= φY (gf) by definition of φ

φY ◦ g∗(f) by definition of g∗.

This shows that the diagram above commutes, and we conclude that the assignment φ given
by φX(f) = F (f)u is indeed a natural transformation. We have shown that our proposed
map γ is a bijection.

We now have two naturality statements to prove. Naturality in the functor means that
given a natural isomorphism η : F −→ G, the following diagram must commute:

Nat(HomC (A,−), F )
η∗
��

γF // F (A)

ηA
��

Nat(HomC (A,−), G) γG
// G(A)

Given a natural transformation φ between HomC (A,−) and F ,

ηA ◦ γF (φ) = ηA(φA(1A)) by definition of γ

= (η ◦ φ)A(1A) by definition of composition of natural transformations

= γG(η ◦ φ) by definition of γ

= γG ◦ η∗(φ) by definition of η∗

so commutativity does hold. Naturality on the object means that given an arrow f : A −→ B,
the diagram

Nat(HomC (A,−), F )
(f∗)∗

��

γA // F (A)

F (f)
��

Nat(HomC (B,−), F ) γB
// F (B)

commutes. Given a natural transformation φ between HomC (A,−) and F ,

F (f) ◦ γA(φ) = F (f)(φA(1A)),

while
γB ◦ (f ∗)∗(φ) = γB(φ ◦ f ∗) = (φ ◦ f ∗)B(1B).

Now notice that

HomC (B,B)
f∗
// HomC (A,B)

φB // F (B)

1B
� // f � // φB(f)

.

Let’s look back at the big commutative diagram we started our proof with: it says in
particular that φB(f) = F (f)(φA(1A)). So commutativity does hold, and we are done.
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One can naturally (pun intended) define the notion of functor category of contravariant
functors, and then prove the corresponding Yoneda Lemma, which will instead use the
contravariant Hom functor.

Exercise 16 (Contravariant version of the Yoneda Lemma). Let C be a locally small cate-
gory, and fix an object B in C . Let F : C −→ Set be a contravariant functor. Then there
is a bijection

Nat (HomC (−, B), F )
γ
// F (B)

which is natural on both B and F .

The Yoneda Lemma says that to give a natural transformation between the functors
HomC (A,−) and F is choosing an element in the set F (A).

Remark 1.46. Notice that the Yoneda Lemma says in particular that the collection of all
natural transformations from HomC (A,−) to F is a set. This wasn’t clear a priori, since the
collection of objects in C is not necessarily a set.

The Yoneda Lemma says that natural transformations between representable functors
correspond to arrows between the representing objects.

Remark 1.47. If we apply the Yoneda Lemma to the case when F itself is also a Hom
functor, say F = HomC (B,−), the Yoneda Lemma says that there is a bijection between
Nat(HomC (A,−),HomC (B,−)) and HomC (B,A). In particular, each arrow in C determines
a natural transformation between Hom functors.

The Yoneda Embedding, which we will prove next, formalizes the remark above. It
roughly says that every locally small category can be embedded into the category of con-
travariant functors from C to Set. It is common to refer to both Theorem 1.45 and Theo-
rem 1.49 as the Yoneda Lemma.

Remark 1.48. Let C be a locally small category. Each arrow f : A→ B in C gives rise to
a natural transformation HomC (−, A) =⇒ HomC (−, B) that sends each object X to the
arrow (function)

HomC (X,A)
f∗
// HomC (X,B)

g � // fg.

The fact that this is a natural transformation is encoded in the following commutative
diagram; we have one such diagram for each arrow g : X → Y .

X

g

��

HomC (X,A)
f∗
// HomC (X,B)

Y HomC (Y,A)

HomC (g,A)=g∗

OO

f∗
// HomC (Y,B)

HomC (g,B)=g∗

OO

This diagram commutes since

g∗f∗(h) = g∗(fh) = (fh)g = f(hg) = f∗(hg) = f∗g
∗(h).
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Conversely, f ∗ indicates the natural transformation HomC (B,−) =⇒ HomC (A,−) sending
each object X to the arrow (function)

HomC (B,X)
f∗
// HomC (A,X)

g � // gf.

Theorem 1.49 (Yoneda Embedding). Let C be a locally small category. The covariant
functor

C // SetC
op

A

f
��

HomC (−, A)
f∗
��

� //

B HomC (−, B)

from C to the category of contravariant functors C −→ Set is an embedding. Moreover, the
contravariant functor

C // SetC

A

f
��

HomC (A,−)
� //

B HomC (B,−)
f∗
OO

from the category C to the category of covariant functors C −→ Set is also an embedding.

Proof. First, note that our functors are injective on objects because the Hom-sets in our
category are all disjoint. So all we need to check is that given objects A and B in C , we
have bijections

HomC (A,B) ∼= Nat(HomC (−, A),HomC (−, B))

and
HomC op(A,B) ∼= Nat(HomC (A,−),HomC (B,−)).

Note that the left hand side are the Hom-sets in C , and the right hand side are Hom-sets in
Set. We will do the details for the second one, and leave the first as an exercise.

This follows from Remark 1.47, but let’s carefully check the details. First, in Remark 1.48
we have already checked that each arrow is indeed taken to a natural transformation, so we
just need to check injectivity and surjectivy at the level of arrows.

The Yoneda Lemma applied here tells us that each natural transformation φ between
HomC (B,−) and F = HomC (A,−) corresponds to an element u ∈ F (B) = HomC (A,B),
which we obtain by taking u := φB(1B). The Yoneda Lemma says this correspondence is
bijective.

Indeed, we can recover φ from u by taking the natural transformation φ that for each
object X in C has φX : HomC (B,X) −→ HomC (A,X) given by

φX(f) = HomC (f, A)(u) = f∗(u).

This shows surjectivity on arrows. Finally, different arrows f give rise to different natural
transformations by applying the resulting natural transformation f∗ to the identity arrow
1A, which takes it to f . This shows injectivity on arrows.
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Finally, the Yoneda Embedding says that you can essentially recover an object in a
category by knowing the maps from it or into it.

Theorem 1.50. Let X and Y be objects in a locally small category C . If HomC (−, X) and
HomC (−, Y ) are naturally isomorphic, or if HomC (X,−) and HomC (Y,−) are naturally
isomorphic, then X and Y are isomorphic objects.

Proof. The Yoneda Embeddings from Theorem 1.49 are fully faithful, and thus by Exercise 9
they must reflect isomorphisms. A natural isomorphism between the functors HomC (X,−)
and HomC (Y,−) (or the functors HomC (−, X) and HomC (−, Y )) is an isomorphism in the
target functor category, and it corresponds to f∗ (respectively, f

∗) for some arrow f from Y
to X. By Exercise 9, f must be an isomorphism. In particular, X and Y are isomorphic.

To summarize the content of this chapter, here is the Yoneda Lemma in slogans:

• To give a natural transformation from Hom(A,−) to F is the same as giving an element
in the set F (A).

• The collection of all natural transformations from Hom(A,−) to F is a set.

• To give a natural transformation between representable functors is to give an arrow
between the corresponding representing objects.

• Every locally small category C can be embedded into the functor category of (covariant
or contravariant) functors from C to Set. So rather than studying the category C , we
can study functor category to Set.

• We can recover an object in a category by knowing the maps from it or into it.

1.5 Products and coproducts

Definition 1.51. Let C be a locally small category, and consider a family of objects {Ai}i∈I
in C . The product of the Ai is an object in C , denoted by

∏
iAi, together with arrows

πj ∈ HomC (
∏

iAi, Aj) for each j, called projections, satisfying the following universal
property: given any object B in C and arrows fi : B −→ Ai for each i, there exists a unique
arrow f such that

B

∃!f
��

fj

""∏
iAi πj

// Aj

commutes for all j. When I is finite, we may write A1×· · ·×An for the product of A1, . . . , An.

Here is a larger diagram for the (first few) maps involved in a product when the indexing
set I = N is countable:
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∏
iAi

π1

''π2

��

π3

��

��

A1

B

f

;;

f1
22

f2
//

f3

,,

((

A2

A3

...

We can also take a “big picture” view of this universal property of the product:∏
iAi

{πi}

##

B

f
==

{fi}
// {Ai},

where the squiggly arrows are again collections of maps instead of maps.

The dual notion is the coproduct.

Definition 1.52. Let C be a locally small category, and consider a family of objects {Ai}i∈I
in C . The coproduct of the Ai is an object in C , denoted by

∐
iAi, together with arrows

ιj ∈ HomC (Aj,
∐

iAi, ) for each j, satisfying the following universal property: given any
object B in C and arrows fi : Ai −→ B for each i, the following diagram commutes:

B

∐
iAi

∃!f

OO

Ajιj
oo

fj
bb

When I is finite, we may write A1 ⨿ · · · ⨿ An for the coproduct of A1, . . . , An.

Here is a diagram for the (first few) maps involved in a coproduct when Λ = N is
countable: ∐

iAi

f

��

...

55

++A3

i3

;;

f3
// B

A2

i2

AA

f2

22

A1

i1

DD

f1

66
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We can also take a “big picture” view of the universal property of the coproduct:∐
iAi

f

""

{Ai}

{ιi}
;;

{fi}
// B,

where the squiggly arrows are now collections of maps instead of maps.

Theorem 1.53. If (P, {pλ : P → Xλ}λ∈Λ) and (P ′, {p′λ : P ′ → Xλ}λ∈Λ) are both products
for the same family of objects {Xλ}λ∈Λ in a category C , then there is a unique isomorphism
α : P

∼−→ P ′ such that p′λ ◦ α = pλ for all λ. The analogous statement holds for coproducts.

Proof. We will just deal with products. The following picture is a rough guide:

P α //

{pλ}
,,

P ′ β
//

{p′λ}

**

P
{pλ}

""

{Xλ}

Since (P, {pλ}) is a product and (P ′, {p′λ}) is an object with maps to each Xλ, there is a
unique map β : P ′ → P such that pλ ◦ β = p′λ. Switching roles, we obtain a unique map
α : P → P ′ such that p′λ ◦ α = pλ.

Consider the composition β ◦ α : P → P . We have pλ ◦ β ◦ α = p′λ ◦ α = pλ for all
λ. The identity map 1P : P → P also satisfies the condition pλ ◦ 1P = pλ for all λ, so by
the uniqueness property of products, β ◦ α = 1P . We can again switch roles to see that
α ◦ β = 1P ′ . Thus α is an isomorphism. The uniqueness of α in the statement is part of the
universal property.

Exercise 17. Prove the analogous statement to Theorem 1.53 for coproducts.

This explains why the notations
∏

iAi and
∐

iAi make sense: we can talk about the
product and the coproduct of the Ai, if they exist.
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The key thing to remember about these constructions and their universal properties is
the following:

• Mapping into a product is completely determined by mapping into each of the factors.

• Mapping out of a coproduct is completely determined by mapping out of each factor.

Example 1.54. Let {Xλ}λ∈Λ be a family of sets. The product of {Xλ}λ∈Λ is given by the
cartesian product of sets along with the canonical projection maps.

The familiar notion of Cartesian product or direct product serves as a product in many of
our favorite categories. Let’s note first that given a family of objects {Xλ}λ∈Λ in any of the
categories Sgrp,Grp,Ring, R-Mod,Top, the usual direct product

∏
λ∈ΛXλ is an object

of the same category:

• for semigroups, groups, and rings, take the operation coordinate by coordinate:

(xλ)λ∈Λ · (yλ)λ∈Λ = (xλ · yλ)λ∈Λ;

• for modules, addition is coordinate by coordinate, and the action is the same on each
coordinate: r · (xλ)λ∈Λ = (r · xλ)λ∈Λ;

• for topological spaces, use the product topology.

Note that this is not true for fields! The usual product of fields is not a field. In fact, there
is no product in this category.

Theorem 1.55. In each of the categories Set, Grp, Ring, R-Mod, and Top, given a
family of objects {Xλ}λ∈Λ, the object

∏
λ∈ΛXλ given by the usual direct product along with

the usual projection maps πλ :
∏

γ∈ΛXγ → Xλ forms a product in the category.

Proof. We observe that in each category, the direct product is an object, and the projection
maps πλ are morphisms in the category.

Let C be one of these categories, and suppose that we have morphisms gλ : Y → Xλ

for all λ in C . We need to show there is a unique morphism ϕ : Y →
∏

λ∈ΛXλ such that
πλ ◦ ϕ = gλ for all λ. The last condition is equivalent to

(ϕ(y))λ = (πλ ◦ ϕ)(y) = gλ(y)

for all λ, which is equivalent to ϕ(y) = (gλ(y))λ∈Λ, so if this is a valid morphism, it is unique.
Thus, it suffices to show that the map ϕ(y) = (gλ(y))λ∈Λ is a morphism in C ; we leave the
details as an exercise.

Example 1.56. Let {Xλ}λ∈Λ be a family of sets. The coproduct of {Xλ}λ∈Λ in Set is given
by the disjoint union with the various inclusion maps. By disjoint union, we simply mean
union if the sets are disjoint; in general do something like replace Xλ with Xλ×{λ} to make
them disjoint.
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Theorem 1.57. Let R be a ring, and {Mλ}λ∈Λ be a family of left R-modules. A coproduct
for the family {Mλ}λ∈Λ is given by the direct sum of modules⊕

λ∈Λ

Mλ = {(xλ)λ∈Λ | xλ ̸= 0 for at most finitely many λ} ⊆
∏
λ∈Λ

Mλ

together with the inclusion maps

Mλ
ιλ //
⊕
λ∈Λ

Mλ

that send each m ∈Mλ to the tuple that has m in coordinate λ and zeroes elsewhere.

Proof. Given R-module homomorphisms gλ : Mλ → N for each λ, we need to show that
there is a unique R-module homomorphism α :

⊕
λ∈ΛMλ → N such that α ◦ ιλ = gλ. We

define
α((mλ)λ∈Λ) =

∑
λ∈Λ

gλ(mλ).

Note that since (mλ)λ∈Λ is in the direct sum, at most finitely many mλ are nonzero, so the
sum on the right hand side is finite, and hence makes sense in N . We need to check that α
is R-linear; indeed,

α((mλ) + (nλ)) = α((mλ + nλ))

=
∑

gλ(mλ + nλ)

=
∑

gλ(mλ) +
∑

gλ(nλ)

= α((mλ)) + α((nλ)),

and the check for scalar multiplication is similar. For uniqueness of α, note that
⊕

λ∈ΛMλ

is generated by the elements ιλ(mλ) for mλ ∈ Mλ. Thus, if α′ also satisfies α′ ◦ ιλ = gλ for
all λ, then α(ιλ(mλ)) = gλ(mλ) = α′(ιλ(mλ)) so the maps must be equal.

Remark 1.58. If the index set Λ is finite, then the objects
∏

λ∈ΛMλ and
⊕

λ∈ΛMλ are
identical, but the product and coproduct are not the same since one involves projection
maps and the other involves inclusion maps. When Λ is infinite, the two objects are truly
distinct, and in fact the direct sum is a submodule of the product.

Remark 1.59. For any indexing set Λ, ⊕λ∈ΛR is a free R-module. If R = k happens to be
a field, then

∏
λ∈Λ k is free, since all vector spaces are free modules, but in general,

∏
λ∈ΛR

is not free for an infinite set Λ.

Example 1.60.

1) In Top, disjoint unions serve as coproducts.

2) In Sgrp and Grp, coproducts exist, and are given as free products. You may see or
have seen them in topology in the context of Van Kampen’s theorem.

3) In Ring, the story is more complicated. Let’s note first that disjoint unions won’t
work, since they are not rings. Direct sums of infinitely many rings do not have 1, so
they are not rings in this class, but even finite direct sums or products will not work,
since the inclusion maps does not send 1 to 1. We will later on construct coproducts
in the full subcategory of Ring consisting of commutative rings.
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1.6 Limits and colimits

Definition 1.61. Let (I,⩾) be a partially ordered set and let C be a category. An inverse
system in C indexed by I is a contravariant functor PO(I)→ C .

Remark 1.62. Let’s unwrap the definition of inverse system a bit. For each i ∈ I, we get
an object Mi in C . Moreover, in the category PO(I), there is exactly one arrow i → j for
each i ⩽ j, and the image of this arrow under any contravariant functor PO(I) → C is an
arrow Mj → Mi. Finally, our functor must preserve compositions of arrows, so whenever
k ⩾ j ⩾ i, the arrow Mk →Mi should match the composition of arrows through j. Thus an
inverse system in C indexed by I consists of the following data:

• for each i ∈ I, an object Mi in C , and

• for each i ⩽ j, an arrow φji :Mj →Mi in C

such that whenever i ⩽ j ⩽ k, the following diagram must commute:

Mk

φk
j !!

φk
i //Mi

Mj

φj
i

==

Note moreover that φii = idMi
, since functors preserve identities. To indicate all this data

in a compact way, we say that {Mi, φ
j
i} is an inverse system.

Example 1.63.

a) An inverse system in a category C indexed by N is determined by a diagram of the
form

X0
a0←− X1

a1←− X2
a2←− X3

a3←− X4
a4←− X5 ← · · · .

All the other arrows Xj → Xi for i < j are given by composition.

b) Let I be a family of submodules of an R-module M . Then we can think of I as a
partially ordered set with the reverse inclusion ⊇, so that L ⩽ N if and only if L ⊇ N .
Whenever N ⊆ L, we have an inclusion map N → L, and the family of submodules I
together with the inclusion maps forms an inverse system of R-modules.

A special case of this is when we have a descending chain of submodules of M

M1 ⊇M2 ⊇M3 ⊇ · · ·

which is also a special case of an inverse system indexed by N.

c) If I is a poset with the discrete partial order, meaning i ⩽ j if and only if i = j,
then an inverse system indexed by I is just a family of objects indexed by I.

d) If I = {1, 2, 3} is a poset with 1 ⩽ 2 and 1 ⩽ 3, then an inverse system indexed by I
is just a diagram of the form

B

f
��

C g
// A.
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Exercise 18. Let J be an ideal in a commutative ring R, and consider its nth power, which
is the ideal

Jn := (f1 · · · fn | fi ∈ J)

generated by all n-fold products of elements in R. For each m ⩾ n, consider the maps

R/Jm
φm
n // R/Jn

r + Jm � // r + Jn.

Show that these form an inverse system in R-Mod indexed by N>0. Note that this can be
represented as

R/J R/J2
φ2
1oo R/J3

φ3
2oo R/J4

φ4
3oo R/J5

φ5
4oo · · ·oo .

Definition 1.64. Let C be a category and let {Mi, φ
j
i}i be an inverse system on C indexed

by I. The limit or inverse limit of {Mi, φ
j
i} consists of an object

lim←−Mi

and arrows
πi : lim←−Mi →Mi

called projections such that for all j ⩾ k in I, the diagram

Mk lim←−Mi

πj
{{

πkoo

Mj

φj
k

OO

commutes, and that satisfy the following universal property: for all arrows fi : X →Mi such
that φjifj = fi for all i, j, meaning that the diagram

Mi X

fj
~~

fioo

Mj

φj
i

OO

commutes, there exists a unique arrow f : X → lim←−Mi such that

lim←−Mi

πj
##

X
∃!f

oo

fj

��

Mj

commute for all j.

One can show that if it exists, the object lim←−Mi is unique up to isomorphism; in fact,
this is the terminal object in some appropriate (and technical) category. So we can refer to
the limit of an inverse system. The notation lim←−Mi is sometimes replaced by lim

i
Mi.
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Remark 1.65. Given an inverse system {Mi, φ
j
i} indexed by I in a category C , say cor-

responding to the contravariant functor φ : I → C , suppose that its limit exists, and let
L = lim←−Mi. The projections πi give us commutative diagrams

L

πi

��

1L // L

πj

��

Mi
φj
i

//Mj

This is the same data as a natural transformation

PO(I)
∆L

))

φ

55�� C .

In other words, a limit for α consists of an object and a natural transformation from the
constant functor on that object to the functor α.

Example 1.66. A terminal object can be viewed as a limit of the empty diagram: since
there are no objects in an inverse limit from the empty category, the limit is just an object
L that must satisfy the condition that for every object X, there is a unique arrow X → L.

Exercise 19. Show that if I is a partially ordered set with the discrete order, then the limit
of any inverse system indexed by I is the product on the corresponding set of objects.

Theorem 1.67. Let R be any ring. Every inverse system of left R-modules over any partially
ordered set has a limit.

Proof. Let I be a partially ordered set and consider an inverse system of R-modules indexed
by I, say with modules Mi and homomorphisms φji :Mj →Mi. Let

L := {(mi) ∈
∏
i

Mi | φji (mj) = mi for all i ⩽ j}.

One can show (exercise!) that this is a submodule of the product of the Mi. For each i, let
πi : L→Mi be the restriction of the projection maps

∏
Mi →Mi to L. We claim that L is

a limit for the inverse system, together with the projection maps πi.
First, note that

φjiπj((mk)k) = φji (mj) = mi = πi((mk)k),

by construction, so φjiπj = πi.
Moreover, suppose that we are given an R-module X and R-module homomorphisms

fi : X →Mi such that φjifj = fi for all i ⩽ j. Define

X
g
//
∏

iMi

x � // (fi(x))i.

First, note that πi(g(x)) = fi(x) for all i by construction. Moreover, this is an R-module
homomorphism; it is induced by the universal property of the product. We claim that the
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image of g is contained in L, and thus that we can restrict g to an R-module homomorphism
f : X → L. Indeed, given any x ∈ X,

φji (πj(g(x))) = φji (fj(x)) = fi(x) = πi(g(x)).

This says that g(x) ∈ L, so we get an R-module homomorphism f : X → L given by

f(x) = (fi(x))i.

Finally, we claim that L and f satisfy the desired universal property, and for that, we need
first to check that

lim←−Mi

πi
##

X
f

oo

fi
��

Mi

commutes, and we need to check that such f is unique. The commutativity is immediate,
since as noted above π(f(x)) = fi(x) for all x ∈ X by construction. For uniqueness, suppose
that h is any other R-module homomorphism X → L such that

lim←−Mi

πi
##

Xhoo

fi
��

Mi

also commutes. Given any x ∈ X, let h(x) = (mi). Then

mi = πi(h(x)) = fi(x)

for all i, so
h(x) = (mi)i = (fi(x))i = f(x),

and thus h = f . This completes the proof that L is a limit for the given inverse system.

Remark 1.68. One can adapt the proof of Theorem 1.67 to show that all limits in Set
exist, and can be constructed explicitly as a subset of the product of the sets forming the
inverse system: the limit of an inverse system {Mi, φ

j
i} is the subset of the product given by

L := {(mi) ∈
∏
i

Mi | φji (mj) = mi for all i ⩽ j}

together with the canonical projections from the product restricted to the subset L.

Example 1.69.

a) If I is a partially ordered set with the discrete order, then the limit of any inverse
system just the product.

b) Given a ring R and an ideal J , the limit of the inverse system

R/J R/J2oo R/J3oo R/J4oo R/J5oo · · ·oo

is the J-adic completion of R.
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The dual construction to limits is the notion of a colimit.

Definition 1.70. Let (I,⩾) be a partially ordered set and let C be a category. A direct
system in C indexed by I is a covariant functor PO(I)→ C .

Remark 1.71. An inverse system in C indexed by I consists of the following data:

• for each i ∈ I, an object Mi in C , and

• for each i ⩽ j, an arrow φij :Mi →Mj in C

such that whenever i ⩽ j ⩽ k, the following diagram must commute:

Mi

φi
k !!

φk
i //Mk

Mj

φj
k

==

Note moreover that φii = idMi
, since functors preserve identities. To indicate all this data

in a compact way, we say that {Mi, φ
j
i} is an inverse system.

Example 1.72.

a) A direct system in a category C indexed by N is determined by a diagram of the form

X1
a1−→ X2

a2−→ X3
a3−→ X4

a4−→ X5 → · · · .

All the other arrows Xi → Xj for i < j are given by composition.

b) Let I be a family of submodules of an R-module M . Then we can think of I as a
partially ordered set with ⊆. Whenever N ⊆ L, we have an inclusion map N → L,
and the family of submodules I together with the inclusion maps forms a direct system
of R-modules.

A special case of this is when we have an ascending chain of submodules of M

M1 ⊆M2 ⊆M3 ⊆ · · ·

which is also a special case of a direct system indexed by N.

c) If I is a poset with the discrete partial order, then an inverse system indexed by I is
just a family of objects indexed by I.

d) If I = {1, 2, 3} is a poset with 1 ⩽ 2 and 1 ⩽ 3, then a direct system indexed by I is
just a diagram of the form

A
f
//

g

��

B

C.
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Definition 1.73. Let C be a category and let {Mi, φ
i
j}i be a direct system on C indexed

by I. The colimit or direct limit of {Mi, φ
i
j} consists of an object

lim−→Mi

and arrows
αi :Mi → lim−→Mi

called insertion arrows such that

αjφ
i
j = αi for all i, j ∈ I

satisfying the following universal property: for all arrows fi : Mi → X such that fjφ
i
j = fi

for all i, j, meaning that the diagram

Mi

φi
j

��

fi // X

Mj

fj

>>

commutes, there exists a unique arrow f : lim−→Mi → X such that

lim−→Mi
∃!f

// X

Mj

fj

??

αj

cc

commutes.

One can show that if it exists, the object lim−→Mi is unique up to isomorphism; in fact,
this is the initial object in some appropriate (and technical) category. So we can refer to the
colimit of a direct system. The notation lim−→Mi is sometimes replaced by colimiMi.

Remark 1.74. Given a direct system {Mi, φ
i
j} indexed by I in a category C , say correspond-

ing to the covariant functor φ : I → C , suppose that its colimit exists, and let L = lim−→Mi.
The αi give us commutative diagrams

L
1L // L

Mi

αi

OO

φi
j

//Mj

αj

OO

This is the same data as a natural transformation

C

φ
((

∆L

66�� C .

In other words, a limit for α consists of an object and a natural transformation from α to
the constant functor on that object.
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Example 1.75. An initial object can be viewed as a colimit of the empty diagram: since
there are no objects in a direct limit from the empty category, the colimit is an object C
that must satisfy the condition that for every object X, there is a unique arrow C → X.

Exercise 20. Show that if I is a poset with the discrete order, then the colimit of any
inverse system indexed by I is the same as the coproduct of the corresponding set of objects.

Theorem 1.76. Let R be any ring. Every direct system of left R-modules over any partially
ordered has a colimit.

Proof. Let I be a partially ordered set and consider a direct system of R-modules indexed
by I, say with modules Mi and homomorphisms φij : Mj → Mi. Let ιi : Mi → ⊕jMj be the
inclusions into the direct sum, let S be the submodule of ⊕Mi generated by all elements of
the form

ιi(φ
i
j(mi))− ιi(mi),

and define
C :=

⊕
i

Mi/S.

For each i, let

Mi
αi // C

m � // ιi(m) + S.

We claim that C together with the maps αi is a colimit for the direct system; we leave the
details as an exercise.

Remark 1.77. One can adapt the proof of Theorem 1.67 to show that all colimits in Set
exist, and can be constructed explicitly as the set of equivalence classes of an appropriate
equivalence relation on the coproduct.

There are many other important constructions that arise as special cases of limits and
colimits, some of which we will study later in the class. Here is one more example:

Definition 1.78. Let C be a category. A pullback of the arrows f and g consists of an
object P and arrows p1 and p2 such that

P
p1
//

p2
��

A

f
��

B g
// C

commutes, and satisfying the following universal property: for all objects Q and arrows q1
and q2 such that

Q
q1
//

q2
��

A

f

��

B g
// C
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commutes, there exists a unique u such that

Q

q2

""

q1

��

u

��

P
p1
//

p2
��

A

f
��

B g
// C

commutes. One sometimes refers to the following diagram as a pullback diagram:

P
p1
//

p2
��

A

f
��

B g
// C

The dual construction is the pushout.

Definition 1.79. Let C be a category. A pushout of the arrows f and g consists of an
object P and arrows p1 and p2 such that

A
f
//

g

��

B

p1
��

C p2
// P

commutes, and satisfying the following universal property: for all objects Q and arrows q1
and q2 such that

A
f
//

g

��

B

q1

��

C q2
// Q

commutes, there exists a unique u such that

A
f
//

g

��

C

q1

��

p1
��

B p2
//

q2 ..

P
u

��

Q

commutes. One sometimes refers to the following diagram as a pushout diagram:

A
f
//

g

��

B

p1
��

C p2
// P
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Exercise 21. Interpret the notion of pullback as a limit and a pushout as a colimit. More
precisely, describe a partially ordered set and corresponding inverse system or direct system
whose limit or colimit is the same as a pushout or pullback.

We showed in Theorem 1.67 and Theorem 1.76 that R-Mod has all limits and colimits.
In the case of pullbacks and pushouts, one can describe the corresponding module in a more
manageable way.

Exercise 22. Explicitly describe pullbacks and pushouts in R-Mod.

We have defined the limit of an inverse system, and the colimit of a direct system. One
can define limits and colimits even more generally – every functor may have a limit, even if
the source is not a poset category.

Definition 1.80. Let C be a category and let J be a small category. A diagram in C of
shape J is a functor J → C . We may call J the index category.

Remark 1.81. Let C be a category and let J be a small category. Let I be the set of
objects in J . To give a covariant functor J → C is to give

• a set {Xi}i∈I in C indexed by I,

• or every pair (i, j) of objects i, j ∈ I, a set of arrows Ai,j := {fα} in HomC (Xi, Xj)
indexed by the set HomI(i, j)

satisfying the necessary properties to guarantee that that 1i gets sent to 1Xi
and that compo-

sition of arrows is preserved. One can give a diagram by forgetting the underlying indexing
category J and just presenting the set of objects, sets of arrows, and corresponding compo-
sition rules.

One advantage of giving this data, as opposed to the functor F : J → C , is that we do
not need to distinguish between covariant and contravariant functors – we are simply giving
a set of objects and various sets of arrows.

Definition 1.82. Consider a diagram in C with objects {Xi}i∈I in C and arrows Ai,j = {fα}.
A cone over this diagram consists of

• an object C in C , and

• for each i ∈ I, an arrow pi : C → Xi

such that for every pair (i, j) and every arrow f : Xi → Xj in the diagram, the following
triangle commutes:

C
pi

~~

pj

  

Xi f
// Xj

Dually, a cocone over this diagram consists of

• an object C in C , and
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• for each i ∈ I, an arrow pi : Xi → C

such that for every pair (i, j) and every arrow f : Xi → Xj in the diagram, the following
triangle commutes:

Xi

pi
  

f
// Xj

pj
~~

C

Definition 1.83. Consider a diagram in C with objects {Xi}i∈I in C and arrows Ai,j = {fα}.
The limit of this diagram is, if it exists, a cone

limXi

pi

||

pj

##

Xi
// Xj

which is terminal with respect to all other cones, meaning that for every other cone

C
qi

~~

qj

  

Xi
// Xj

there exists a unique arrow u : C → limXi such that

limXi

pj

##

C

u

<<

qj
// Xj

commutes.
The colimit of this diagram is, if it exists, a cocone

Xi

pi
$$

// Xj

pj
zz

colimXi

which is initial with respect to all other cones, meaning that for every other cone

Xi

qi
  

// Xj

qj
~~

C

there exists a unique arrow u : colimXi → C such that

Xj

pj
$$

qj
// C

colimXi

u

;;

commutes.



40

One can check that if we take a limit of a contravariant diagram indexed by a poset
category, we recover the limit of an inverse system, and analogously the colimit of a covariant
diagram indexed by a poset category is the colimit of a direct system.

Definition 1.84. A covariant functor F : C → D

• preserves colimits if
F (colimMi) = colimF (Mi).

More precisely, if the object colimMi and the arrows αi : Mi → colimMi form the
colimit of diagram D, then F (colimMi) is the colimit of the diagram F ◦ D with
insertion arrows F (αj) : F (Mj)→ F (colimMi).

• preserves limits if
F (limMi) = limF (Mi).

More precisely, if limMi is the limit of a diagram D with projections πj : limMi →Mj,
then the object F (limMi) and the projection arrows F (πj) : F (limMi)→ F (Mj) form
a limit of the diagram F ◦D.

Definition 1.85. A contravariant functor F : C → D converts limits to colimits or
sends limits to colimits if

F (limMi) = colimF (Mi).

Similarly, a contravariant functor F : C → D converts colimits to limits or sends
colimits to limits if

F (colimMi) = limF (Mi).

The Hom functors preserve limits and colimits.

Theorem 1.86. Let C be any category and let A be an object in C .

a) If the limit limiMi exists, then there is a natural isomorphism

HomC (A, lim
i
Mi) ∼= lim

i
HomC (A,Mi).

In particular, the limit of HomC (A,Mi) exists.

b) If the limit limiMi exists, then there is a natural isomorphism

HomC (colimiMi, A) ∼= lim
i
HomC (Mi, B).

In particular, the limit of HomC (Mi, A) exists.
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1.7 Universal properties

We have all seen constructions that are at first a bit messy but that end up satisfying some
nice universal property that makes everything work out. At the end of the day, a universal
property allows us to ignore the messy details and focus on the universal property, which
usually says everything we need to know about the construction.

Universal properties are everywhere. Limits and colimits are a big example; products
and coproducts are a special case of limits and colimits. A representable functor encodes a
universal property of the object that represents it: for example, in Example 1.44, mapping
out of the singleton set is the same as choosing an element x in a set X.

In this section, we will briefly describe how one can formalize the idea of a universal
property in categorical language. This is not necessary to understand what comes afterwards;
this section is here for our own amusement. The most interesting observation in this section
is perhaps that any universal property can be phrased in terms of representable functors.
There are a few different equivalent frameworks in the literature, and we will briefly try to
reconcile two of them. We note, however, that understanding this formalism is not necessarily
for what we will do next; this level of abstraction can be confusing at first, and this is a
section that can be better understood once the reader has had some time to get comfortable
with categorical language.

Definition 1.87. Let C be a locally small category. A universal property of an object C
in C consists of a representable functor F : C −→ Set together with a universal element
X ∈ F (C) such that F is naturally isomorphic to either HomC (C,−) (if F is covariant) or
HomC (−, C) (if F is contravariant), via the natural isomorphism that corresponds to X via
the bijection in the Yoneda Lemma.

We can rephrase this in terms of universal arrows.

Definition 1.88. Let F : C −→ D be covariant functor and let D be and object in D .
A universal arrow from D to F is a pair (U, u) where U is an object in C and an
arrow u ∈ HomD(D,F (U)) with the following universal property: for any arrow f ∈
HomD(D,F (Y )), there exists a unique arrow h ∈ HomC (U, Y ) such that the following dia-
gram commutes:

U

h

��

D
u //

f
""

F (U)

F (h)
��

Y F (Y ).

There is a dual to this definition. A universal arrow from F to D is a pair (U, u),
where C is an object in C and u ∈ HomD(F (U), D) that satisfy the following universal
property: for any arrow f ∈ HomD(F (Y ), D), there exists a unique h ∈ HomC (Y, U) such
that the following diagram commutes:

U D F (U)uoo

Y

h

OO

F (Y ).

f

bb

F (h)

OO
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Let’s see in detail why it is that giving a universal arrow is equivalent to giving a universal
property as defined above.

Remark 1.89. Let F : C −→ D be a covariant functor, and fix an object U in C , an object
D in D , and an arrow u ∈ HomD(D,F (U)). Notice that HomD(D,F (−)) determines a
covariant functor C −→ Set. By the Yoneda Lemma, the following is a recipe for a natural
transformation between HomC (U,−) and HomD(D,F (−)): for each object Y in C and each
arrow h ∈ HomC (U, Y ), set

φY (h) := HomD(D,F (h))(u).

Notice that

HomD(D,F (U))
HomD(D,F (h))

// HomD(D,F (Y ))

f � // F (h) ◦ u
,

so φY (h)(f) = F (h) ◦ u.
We get the following commutative diagram:

HomC (U,U)

φU

��

HomC (U,h)
// HomC (U, Y )

φY

��

1U_

��

� // h_

��

u � // F (h) ◦ u =: φY (h)

HomD(D,F (U))
HomD(D,F (h))

// HomD(D,F (Y ))

Given an arrow f ∈ HomD(D,F (Y )), φY (h) = f for some h ∈ HomC (U, Y ) if and only
if F (h) ◦ u = f .

On the one hand, φ is a natural isomorphism if and only if for every object Y in C and
every f ∈ HomD(D,F (Y )) there exists a unique h ∈ HomC (U, Y ) such that F (h) ◦ u = f .
On the other hand, that is exactly the condition required for (U, u) to be a universal arrow
from D to F . So we have shown that the following are equivalent:

• (U, u) is a universal arrow from D to F .

• U represents the functor HomD(D,F (−)) : C −→ Set, via u ∈ HomD(D,F (U)).

Similarly, one can prove the dual equivalence:

• (U, u) is a universal arrow from F to D.

• U represents the functor HomD(F (−), D) : C −→ Set, via u ∈ HomD(F (U), D).
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Conversely, suppose that we are given a representable functor F : C −→ Set together
with an element X ∈ F (C) such that F is naturally isomorphic to HomC (C,−) via the natu-
ral isomorphism that corresponds to X via the bijection in the Yoneda Lemma. First, let {⋆}
be a singleton. Recall that we saw in Example 1.44 that the functor HomSet({⋆},−) is natu-
rally isomorphic to the identity functor on Set; by composing natural isomorphisms, this im-
plies that HomSet({⋆}, F (−)) = HomSet({⋆},−)◦F is naturally isomorphic to HomC (C,−).
So the object C represents the functor HomSet({⋆}, F (−)); this is half the recipe for a
universal arrow.

Now if we actually want to keep track of the arrow u ∈ HomSet({⋆}, F (C)) that corre-
sponds to this natural isomorphism, we need to keep track of what happens when we compose
with HomSet({⋆},−). We started with a natural isomorphism corresponding to X ∈ F (C),
and composed with the functor HomSet({⋆},−), so our original X ∈ F (C) will now corre-
spond to some element in HomSet({⋆}, F (C)); this set is in natural bijection with the original
set F (C), and the element X ∈ F (C) corresponds to the function u ∈ HomSet({⋆}, F (C))
given by ⋆ 7→ X. This is the arrow u we are searching for.

In conclusion: we have an equivalence between the following pieces of data:

• A representable functor F : C −→ Set together with an elementX ∈ F (C) such that F
is naturally isomorphic to HomC (C,−) via the natural isomorphism that corresponds
to X via the bijection in the Yoneda Lemma.

• A universal arrow (C, u) from {⋆} to F , where u ∈ HomSet({⋆}, F (C)) is given by
⋆ 7→ X.

Let’s take some of the universal properties we have encountered before and try to rephrase
them via this formal lens.

Example 1.90. A singleton set {⋆} (or the singleton set, if we think about sets up to
isomorphism) has the following simple universal property: to give a function out of {⋆}
is the same as choosing an element in the target set. We saw in Example 1.44 that this
is encoded in the fact that the identity functor on Set is representable, with representing
object {⋆}. Now here is a fun fact: the natural isomorphism between the identity on Set and
the functor HomSet({⋆},−) used is the only natural transformation between them: indeed,
the Yoneda Lemma says that each natural transformation corresponds to an element in
1Set({⋆}) = {⋆}; but there is only one such element!

Example 1.91. Let’s phrase the universal property of products as a universal property in
this formal sense, at least in the case of the product of two object C1 and C2 in C . To do that,
we need to consider the product category C ×C whose objects are pairs (C1, C2) of objects
in C , and an arrow (C1, C2) −→ (C3, C4) is given by a pair (f1, f2) with f1 ∈ HomC (C1, C3)
and f2 ∈ HomC (C2, C4). The diagonal functor ∆ : C −→ C × C is exactly what it sounds
like: ∆(C) = (C,C) for every object C in C and ∆(f) = (f, f) for every arrow f in C .

Given objects X and Y in C , consider the projection arrows π1 : X × Y −→ X and
π2 : X × Y −→ Y . We claim that the object X × Y together with the arrow (π1, π2) in
C × C form a universal arrow from ∆ to (X, Y ) in C × C . Why? If true, this would mean
that given any object Z in C and any arrow (f1, f2) ∈ HomC×C (∆(Z), (X, Y )), there exists
a unique h ∈ HomC (Z,X × Y ) such that
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X × Y (X, Y ) ∆(X × Y )
(π1,π2)
oo

Z

h

OO

∆(Z)
(f1,f2)

hh

∆(h)

OO

commutes. This is indeed the universal property of products we described less formally
when we first defined products: given f1 : Z −→ X and f2 : Z −→ Y , there is a unique
h : Y −→ X × Y such that the following diagram commutes:

X × Y (X, Y ) (X × Y,X × Y )
(π1,π2)
oo

Z

h

OO

(Z,Z).

(f1,f2)

hh

∆(h)

OO

The diagram in C × C translates into two commutative diagrams in C :

X X × Yπ1oo

Z
f1

cc

h

OO
Y X × Yπ2oo

Z.
f2

cc

h

OO

This is precisely the universal property of the product that we described before.
Equivalently, following the recipe we described in Remark 1.89, the universal property

of the product is encoded in the representable functor HomC×C (∆(−), (X, Y )), which is
represented by X × Y via (π1, π2). So there is a natural isomorphism

HomC (−, X × Y ) ∼= HomC×C (∆(−), (X, Y )),

which means that to give an arrow to X × Y is the same as giving an arrow to X and an
arrow to Y . In fact, this natural iso is the natural transformation that the Yoneda bijection
we constructed in Theorem 1.45 takes to (π1, π2) ∈ HomC (∆(X × Y ), (X, Y )). If we follow
that bijection, our natural isomorphism φ sends an object Z in C to the arrow

HomC (Z,X × Y )
φZ // HomC×C (∆(Z), (X, Y ))

f � //

(
∆(Z)

(f,f)−−→ ∆(X × Y )
(π1,π2)−−−−→ (X, Y )

)
.

Since φZ is a bijection, every arrow (f1, f2) ∈ HomC×C (∆(Z), (X, Y )) is φZ(f) for some
(f1, f2) ∈ HomC (Z,X × Y ). In particular, there exists (f1, f2) such that f1 = π1f and
f2 = π2f . And surprise surprise: we just rediscovered the universal property of the product!

Exercise 23. Rephrase the universal property of the coproduct in this formal sense.
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1.8 Adjoint functors

Universal properties are closely related to adjoint functors.

Definition 1.92. Let C and D be locally small categories. Two covariant functors

C
F //

D
G
oo

form an adjoint pair (F,G) if given any objects C ∈ C and D ∈ D , there is a bijection
between the Hom-sets

HomD(F (C), D)
∼= // HomC (C,G(D))

which is natural on both objects, meaning that for all f ∈ HomC (C1, C2) and g ∈ HomD(D1, D2),
the diagrams

HomD(F (C1), D)

F (f)∗

��

∼= // HomC (C1, G(D))

f∗

��

HomD(F (C2), D)
∼= // HomC (C2, G(D))

and

HomD(F (C), D1)

g∗
��

∼= // HomC (C,G(D1))

G(g)∗
��

HomD(F (C), D2)
∼= // HomC (C,G(D2))

commute for all C ∈ C and all D ∈ D . We say that F is the left adjoint of G, or that F
has a right adjoint, and that G is the right adjoint of F , or that G has a left adjoint.

We can think of adjoint functors as solutions to optimization problems. A particular
adjoint functor gives the most efficient functorial solution to some problem.

Example 1.93. Fix a ring R. Given a set I, what is the most efficient way to assign an
R-module to I in a functorial way? The solution to this problem is the construction of free
modules. Formally, the free functor is the functor Free : Set −→ R-Mod that sends each
set I to the free R-module on I

RI =
⊕
I

R.

The free functor is precisely a left adjoint to the forgetful functor R-Mod −→ Set. That is,
there is a natural bijection

HomR-Mod(
⊕
I

R,M) ∼= HomSet(I,M).

(On the right side we identified the image of M by the forgetful functor with M , since it’s
simply the underlying set.) Even without any category theory, one often describes the free
R-module on a set I by the following universal property: given a function f from a set I
to an R-module M , there exists a unique R-module homomorphism ⊕IR → M that agrees
with f on the basis elements. And indeed, this is what is encoded in the bijection above.

This type of free construction is quite common, and often gives rise to adjunctions. We
can think about the free functor from Set to R-Mod as the most efficient way of defining
an R-module from a given set. It’s efficient because it comes with a nice universal property.

Quoting Mac Lane [?], one of the fathers of category theory, “the slogan is adjoint
functors arise everywhere”. We will see a very important example of adjunction later on –
the Hom-tensor adjunction.
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Remark 1.94. We can rephrase the condition that G : D −→ C has a left adjoint functor
F : C −→ D as follows: for every object C in C , there is a universal arrow from C to
G, and for every object D in D there exists a universal arrow from F to D. To see that,
let ηD ∈ HomD(F (G(D)), D) be the image of the identity on HomD(G(D), G(D)) via the
bijection

HomC (G(D), G(D))
∼= // HomD(F (G(D)), D)

idG(D)
� // ηD

given by the definition of adjoint functors, and let εC ∈ HomC (C,GF (C)) be be the image
of the identity on HomC (F (C), F (C)) via the bijection

HomD(F (C), F (C))
∼= // HomD(C,GF (C))

idF (C)
� // εC

.

We claim that (F (C), εC) is a universal arrow from C to G. That would mean that given
arrow f ∈ HomC (C,G(Y )), there must exist a unique arrow h ∈ HomD(F (C), Y ) such that
the following diagram commutes:

F (C)

h
��

D
εC //

f
##

G(F (C))

G(h)
��

Y G(Y ).

This says that G(h)∗(εC) = G(h) ◦ εC = f , which means that

1F (C)_

��

� // εC_

��

HomD(F (C), F (C))

h∗

��

∼= // HomC (C,GF (C))

G(h)∗

��

HomD(F (C), Y ) ∼=
// HomC (C,G(Y ))

h � // f

On the one hand, such an h does exist: just take h ∈ HomC (F (C), Y ) that is sent to f via
the bijection between HomD(F (C), Y ) and HomC (C,G(Y )). Since this map is a bijection,
such an h is unique.

Similarly, we claim that (G(D), ηD) is a universal arrow from F to D. That would mean
that for any arrow f ∈ HomD(F (Y ), D), there exists a unique h ∈ HomC (Y,G(D)) such
that the following diagram commutes:

G(D) D F (G(D))
ηDoo

Y

h

OO

F (Y )

f

dd

F (h)

OO
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This means that (F (h))∗(ηD) = ηD ◦ F (h) = f , so

1G(D)_

��

� // ηD_

��

HomC (G(D), G(D))

h∗

��

∼= // HomD(D,FG(D))

F (h)∗

��

HomC (G(D), Y ) ∼=
// HomD(D,F (Y ))

h � // f

Again, such an h exists and it is unique because it must correspond to f via the bijection
between HomD(D,F (Y )) and HomC (G(D), Y ).

We can talk about the left or right adjoint to a given functor.

Exercise 24. Left and right adjoints are unique up to natural isomorphism. More precisely,
given an adjoint pair of functors (F,G), show that if G′ is also a right adjoint to F , then G′

and G are naturally isomorphic. Similarly, show that if F ′ is also a left adjoint to G, then
F and F ′ are naturally isomorphic.

We close this short detour into the wonderful world of category theory to point out that if
we wanted to sound really obscure, we could have defined chain complexes in this categorical
language.

Remark 1.95. First, we view Z as a partially ordered set under ⩾. As in Example 1.8,
Z now gives us a category whose objects are the integers, and where we have an arrow in
HomZ(n,m) if n ⩾ m. If we ignore the identity maps HomZ(n, n) and composite maps, we
can represent this category in the following diagram:

· · · // n+ 1 // n // n− 1 // · · · .

From this perspective, a chain complex is a functor F : Z −→ R-Mod: for each n ∈ Z, we
get an R-module Fn, and we also get an R-module homomorphisms Fn+1 −→ Fn for each n.
Indeed, this can all be represented as a sequence

· · · // Fn+1
// Fn // Fn−1

// · · · .

For our functor to truly be a complex, though, we must require that all compositions
Fn+1

// Fn // Fn−1 be 0. A map of complexes, also known as a chain map, is a natural
transformation between two such functors.
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The category of chain complexes

We are finally ready to introduce the category of chain complexes, and to talk more about
exact sequences and homology.

2.1 Maps of complexes

Unsurprisingly, we can form a category of complexes, but to do that we need the right
definition of maps between complexes. We also take this section as a chance to set up some
definitions we will need later. One thing to keep in mind as we build our basic definitions:
we also want homology to be functorial.

Definition 2.1. Let (F•, ∂
F
• ) and (G•, ∂

G
• ) be complexes. A map of complexes or a chain

map, which we write as h : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) or simply h : F −→ G, is a sequence of

homomorphisms of R-modules hn: Fn −→ Gn such that the following diagram commutes:

· · · // Fn+1

hn+1

��

// Fn

hn
��

// Fn−1

hn−1

��

// · · ·

· · · // Gn+1
// Gn

// Gn−1
// · · ·

This means that hn∂
F
n+1 = ∂Gn+1hn+1 for all n.

Note that throughout, whenever we call a function f : M → N between R-modules M
and N a map, we really mean to say it is a homomorphism of R-modules.

Example 2.2. The zero and the identity maps of complexes (F•, ∂•) −→ (F•, ∂•) are exactly
what they sound like: the zero map 0F• is 0 in every homological degree, and the identity
map 1F• is the identity in every homological degree.

This is the notion of morphism we would want to form a category of chain complexes.

Definition 2.3. Let R be a ring. The category of chain complexes of R-modules,
denoted Ch(R-mod) or simply Ch(R), is the category with objects all chain complexes of
R-modules and arrows all maps of complexes of R-modules. When R = Z, we write Ch(Ab)
for Ch(Z), the category of chain complexes of abelian groups.

48
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Note that the identity maps defined above are precisely the identity arrows in the category
of chain complexes.

Exercise 25. Show that the isomorphisms in the category Ch(R) are precisely the maps of
complexes

· · · // Fn+1

hn+1

��

// Fn

hn
��

// Fn−1

hn−1

��

// · · ·

· · · // Gn+1
// Gn

// Gn−1
// · · ·

such that hn is an isomorphism for all n.

This is a good notion of map of complexes: it induces homomorphisms in homology,
which in particular allows us to say that homology is a functor.

Lemma 2.4. Let h : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) be a map of complexes. For all n, hn restricts

to homomorphisms Bn(h) : Bn(F•) −→ Bn(G•) and Zn(h) : Zn(F•) −→ Zn(G•). As a
consequence, h induces homomorphisms on homology Hn(h) : Hn(F•) −→ Hn(G•).

Proof. Since hn∂
F
n+1 = ∂Gn+1hn+1, any element a ∈ Bn(F•), say a = ∂Fn+1(b), is taken to

hn(a) = hn∂
F
n+1(b) = ∂Gn+1hn+1(b) ∈ im ∂Gn+1 = Bn(G•).

Similarly, if a ∈ Zn(F•) = ker ∂Fn , then

∂nhn(a) = hn−1∂
F
n (a) = 0,

so hn(a) ∈ ker ∂Gn = Zn(G•). Finally, the restriction of hn to Zn(F•) −→ Zn(G•) sends
Bn(F•) into Bn(G•), and thus it induces a well-defined homomorphism on the quotients
Hn(F•) −→ Hn(G•).

Definition 2.5. Let h : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) be a map of complexes. We call the map

Hn(h) : Hn(F•) // Hn(G•)

a+Bn(F )
� // hn(a) +Bn(G)

the induced map in homology, and sometimes denote it by h∗.

One can show that Hn preserves compositions, and that moreover, the map in homology
induced by the identity is the identity. Thus taking nth homology is a functor

Hn: Ch(R) −→ R-Mod

which takes each map of complexes h : F•,−→ G• to the R-module homomorphism

Hn(h) : Hn(F•) −→ Hn(G•).

Definition 2.6. A map of chain complexes h is a quasi-isomorphism if it induces an
isomorphism in homology, meaning Hn(h) is an isomorphism of R-modules for all n. If there
exists a quasi-isomorphism between two complexes C and D, we say that C and D are
quasi-isomorphic, and write C ≃ D.
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Remark 2.7. Note that saying that if f is a quasi-isomorphism between F and G is a
stronger statement that the fact that Hn(F ) ∼= Hn(G) for all n: it also says that there are
isomorphisms Hn(F ) ∼= Hn(G) that are all induced by f .

Not all quasi-isomorphisms are isomorphisms, as the following example shows:

Exercise 26. Let π denote the projection map from Z to Z/2Z. The chain map

· · · // 0 //

0

��

Z 2 //

0

��

// Z
π

��

// 0

0

��

// · · ·

· · · // 0 // 0 // Z/2Z // 0 // · · ·

is a quasi-isomorphism.

Definition 2.8. Let f, g : F −→ G be maps complexes. A homotopy, sometimes referred
to as a chain homotopy, between f and g is a sequence of maps hn : Fn −→ Gn+1

· · · ∂n+2
// Fn+1

fn+1

��

gn+1

��

∂n+1
// Fn

fn

��

gn

��

hn

}}

∂n // Fn−1

fn−1

��

gn−1

��

∂n−1
//

hn−1

}}

· · ·

· · ·
∂n+2

// Gn+1 ∂n+1

// Gn ∂n
// Gn−1 ∂n−1

// · · ·

such that
∂n+1hn + hn−1∂n = fn − gn

for all n. If there exists a homotopy between f and g, we say that f and g are homotopic
or that they have the same homotopy type. We write f ≃ g to say that f and g are
homotopic. If f is homotopic to the zero map, we say f is nullhomotopic, and write f ≃ 0.
This should not be confused with the notation C ≃ D on complexes.

Exercise 27. Homotopy is an equivalence relation.

The equivalence classes under homotopy are called homotopy classes. Homotopy is an
interesting equivalence relation because homotopic maps induce the same map on homology.

Lemma 2.9. Let f, g : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) be maps of complexes. If f is homotopic to g,

then Hn(f) = Hn(g) for all n. In particular, every nullhomotopic map induces the zero map
in homology.

Proof. Let f, g : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) be homotopic maps of complexes, and let h be a

homotopy between f and g. We claim that the map of complexes f − g (defined in the
obvious way) sends cycles to boundaries. If a ∈ Zn(F•), then

(f − g)n(a) = ∂n+1hn(a) + hn−1∂n(a)︸ ︷︷ ︸
0

= ∂n+1(hn(a)) ∈ Bn(G•).

The map on homology induced by f−g must then be the 0 map, so f and g induce the same
map on homology. Here we are implicitly using the fact that Hn(f + h) = Hn(f) + Hn(g),
which we leave as an exercise to be further explored in Remark 3.4.
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Notice, however, that the converse is false: the induced map in homology can be the zero
map (for all homological degrees) even if the original map of complexes is not nullhomotopic.

Exercise 28. Consider the following map of complexes:

· · · // 0 //

��

0 //

��

// Z/2

2
��

// 0

��

// · · ·

· · · // 0 // Z/4Z
2
// Z/4Z // 0 // · · ·

Show that this map is not nullhomotopic, but that the induced map in homology is zero.

Definition 2.10. If f : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) and g : (G•, ∂

G
• ) −→ (F•, ∂

F
• ) are maps of

complexes such that fg is homotopic to the identity map on (G•, ∂
G
• ) and gf is homotopic

to the identity chain map on (F•, ∂
F
• ), we say that f and g are homotopy equivalences

and (F•, ∂
F
• ) and (G•, ∂

G
• ) are homotopy equivalent.

Corollary 2.11. Homotopy equivalences are quasi-isomorphisms.

Proof. If f : (F•, ∂
F
• ) −→ (G•, ∂

G
• ) and g : (G•, ∂

G
• ) −→ (F•, ∂

F
• ) are such that fg is homotopic

to 1G• and gf is homotopic to 1F• , then by Lemma 2.9 the map fg induces the identity map
on homology. So for all n we have

Hn(f)Hn(g) = Hn(fg) = Hn(1) = 1.

Therefore, Hn(f) and Hn(g) must both be isomorphisms.

The converse is false.

Exercise 29. Let π denote the projection map from Z to Z/2Z. The chain map

· · · // 0 //

��

Z 2 //

��

// Z
π

��

// 0

��

// · · ·

· · · // 0 // 0 // Z/2Z // 0 // · · ·

is a quasi-isomorphism but not a homotopy equivalence.

Remark 2.12. The relation F ≃ G, meaning “there is a quasi-isomorphism from F to G”, is
not symmetric: in Exercise 29, there is no quasi-isomorphism going in the opposite direction
of the one given.

Now that we know about maps between complexes, it’s time to point out that we can
also talk about complexes of complexes and exact sequences of complexes. While we will
later formalize this a little better when we discover that Ch(R) is an abelian category, let’s
for now give quick definitions that we can use.

Definition 2.13. Given complexes B and C, B is a subcomplex of C if Bn is a submodule
of Cn for all n, and the inclusion maps ιn : Bn ⊆ Cn define a map of complexes ι : B −→ C.
Given a subcomplex B of C, the quotient of C by B is the complex C/B that has Cn/Bn

in homological degree n, with differential induced by the differential on Cn.
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Exercise 30. If B is a subcomplex of C, then the differential d on C satisfies dn(Bn) ⊆ Bn−1.
Therefore, dn induces a map of R-modules Cn/Bn −→ Cn−1/Bn−1 for all n, so that our
definition of the differential on C/B actually makes sense.

We can also talk about kernels and cokernels of maps of complexes.

Definition 2.14. Given any map of complexes f : B• −→ C•, the kernel of f is the
subcomplex ker f of B• that we can assemble from the the kernels ker fn. More precisely,
ker f is the complex

· · · // ker fn+1
// ker fn // ker fn−1

// · · ·

where the differentials are simply the corresponding restrictions of the differentials on B•.
Similarly, the image of f is the subcomplex of C•

· · · // im fn+1
// im fn // im fn−1

// · · ·

where the differentials are given by restriction of the corresponding differentials in C•. The
cokernel of f is the quotient complex C•/ im f .

Again, there are some details to check.

Exercise 31. Show that the kernel, image, and cokernel of a complex map are indeed
complexes.

Definition 2.15. A complex in Ch(R) is a sequence of complexes of R-modules Cn and
chain maps dn : Cn −→ Cn−1 between them

· · · // Cn+1
dn+1

// Cn
dn // Cn−1

// · · ·

such that dndn+1 = 0 for all n. A complex of complexes is a diagram of the form

· · · // Cn+1,i+1

∂i+1

��

dn+1
// Cn,i+1

dn //

∂i+1

��

Cn−1,i+1

∂i+1

��

// · · ·

· · · // Cn+1,i

∂i
��

dn+1
// Cn,i

∂i
��

dn // Cn−1,i

∂i
��

// · · ·

· · · // Cn+1,i−1
dn+1

// Cn,i−1
dn // Cn−1,i−1

// · · ·

where Ci,j is the module in homological degree j in the complex Ci. The nth column
corresponds to the complex Cn, and every row is also a complex. The vertical maps are
the differentials on each individual complex; the horizontal maps are the differentials on the
complex of complexes.

Given a complex C in Ch(R), we can talk about cycles and boundaries, which are a
sequence of subcomplexes of the complexes in C, and thus its homology. Such a complex is
exact if im dn+1 = ker dn for all n.
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Definition 2.16. A short exact sequence of complexes is an exact complex in Ch(R) of
the form

0 // A
f
// B

g
// C // 0.

Equivalently, a short exact sequence of complexes is a commutative diagram

...

��

...

��

...

��

0 // Ai+1

∂i+1

��

fi+1
// Bi+1

gi+1
//

∂i+1

��

Ci+1

∂i+1

��

// 0

0 // Ai

∂i
��

fi // Bi

∂i
��

gi // Ci

∂i
��

// 0

0 // Ai−1

��

fi−1
// Bi−1

��

gi−1
// Ci−1

��

// 0

...
...

...

where the rows are exact and the columns are complexes.

2.2 Short exact sequences

In this section, we will discuss short exact sequences of modules in a bit more detail. We note,
however, that everything we will discuss here can be extended for short exact sequences of
complexes, and that the generalization is not too difficult: one just needs to replace modules
with complexes and maps of modules by maps of complexes.

Example 2.17. Fix a ring R, and let A and C be R-modules. Consider the inclusion
i : A → A ⊕ C of A into the first component of the direct sum, and the projection map
π : A⊕ C → C onto the second component of the product. These two maps fit into a short
exact sequence

0 // A
i // A⊕ C p

// C // 0.

These are sometimes called trivial short exact sequences.

On the one hand, the short exact sequences that look like this one are very important;
on the other hand, not all short exact sequences are of this type.

Definition 2.18. We say that a short exact sequence

0 // A // B // C // 0

splits or is a split short exact sequence if it is isomorphic to

0 // A
i // A⊕ C p

// C // 0

where i is the inclusion of the first component and p is the projection onto the second
component.
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Lemma 2.19 (Splitting Lemma). Consider the short exact sequence

0 // A
f
// B

g
// C // 0

of R-modules. The following are equivalent:

a) There exists a homomorphism of R-modules q : B −→ A such that qf = idA.

b) There exists a homomorphism of R-modules r : C −→ B such that gr = idC.

c) The short exact sequence splits.

Definition 2.20. Given a split short exact sequence

0 // A
f
// B

g
// C // 0,

maps q and r satisfying the conditions of the Splitting Lemma are called splittings.

Proof. First, we will show that c) implies a) and b). If the sequence splits, then consider an
isomorphism of complexes

0 // A

a

��

f
// B

g
//

b
��

C //

c

��

0

0 // A
i // A⊕ C
π

dd

p
// C //

j

ee
0,

meaning that the diagram commutes and a, b, and c are isomorphisms of R-modules, i is
the inclusion in the first component, and p is the projection onto the second component. Let
π : A ⊕ C −→ A be the projection onto the first component, and j : C −→ A ⊕ C be the
inclusion onto the first component. Now consider the maps q := a−1πb and r := b−1jc. Then

qf = a−1πbf

= a−1πia by commutativity

= a−1a because πi = idA

= 1A

and
gr = gb−1jc

= c−1(cg)b−1jc multiplying by c−1c = 1C

= c−1(pb)b−1jc by commutativity

= c−1pjc because bb−1 = 1B

= c−1c because pj = idC

= 1C .

Therefore, c) implies a) and b).
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Now suppose that a) holds, and let’s show that the sequence splits. First, we need to
show that B ∼= A⊕ C. Every b ∈ B can be written as

b = (b− fq(b)) + fq(b),

where fq(b) ∈ im f ∼= A, and

q(b− fq(b)) = q(b)− qf︸︷︷︸
idA

(q(b)) = q(b)− q(b) = 0,

so b − fq(b) ∈ ker q. This shows that B = im f + ker q. Moreover, if f(a) ∈ ker q, then
a = qf(a) = 0, so im f ∩ ker q = 0, and B = im f ⊕ ker q. Now when we restrict g to ker q, g
becomes injective. We claim it is also surjective, and thus an isomorphism. Indeed, for any
c ∈ C we can pick b ∈ B such that g(b) = c, since g is surjective, and we showed that we
can write b = f(a) + k for some k ∈ ker q. Then

g(k) = gf︸︷︷︸
0

(a) + g(k) = g(b) = c.

Finally, note that im f ∼= A, so we conclude that B ∼= A ⊕ C, via the isomorphism φ given
by

B // im f ⊕ ker q // A⊕ C
b � // (fq(b), b− fq(b)) � // (q(b), g(b)).

Since gf = 0 and qf = idA, φf(a) = (qf(a), 0) = (a, 0), so φf = i, where i : A −→ A⊕C
is the inclusion on the first factor. If p : A⊕C −→ C denotes the projection onto the second
factor, pφ = g. Together, these two facts say that the following is a map of complexes:

0 // A
f

// B
g
//

φ

��

C // 0

0 // A
i
// A⊕ C p

// C // 0.

Since φ is an isomorphism, so is our map of complexes, and thus our original sequence is a
split exact sequence. This shows that a) implies c).

Now assume b) holds. Every b ∈ B can be written as

b = (b− rg(b)) + rg(b),

where rg(b) ∈ im r and

g(b− rg(b)) = g(b)− gr︸︷︷︸
idC

(g(b)) = g(b)− g(b) = 0,

so b− rg(b) ∈ ker g. This shows that B = ker g + im r. Moreover, if r(c) ∈ ker g, then

c = idC(c) = gr(c) = 0.
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Therefore, B = ker g ⊕ im r. Now r is injective, since r(c) = 0 =⇒ c = gr(c) = 0, and thus
im r ∼= C. Since ker g = im f ∼= A, we conclude that B ∼= A⊕ C, via the isomorphism

A⊕ C ψ
// B

(a, c) � // f(a) + r(c).

Finally, let i : A −→ A ⊕ C denote the inclusion of the first factor, and p : A ⊕ C −→ C
denote the projection onto the second factor. By construction, ψi = f . Moreover,

gψ(a, c) = gf︸︷︷︸
0

(a) + gr︸︷︷︸
idC

(c) = c,

so gψ = p. Together, these say that the diagram

0 // A i // A⊕ C p
//

ψ
��

C // 0

0 // A
f

// B g
// C // 0

commutes, and must then be an isomorphism of short exact sequences.

Remark 2.21. In the split short exact sequence

0 // A
i // A⊕ C p

// C // 0,

the canonical projection q : A⊕C → A and the usual inclusion r : C → A⊕C are splittings.

Exercise 32. Let k be a field. Show that every short exact sequence of k-vector spaces
splits.

The Rank-Nulity Theorem can be recast in this setting as a consequence of the fact that
every short exact sequence of k-vector spaces splits.

Exercise 33. Prove the Rank-Nulity Theorem using Exercise 32: show that given any linear
transformation T : V → W of k-vector spaces,

dim(imT ) + dim(kerT ) = dimV.

But over a general ring, not every short exact sequence splits.

Example 2.22. The short exact sequence

0 // Z 2 // Z // Z/2 // 0

is not split. Indeed, Z does not have any 2-torsion elements, so it is not isomorphic to
Z⊕ Z/2.

An alternative explanation is that there is no splitting to the inclusion Z 2 // Z . On the
one hand, every Z-module map is given by multiplication by a fixed integer n, so a splitting
f : Z −→ Z would be of the form f(a) = na for some fixed n. On the other hand, our
proposed splitting f must send 2 to 1, but there is no integer solution n to 2n = f(2) = 1.
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More surprisingly, a short exact sequence of the form

0 // A
f
// A⊕ C g

// C // 0

is not necessarily split, not unless f is the inclusion of the first component and g is the
projection onto the second component, as the next example will show.

Example 2.23. Consider the short exact sequence

0 // Z/(2) f
// Z/(4) g

// Z/(2) // 0

where f is the inclusion of the subgroup generated by 2, so f(1 + (2)) = 2 + (4), and g is
the quotient onto that subgroup, meaning g(1) = 1. This is not a split short exact sequence,
because Z/(4) ̸∼= Z/(2)⊕ Z/(2). Now let

M :=
⊕
N

(Z/(2)⊕ Z/(4))

be the direct sum of infinitely many copies of Z/(2)⊕ Z/(4). Then

Z/(2)⊕M ∼= M ∼= M ⊕ Z/(4),

and the sequence

0 // Z/(2) h // Z/(4)⊕M t // Z/(2)⊕M // 0

with h(a) = (f(a), 0) and t(a,m) = (g(a),m) is still exact. The middle term is indeed
isomorphic to the direct sum of the other two:

Z/(4)⊕M ∼= M ∼= (M ⊕ Z/(2))⊕ Z/(2).

And yet this is not a split exact sequence: if we had a splitting q : Z/(4) ⊕M −→ Z/(2)
of h, then its restriction to the first factor would give us a splitting Z/(4) −→ Z/(2) of f ,
which we know cannot exist, since

0 // Z/(2) f
// Z/(4) g

// Z/(2) // 0

does not split.

Given splittings q and r for a short exact sequence as in Lemma 2.19, we can quickly
show that our short exact sequence splits using the Five Lemma. To prove the Five Lemma,
one needs to use diagram chasing. Diagram chasing is a common technique in homological
algebra, which essentially consists of tracing elements around in the diagram. We will see
some examples of diagram chasing in the next section.

Exercise 34 (The Five Lemma). Consider the following commutative diagram of R-modules
with exact rows:

A′

a

��

// B′ //

b
��

C ′ //

c

��

D′

d
��

// E ′

e

��

A // B // C // D // E

Show that if a, b, d, and e are isomorphisms, then c is an isomorphism.
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Remark 2.24. Given a short exact sequence, suppose we have R-module homomorphisms
q and r

0 // A
f
// B

q

aa

g
// C

r

aa
// 0

such that qf = idA and rg = idC . Then we get an induced map

B
φ

// A⊕ C
b � // (q(b), g(b))

such that the diagram

0 // A
f

// B
g
//

φ

��

C // 0

0 // A
i
// A⊕ C p

// C // 0.

commutes. The Five Lemma guarantees that φ must be an isomorphism, so our diagram is
an isomorphism of short exact sequences.

There are many ways in which R-Mod behaves better than the category of groups, and
this is one of them.

Remark 2.25. The Splitting Lemma does not hold if we replace R-modules with the cate-
gory Grp of groups. For example, consider the symmetric group on 3 elements S3 and the
inclusion A3 ↪→ S3 of the alternating group in S3. Notice that A3 is precisely the kernel of
the sign map

sign: S3 −→ Z/2,
which sends even permutations to 0 and odd permutations to 1. Therefore,

0 // A3
// S3

// Z/2 // 0

is a short exact sequence. When writing exact sequences of nonabelian groups such as this
one, one sometimes uses {e} instead of 0, to indicate that trivial group. So our short exact
sequence is

{e} // A3
// S3

// Z/2 // {e}.
Moreover, this exact sequence is not split, since S3 is not abelian but A3 ⊕ Z/2 is, and thus
S3 ̸∼= A3 ⊕ Z/2. However, any group homomorphism u : Z/2 → S3 defined by sending the
generator to any two cycle is a splitting for our short exact sequence, meaning sign◦u = idZ/2.

Funny enough, there is no splitting for the inclusion A3 ⊆ S3, since there are no nontrivial
homomorphisms S3 → A3: A3 has no elements of order 2, so a group homomorphism S3 → A3

must send every 2-cycle in S3 must be sent to the identity, but 2-cycles generate S3.

We will return to the topic of split short exact sequences when we talk about projective
and injective modules.

Exercise 35. Fix a ring R. Show that if F is a free R-module, then every short exact
sequence of R-modules

0 // A // B // F // 0

splits.
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2.3 Long exact sequences

A long exact sequence is just what it sounds like: an exact sequence that is, well, long.
Usually, we use the term long exact sequence to refer to any exact sequence, especially if it
is not a short exact sequence. So in particular, a long exact sequence does not literally have
to be that long.

Long exact sequences arise naturally in various ways, and are often induced by some short
exact sequence. The first long exact sequence one encounters is the long exact sequence on
homology. All other long exact sequences are, in some way, a special case of this one. The
main tool we need to build it is the Snake Lemma.

Theorem 2.26 (Snake Lemma). Consider the commutative diagram of R-modules

A′ i′ //

f

��

B′ p′
//

g

��

C ′

h
��

// 0

0 // A
i
// B p

// C .

Suppose that the rows of the diagram are exact. Given c′ ∈ kerh, pick b′ ∈ B′ such that
p′(b′) = c′, and a ∈ A such that i(a) = g(b′), and consider the map ∂ : kerh→ coker f given
by

∂(c′) = a+ im f ∈ coker f.

Then there exists an exact sequence

ker f // ker g // kerh ∂ // coker f // coker g // cokerh

Moreover:

• If i′ is injective then we can extend our exact sequence to 0 // ker f // ker g.

• If p is surjective then we can extend our exact sequence to coker g // cokerh // 0.

The picture to keep in mind (and which explains the name of the lemma) is the following:

ker f //

��

ker g //

��

kerh

��

A′ //

f
��

B′ //

g
��

C ′

h
��

A //

��

B //

��

C

��

coker f ////

∂

coker g // cokerh

Definition 2.27. The map ∂ in the Snake Lemma is the connecting homomorphism.
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Proof. If a′ ∈ ker f , then
g(i′(a′)) = if(a′) = 0,

by commutativity, so i′(a′) ∈ ker g. Similarly, if b′ ∈ ker g then p′(b′) ∈ ker(g). So

A′ i′ // B′ p′
// C ′ restrict to maps ker f i′ // ker g

p′
// kerh .

We claim that the sequence obtained by restriction

ker f i′ // ker g
p′
// kerh

is exact. On the one hand, we already know that the original maps satisfy p′i′ = 0, so their
restrictions must satisfy this as well, guaranteeing that

i′(ker f) ⊆ ker(ker g
p′−→ kerh).

On the other and, if b′ ∈ ker g is such that p′(b′) = 0, then by exactness of the original
sequence there exists a′ ∈ A′ such that i′(a′) = b′; we only need to check that we can choose
such a′ satisfying a′ ∈ ker f . And indeed, by commutativity, any a′ with i′(a′) = b′ satisfies

if(a′) = gi′(a′) = g(b′) = 0,

and since i is injective, we must have f(a′) = 0. So we have shown that the following is an
exact sequence:

ker f i′ // ker g
p′
// kerh.

Similarly, if a ∈ im f , the commutativity of the diagram guarantees that i(a) ∈ im g, and if

b ∈ im g, then p(b) ∈ imh. So the maps A
i // B

p
// C restrict to maps

im f
i // im g

p
// imh ,

which then induce maps
coker f −→ coker g −→ cokerh.

To make the notation less heavy, we denote the induced maps on the quotients by i and p.
Again, the fact that pi = 0 automatically gives us that the restrictions satisfy

im(coker f → coker g) ⊆ ker(coker g → cokerh),

so we only need to check equality. Consider b + im g such that p(b + im g) = 0, meaning
that p(b) = 0, meaning that p(b) ∈ imh. Let c′ ∈ C be such that h(c′) = p(b). Since p′ is
surjective, there exists b′ ∈ B′ such that p′(b′) = c′, and by commutativity,

pg(b′) = hp′(b′) = h(c′) = p(b).

Then b − g(b′) ∈ ker p = im i. Let a ∈ A be such that i(a) = b − g(b′). Now in coker g we
have

b+ im g = b− g(b′) + im g

= i(a) + im g

= i(a+ im f).
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This concludes the proof of exactness of

ker f −→ ker g −→ kerh and coker f −→ coker g −→ cokerh.

We still need to show the parts of the statement related to the connecting homomorphism
∂. Our definition of ∂ can be visualized as follows:

c′ ∈ kerh

��

A′ i′ //

f

��

b′ ∈ B′ � p′
//

_

g

��

c′ ∈ C ′

h

��

a ∈ A �
i

//
_

��

g(b′) ∈ B p
// 0 ∈ C +3 g(b′) ∈ ker p = im i

a+ im f ∈ coker f

Let’s recap the process in words. First, we fix c′ ∈ kerh ⊆ C ′. Since p′ is surjective, we
can always pick b′ ∈ B′ such that p′(b′) = c′. Since c′ ∈ kerh, by commutativity we have

pg(b′) = hp′(b′) = h(c′) = 0,

so g(b′) ∈ ker p = im i. Therefore, there exists a ∈ A such that i(a) = g(b′). In fact, since i
is injective, there exists a unique a ∈ A such that i(a) = g(b′). Our definition of ∂(c′) sets

∂(c′) = a+ im f ∈ coker f.

The fact that ∂ is a homomorphism of R-modules follows from the fact that all the maps
involved are homomorphisms of R-modules: given c′1, c

′
2 ∈ kerh, and b′1, b

′
2 ∈ B′, a1, a2 ∈ A

such that
p′(b′1) = c′1, p′(b′2) = c′2, i(a1) = g(b′1), i(a2) = g(b′2),

we have
i(a1 + a2) = i(a1) + i(a2) = g(b′1) + g(b′2) = g(b′1 + b′2),

so
∂(c′1) = a1 + im f, ∂(c′2) = a2 + im f, and ∂(c′1 + c′2) = (a1 + a2) + im f.

Therefore, ∂(c′1) + ∂(c′2) = ∂(c′1 + c′2). Similarly, given any r ∈ R,

r(a1+im f) = ra1+im f, i(ra1) = ri(a1) = rg(b′1) = g(rb′1), and p′(rb1) = rp′(b1) = rc1,

so ∂(rc1) = r(a1 + im f) = r∂(c1). We now need to show the following:

1) ∂ is well-defined. 2) p′(ker g) = ker ∂. 3) im ∂ = ker( coker f i // coker g ).
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Points 2) and 3) together say that the sequence

ker g // kerh ∂ // coker f // coker g
is exact, and this will complete the proof.

First, let’s show that ∂(0) is well-defined. Ultimately, our definition of ∂ only
involves one choice, when we pick b′ ∈ B′ such that p′(b′) = 0; we need to show that ∂(0)
does not depend on the choice of b′. Given b′ ∈ B′ such that p′(b′) = 0, by exactness we
have b′ ∈ ker p′ = im i′. Therefore, there exists a′ ∈ A′ such that i′(a′) = b′. Notice that
a := f(a′) ∈ A is such that

i(a) = if(a′) = gi′(a′) = g(b′).

Thus our definition says that ∂(0) = a+im f ∈ coker f . Since a = f(a′) ∈ im f , we conclude
that a+ im f = 0, so ∂(0) = 0 for any choice of b′.

Now consider any c′ ∈ kerh. Again, to show ∂ is well-defined, we need only to show it
does not depend on the choice of b′ such that p′(b′) = c′. Consider b′1, b

′
2 ∈ B′ such that

p′(b′1) = p′(b′2) = c′,

and a1, a2 ∈ A such that

i(a1) = g(b′1) and i(a2) = g(b′2).

Note that
i(a1 − a2) = g(b′1 − b′2),

and since
p′(b′1 − b′2) = c′ − c′ = 0,

we must have
a1 − a2 + im f = ∂(0) = 0.

Thus
a1 + im f = a2 + im f,

and this concludes our proof that ∂ is well-defined.
Now we show 2): that p′(ker g) = ker ∂.
If b′ ∈ ker g, then the only a ∈ A such that i(a) = g(b′) = 0 is a = 0. Therefore,

∂(p′(b′)) = 0, so p′(ker g) ⊆ ker ∂. On the other hand, let c′ ∈ kerh be such that ∂(c′) = 0.
That means that for any b′ ∈ B′ such that p′(b′) = c′ we must have g(b′) = i(a) for some
a ∈ im f . Let a′ ∈ A′ be such that f(a′) = a. Then

gi′(a′) = if(a′) = i(a) = g(b′)

so b′ − i′(a′) ∈ ker g. Since p′i′ = 0,

c′ = p′(b′) = p′(b′ − i′(a′)) ∈ p′(ker g).

We conclude that ker ∂ = p′(ker g), and this shows 2).

Now we show 3), that is, im ∂ = ker(coker f
i−→ coker g).
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Let a ∈ A be such that i(a+im f) = 0. In B, this says that i(a) ∈ im g, so we can choose
b′ ∈ B′ such that g(b′) = i(a). Using commutativity and the fact that pi = 0, we have

hp′(b′) = pg(b′) = pi(a) = 0 so p′(b′) ∈ kerh.

This shows that a + im f = ∂(p′(b′)), and thus ker(coker f
i−→ coker g) ⊆ im ∂. Finally, if

p′(b′) = c′ and i(a) = g(b′), then

i∂(c′) = i(a+ im f) = g(b′) + im g = 0, so im ∂ ⊆ ker(coker f
i−→ coker g).

Finally, if i′ is injective then so is the induced map on ker f −→ ker g, since it is obtained
by restricting the injective map i′. Similarly, if p is surjective then so is the induced map on
coker g −→ cokerh, as for any x + imh we can find y ∈ B such that p(y) = x, and so the
induced map on the cokernels has

y + im g 7−→ p(y) + imh = x+ imh.

The proof of the Snake Lemma is what we call a diagram chase, for reasons that may be
obvious by now: we followed the diagram in the natural way, and everything worked out in
the end. The Five Lemma is another classical example of a diagram chase.

Now that we have the Snake Lemma, we can construct the long exact sequence in ho-
mology:

Theorem 2.28 (Long exact sequence in homology). Given a short exact sequence in Ch(R)

0 // A
f
// B

g
// C // 0,

there are connecting homomorphisms ∂ : Hn(C) −→ Hn−1(A) such that

· · · // Hn+1(C)
∂ // Hn(A)

f
// Hn(B)

g
// Hn(C)

∂ // Hn−1(A) // · · ·

is an exact sequence.

Proof. For each n, we have short exact sequences

0 // An // Bn
// Cn // 0.

The condition that f and g are maps of complexes implies, by Lemma 2.4, that f and g take
cycles to cycles. This gives us an induced map Zn(A) −→ Zn(B), and since this map is the
restriction of an inclusion, it must also be an inclusion. Therefore, we get exact sequences

0 // Zn(A) // Zn(B) // Zn(C) .

Again by Lemma 2.4, the condition that f and g are maps of complexes also implies that f
and g both take boundaries to boundaries, so that we get exact sequences

An/ im dAn+1
// Bn/ im dBn+1

// Cn/ im dCn+1
// 0 .
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Let F be any complex. The boundary maps on F induce maps Fn −→ Zn−1(F ) that send
im dn+1 to 0, so we get induced maps Fn/ im dn+1 −→ Zn−1(F ). Applying this general fact
to A, B, and C, and putting all this together, we have a commutative diagram with exact
rows

An/ im dAn+1

dAn
��

// Bn/ im dBn+1

dBn
��

// Cn/ im dCn+1

dCn
��

// 0

0 // Zn−1(A) // Zn−1(B) // Zn−1(C)

.

For any complex F ,

ker(Fn/ im dFn+1

dFn−→ Zn−1(F )) = Hn(F )

and

coker(Fn/ im dFn+1

dFn−→ Zn−1(F )) = Zn−1(F )/ im dFn = Hn−1(F ).

The Snake Lemma now gives us exact sequences

Hn(A) // Hn(B) // Hn(C)
∂ // Hn−1(A) // Hn−1(B) // Hn−1(C).

Finally, we glue all these together to obtain the long exact sequence in homology.

Remark 2.29. It’s helpful to carefully consider how to compute the connecting homomor-
phisms in the long exact sequence in homology, which we can easily put together from the
proof of the Snake Lemma. Suppose that c ∈ Zn+1(C) = ker dCn+1. When we view c as an
element in Cn+1, we can find b ∈ Bn+1 such that gn+1(b) = c, since gn+1 is surjective by
assumption. Since g is a map of complexes, we have

gnd
B
n+1(b) = dCn+1gn+1(b) = dCn+1(c) = 0,

so dBn+1(b) ∈ ker gn. In fact, note that dBn+1(b) ∈ Zn(B), so

b ∈ ker(Zn(B)
gn−→ Zn(C)) = im(Zn(A)→ Zn(B)).

Thus there exists a ∈ Zn(A) such that fn(a) = dBn+1(b). Finally,

∂(c+ im dn+2) = a+ im dAn+1.

So in summary, the recipe goes as follows: given c + im dn+2 ∈ Hn+1(C), we find b ∈ Bn+1

such that gn+1(b) = c and a ∈ Zn(A) such that fn(a) = dBn+1(b), and

∂(c) = a+ im dAn+1.

We will soon see that long exact sequences appear everywhere, and that they are very
helpful. Before we see more examples, we want to highlight a connection between long and
short exact sequences.



65

Remark 2.30. Suppose that

· · · // Cn+1
fn+1

// Cn
fn
// // · · ·

is a long exact sequence. This long exact sequence breaks into the short exact sequences

0 // ker fn
i // Cn

π // coker fn+1
// 0 .

The first map i is simply the inclusion of the submodule ker fn into Cn, while the second
map π is the canonical projection onto the quotient. While it is clear that i is injective and
π is surjective, exactness at the middle is less obvious. This follows from the exactness of
the original complex, which gives im i = ker fn = im fn+1 = ker π.

The long exact sequence in homology is natural.

Theorem 2.31 (Naturality of the long exact sequence in homology). Any commutative
diagram in Ch(R)

0 // A i //

f
��

B
p
//

g

��

C

h
��

// 0

0 // A′
i′
// B′

p′
// C ′ // 0

with exact rows induces a commutative diagram with exact rows

· · · // Hn+1(C)

h
��

∂ // Hn(A)

f

��

i // Hn(B)

g

��

p
// Hn(C)

h
��

∂ // Hn−1(A)

f

��

// · · ·

· · · // Hn+1(C
′)

∂′
// Hn(A

′)
i′
// Hn(B

′)
p′
// Hn(C

′)
∂′
// Hn−1(A

′) // · · ·

Proof. The rows of the resulting diagram are the long exact sequences in homology induced
by each row of the original diagram, as in Theorem 2.28. So the content of the theorem
is that the maps induced in homology by f , g, and h make the diagram commute. The
commutativity of

Hn(A)

f
��

i // Hn(B)

g

��

p
// Hn(C)

h
��

Hn(A
′)

i′
// Hn(B

′)
p′
// Hn(C

′)

follows from the fact that Hn is a functor, so we only need to check commutativity of the
square

Hn(C)

h
��

∂ // Hn−1(A)

f
��

Hn(C
′)

∂′
// Hn−1(A

′)

that involves the connecting homomorphisms ∂ and ∂′.
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Consider the following commutative diagram:

0 // An

��

i //

d

||

Bn
p

//

��

d

||

Cn

��

d

||

// 0

0 // An−1

��

// Bn−1

��

// Cn−1

��

// 0

0 // A′
n

//

d

}}

B′
n

//

d

}}

C ′
n

d

}}

// 0

0 // A′
n−1 i′

// B′
n−1 p′

// C ′
n−1

// 0

Given c ∈ ker(dn : Cn −→ Cn−1), we need to check that fn−1(∂(c)) = ∂′hn(c) in Hn−1(A
′). To

compute ∂(c), we find a lift b ∈ Bn such that pn(b) = c, and a ∈ An−1 with in−1(a) = dn(b),
and set ∂(c) = a+ im dn ∈ Hn−1(A). So fn−1∂(c) = fn−1(a) + im dn. On the other hand, to
compute ∂′hn(c), we start by finding b′ ∈ B′

n such that p′n(b
′) = hn(c). By commutativity of

the right back square

Bn
pn
//

gn

��

Cn

hn
��

B′
n p′n

// C ′
n

we can choose b′ = gn(b), since

p′n(b
′) = p′ngn(b) = hnpn(b) = hn(c).

Next we take a′ ∈ A′
n−1 such that i′n−1(a

′) = dn(b
′), and set ∂′(h(c)) = a′+im dn ∈ Hn−1(A

′).
By commutativity of the middle square

Bn
dn //

gn

��

Bn−1

gn−1

��

B′
n dn

// B′
n−1

we have
dn(b

′) = dngn(b) = gn−1dn(b).

By our choice of a, we have

dn(b
′) = gn−1dn(b) = gn−1in−1(a),

and by commutativity of the front left square

An−1
in−1

//

fn−1

��

Bn−1

gn−1

��

A′
n−1 i′n−1

// B′
n−1

we have i′n−1fn−1(a) = gn−1in−1(a) = dn(b
′).

So we can take a′ = fn−1(a). Finally, this means ∂′(hn(c)) = fn−1(a)+im dn−1, as desired.
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Remark 2.32. Let
0 // A

i // B
p
// C // 0

be a short exact sequence in Ch(R). We can think of Theorem 2.31 as saying that the
induced maps on homology i∗ : Hn(A) −→ Hn(B) and p∗ : Hn(B) −→ Hn(C) and the
connecting homomorphism ∂ : Hn(C) −→ Hn−1(A) are all natural transformations. More
precisely, consider the category SES of short exact sequences of R-modules, which is a full
subcategory of Ch(R). Homology gives us functors SES −→ R-Mod that given a short
exact sequence

0 // A
i // B

p
// C // 0

return the R-modules Hn(A), Hn(B), or Hn(C)). A map between two short exact sequences
then induces R-module homomorphisms between the corresponding homologies. With this
framework, Theorem 2.31 says that i∗ : Hn(A) −→ Hn(B), and p∗ : Hn(B) −→ Hn(C) and the
connecting homomorphism ∂ : Hn(C) −→ Hn−1(A) are all natural transformations between
the corresponding homology functors.



Chapter 3

R-Mod

Before we study abelian categories in general, we want to understand our best prototype
for what an abelian category looks like: the category R-Mod of R-modules and R-module
homomorphisms.

3.1 Hom

From now on, let’s fix a ring R. Recall that whenever we say an R-moduleM , we mean a left
R-module; any general facts about left modules can be naturally converted into statements
about right R-modules, under small appropriate corrections. When M is commutative, left
and right module structures agree, so the distinction is not relevant.

Our goal is to get to know the category R-Mod, which as we are about to discover is a
very nice category. One of the many nice things about R-Mod is that the Hom-sets have an
extra structure. (Roughly speaking, a locally small category where the Hom-sets are objects
in some other category is called an enriched category).

To make the notation less heavy, we write HomR(M,N) instead of HomR-Mod(M,N)
for the Hom-set between M and N in R-Mod. The arrows in HomR(M,N) are all the
R-module homomorphisms from M to N . This is a locally small category, meaning that the
Hom-sets are actual sets, but more even is true: the Hom-sets are actually abelian groups,
and when R is commutative, they are even R-modules.

Given f, g ∈ HomR(M,N), f + g is the R-module homomorphism defined by

(f + g)(m) := f(m) + g(m).

When R is a commutative ring, given r ∈ R and f ∈ HomR(M,N), r · f is the R-module
homomorphism defined by

(r · f)(m) := f(rm).

Exercise 36. Let M and N be R-modules. Then HomR(M,N) is an abelian group under
the sum defined above.

Exercise 37. Let M and N be R-modules over a commutative ring R. Then HomR(M,N)
is an R-module.

68
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Remark 3.1. The main reason we need commutativity for HomR(M,N) to be a module is
that given any r ∈ R and f ∈ HomR(M,N), we need rf to be an R-module homomorphism,
so in particular for any a ∈M and any s ∈ R we need

(rf)(sa) = s(rf)(a),

so
(rs)f(a) = rf(sa) = (rf)(sa) = s(rf)(a) = s(rf(a)) = (sr)f(a).

This holds whenever rs = sr, but not in general.

Some Hom-sets can easily be identified with other well-understood modules.

Exercise 38. Let R be a commutative ring. Let M be an R-module, and I an ideal in R.
Then we have the following isomorphisms of R-modules:

a) HomR(R,M) ∼= M .

b) HomR(R
n,M) ∼= Mn for any n ⩾ 1.

c) HomR(R/I,M) ∼= (0 :M I) := {m ∈M | Im = 0}.
In fact, part a) above can be upgraded to the following:

Exercise 39. Let R be a commutative ring. Then HomR(R,−) is naturally isomorphic to
the identity functor on R-Mod.

Since R-Mod is a locally small category, we saw in Definition 1.34 that there are two
Hom-functors from R-Mod to Set, the covariant functor HomR(M,−) : R-Mod −→ Set
and the contravariant functor HomR(−, N) : R-Mod −→ Set. In light of Exercise 37, we
can upgrade these functors to land in Ab, or in R-Mod when R is commutative, not just
in Set. Note that while there are two Hom-functors, we will sometimes refer to the Hom
functor when talking about properties that are common to both of them.

A functor that lands in R-Mod, or Ab in particular, can have some additional good
properties.

Definition 3.2. Let R and S be rings. A functor T : R-Mod −→ S-Mod is an additive
functor if

T (f + g) = T (f) + T (g)

for all f, g ∈ HomR(M,N).

To say that T is a covariant additive functor is to say that for all A and B, the map

Hom(A,B) // Hom(T (A), T (B))

f � // T (f)

induced by T is a homomorphism of abelian groups. Similarly, a contravariant additive
functor T is one such that

Hom(A,B) // Hom(T (B), T (A))

f � // T (f)

is a homomorphism of abelian groups. Notice moreover that this definition makes sense more
generally in any category C whose objects have an abelian group structure.
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Exercise 40. Show that HomR(M,−) and HomR(−, N) are both additive functors.

Note that in the previous exercise we were purposely vague about where HomR(M,−)
and HomR(−, N) land: these are additive functors whether we consider them as functors
with target Ab or target R-Mod, when appropriate.

Additive functors have many nice properties.

Lemma 3.3. Let T : R-Mod −→ S-Mod be an additive functor.

a) Let 0 denote the 0-map between any two R-modules M and N . Then T (0) = 0 is the
0-map T (M)→ T (N).

b) Let 0 denote the zero R-module. Then T (0) = 0 is the zero S-module.

Proof.

a) As a function defined on each fixed HomR(M,N), T is a group homomorphism, so it
must send 0 to 0.

b) An R-module M is the zero module if and only if the zero and identity maps on M
coincide. Let N be the image of the zero R-module via T . On the one hand, any
functor must send identity maps to identity maps, so the identity map on the zero
module must be sent to the identity on N . On the other hand, we have shown that
the zero map must be sent to the zero map on N , so the zero and identity maps on N
must coincide, so N = 0.

Remark 3.4. Note that the category of chain complexes also has a similar structure to
R-Mod: given two maps of complexes f, g : C → D, we define a map of complexes f + g :
C → D given by

(f + g)n := fn + gn.

It is routine to check that this again gives a map of complexes, and that this operation
gives the Hom-sets in Ch(R) the structure of an abelian group. In fact, this abelian group
structure can be upgraded to an R-module structure when R is commutative, by setting

(rf)n := rfn

for all r ∈ R. This allows us to talk about additive functors to and from the category Ch(R),
and there is a version of Lemma 3.3 in Ch(R).

Exercise 41. Show that homology is an additive functor.

Most functors between categories or modules or chain complexes are additive. In fact,
we will spend the rest of this chapter studying three very important additive functors: the
two Hom functors, and a third functor we have yet to define.

Exercise 42. Let R and S be rings and let T : R-Mod −→ S-Mod be an additive functor.
Show that for all R-modules A and B,

T (A⊕B) ∼= T (A)⊕ T (B).
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Hom satisfies a stronger version of this property.

Theorem 3.5. For all R-modules M,N,Mi, Ni, there are isomorphisms of abelian groups

HomR(M,
∏
i

Ni) ∼=
∏
i

HomR(M,Ni) and HomR(
⊕
i

Mi, N) ∼=
∏
i

HomR(Mi, N).

Moreover, when R is commutative, these are in fact isomorphisms of R-modules.

In particular,
HomR(A⊕B,C) ∼= HomR(A,C)⊕ HomR(B,C)

and
HomR(A,B ⊕ C) ∼= HomR(A,B)⊕ HomR(A,C).

These two properties, however, are consequences of Exercise 40 and Exercise 42: Hom is
additive, and additive functors preserve finite direct sums.

Proof. For each i, let πi :
∏

j Nj −→ Ni be the canonical projection map. Consider the map

HomR(M,
∏

iNi)
α //
∏

iHomR(M,Ni)

f � // (πif)

.

We claim this map is the desired isomorphism. We leave it as an exercise to show that
α is a homomorphism of abelian groups, and a homomorphism of R-modules when R is
commutative; we focus on proving that α is a bijection. First, take (fi)i ∈

∏
iHomR(M,Ni).

Define a map

M
ψ
//
∏

iNi

m � // (fi(m))

.

This makes the diagram
Ni

∏
j

Nj

πi

>>

M
ψ

oo

fi

]]

commute, so that α(ψ) = (πiψ)i = (fi). This shows that α us surjective.
Now let us show that α is injective. Suppose f ∈ HomR(M,

∏
iNi) is such that α(f) = 0.

For each m ∈ M , let f(m) = (ni)i, so πif(m) = ni. By assumption, (πif(m)) = 0, which
means that πiα = 0 for all i, and thus ni = 0 for all i. So f = 0. We conclude that α is an
isomorphism.

Now consider the map
HomR(

⊕
i

Mi, N)
β
//
∏
i

HomR(Mi, N)

f � // (fιi)

where ιj : Mj −→
⊕

iMi is the inclusion of the jth factor. We leave it as an exercise to
prove that β is a homomorphism of abelian groups, and that whenever R is commutative, β
is in fact a homomorphism of R-modules.
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Given (fi)i ∈
∏
i

HomR(Mi, N), let

⊕
i

Mi
ψ

// N

(mi)
� //

∑
i

fi(mi)

Then β(ψ) = (ψιi)i, so for each i and each mi ∈ Mi, ψιi(mi) = fi(mi), and β(ψ) = (fi)i.
This shows that β is surjective.

Now assume β(f) = 0, which implies that fιi is the zero map for each i. Consider
any (mi)i ∈

⊕
iMi. For each i, fιi(mi) = 0. On the other hand, (mi)i =

∑
i ιi(mi), so

f((mi)i) =
∑

i ιi(mi) = 0. We conclude that f = 0, and β is injective.

Exercise 43. Show that the isomorphisms in Theorem 3.5 are natural on both components.
More precisely, given any other family of R-modules Li such that for each i there exists j, a
map σij there exist R-module maps making the following diagrams commute:

HomR(M,
∏

iNi)
∼= //

��

∏
iHomR(M,Ni)

��

HomR(
⊕

iMi, N)
∼= //

��

⊕
iHomR(Mi, N)

��

HomR(M,
∏

i Li) ∼=
//
∏

iHomR(M,Li) HomR(
⊕

i Li, N) ∼=
//
⊕

iHomR(Li, N)

HomR(M,
∏

iNi)
∼= //

��

∏
iHomR(M,Ni)

��

HomR(
⊕

iMi, N)
∼= //

��

⊕
iHomR(Mi, N)

��

HomR(M,
∏

i Li) ∼=
//
∏

iHomR(M,Li) HomR(
⊕

i Li, N) ∼=
//
⊕

iHomR(Li, N)

In fact, one can show that more generally, Hom behaves well with limits and colimits.

Exercise 44. Let R be any ring and consider R-modules A and {Mi}.

a) For any inverse system {Mi}, there is a natural isomorphism

HomR(A, lim
i
Mi) ∼= lim

i
HomR(A,Mi).

b) For any direct system {Mi} or R-modules, there is a natural isomorphism

HomR(colimiMi, A) ∼= lim
i
HomR(Mi, B).

Moreover, when R is commutative, these are isomorphisms of modules.

Another important property of Hom is how it interacts with exact sequences. First, an
important note about general additive functors:



73

Remark 3.6. Let F : R-Mod→ S-Mod be an additive functor. Thanks to Lemma 3.3, if
gf = 0, then

F (gf) = F (g)F (f) = F (0) = 0.

Thus F must send complexes to complexes, and in fact, F induces a functor Ch(R)→ Ch(S),
which we also call F . Now if h is a homotopy between two maps of complexes, F must
preserve the identities

δn+1hn + hn−1δn = fn − gn
for all n, so F (h) is a homotopy between F (f) and F (g).

While additive functors send complexes to complexes, they don’t have to preserve exact-
ness. Functors that do preserve exactness are very special.

Definition 3.7. An additive functor T : R-Mod −→ S-Mod is an exact functor if it
preserves short exact sequences. When T is covariant, this means that every short exact
sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C) // 0.

When T is contravariant, this means that any short exact sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A) // 0.

Exercise 45. Show that an additive functor T is exact if and only if it commutes with
homology, that is, for all complexes C and all n,

Hn(T (C)) = T (Hn(C)).

As we will soon see, most functors are not exact. However, many functors of interest
preserve some exactness.

Definition 3.8. A covariant additive functor T : R-Mod −→ S-Mod is left exact if it
takes every exact sequence

0 // A
f
// B

g
// C

of R-modules to the exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C)

of S-modules, and right exact if it takes every exact sequence of R-modules

A
f
// B

g
// C // 0

to the exact sequence of S-modules

T (A)
T (f)

// T (B)
T (g)

// T (C) // 0.
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Definition 3.9. A contravariant additive functor T : R-Mod −→ S-Mod is left exact if
it takes every exact sequence

A
f
// B

g
// C // 0

of R-modules to the exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A)

of S-modules, and right exact if it takes every exact sequence of R-modules

0 // A
f
// B

g
// C

to the exact sequence of S-modules

T (C)
T (g)

// T (B)
T (f)

// T (A) // 0.

Exercise 46. The definitions above all stay unchanged if for each condition we start with a
short exact sequence. For example, a covariant additive functor T is left exact if and only if
for every short exact sequence

0 // A
f
// B

g
// C // 0

of R-modules,

0 // T (A)
T (f)

// T (B)
T (g)

// T (C)

is exact.

Remark 3.10. Left exact covariant functors take kernels to kernels, while right exact co-
variant functors take cokernels to cokernels: the kernel of f fits in an exact sequence

0 // ker f // A
f
// B

and applying a left exact functor F gives us an exact sequence

0 // F (ker f) // F (A)
F (f)

// F (B).

Exactness tells us that F (ker f) is the kernel of F (f). Similarly, the cokernel of f fits into
an exact sequence

A
f
// B // coker f // 0,

which any right exact functor G will take to an exact sequence

G(A)
G(f)

// G(B) // G(coker f) // 0.

Exactness says that G(coker f) is the cokernel of G(f).
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Similarly, left exact contravariant functors take cokernels to kernels, and right exact
contravariant functors take kernels to cokernels. A left exact contravariant functor F will
take the exact sequence

A
f
// B // coker f // 0

to an exact sequence

0 // F (coker f) // F (B)
F (f)

// F (A),

and exactness tells us that F (coker f) is the kernel of F (f).
A right exact contravariant functor G will take the exact sequence

0 // ker f // A
f
// B

to the exact sequence

G(B)
G(f)

// G(A) // G(ker f) // 0,

and exactness says that G(ker f) is the cokernel of G(f).

Exactness is preserved by natural isomorphisms.

Remark 3.11. Suppose that F,G : R-Mod −→ S-Mod are naturally isomorphic additive
functors. We claim that F is exact if and only if G is exact. Let’s prove it in the case when
F and G are covariant. Given any short exact sequence

0 // A // B // C // 0

applying each of our functors yields complexes of R-modules which may or may not be exact.
Our natural isomorphism gives us an isomorphism of complexes

0 // F (A)

��

// F (B) //

��

F (C)

��

// 0

0 // G(A) // G(B) // G(C) // 0.

Isomorphisms of complexes induce isomorphisms in homology, so the top sequence is exact
if and only if the bottom sequence is exact. Thus F preserves the short exact sequence if
and only if G does.

A similar argument shows that F is left (respectively, right) exact if and only if G is left
(respectively, right) exact; we leave the details as an exercise.

However, an additive functor does not have to be left exact nor right exact. There are
even some functors that preserve exactness in the middle.
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Example 3.12. The homology functor is exact in the middle: given a short exact sequence

0 // A
f
// B

g
// C // 0,

the exactness of the long exact sequence in homology says in particular that

Hn(A)
Hn(f)

// Hn(B)
Hn(g)

// Hn(C)

is exact for all n. On the other hand, we claim that the homology functor is neither left
exact nor right exact. More precisely, Hn(f) might fail to be injective and Hn(g) might fail
to be surjective. Finding a counterexample amounts to finding a short exact sequence of
complexes such that the connecting homomorphism in the long exact sequence in homology
is not the zero map.

For example, consider the following complexes and maps of complexes:

2 1 0 -1

A =

f
��

· · · // 0 //

��

0

��

// Z //// 0

��

// · · ·

B =

g

��

· · · // 0 //

��

Z Z //

��

0

��

// · · ·

C = · · · // 0 // Z // 0 // 0 // · · · .

Applying H0 gives us

H0(A)
H0(f)

// H0(B)

Z 0 // 0,

which is not injective, so

0 // H0(A)
H0(f)

// H0(B)
H0(g)

// H0(C)

is not exact. Similarly, applying H1 gives

H1(B)
H1(g)

// H1(C)

0 0 // Z,

which is not surjective, so

H1(A)
H1(f)

// H1(B)
H1(g)

// H1(C) // 0

is not exact. Thus homology is neither left exact nor right exact, though it is exact in the
middle.

But in general, an additive functor might fail to preserve exactness even in the middle.
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Example 3.13. Fix a prime p and consider the functor F : Ab → Ab which on objects is
defined by

F (M) = HomZ(Z/p,M/p2M);

given a homomorphism of abelian groups f :M → N , we get an induced homomorphism of
abelian groups

M/p2M
f

// N/p2N

m+ p2M � // f(m) + p2N,

and F (f) = f ◦ − is postcomposition with f . Consider the short exact sequence

0 // Z/p2 f
// Z/p3 g

// Z/p // 0,

where f is the multiplication by p map, which sends 1 7→ p, and g is the canonical quotient
map by the subgroup generated by p.

Note that
F (Z/p2) = HomZ(Z/p,Z/p2)

is the submodule of Z/p2 of elements killed by p, which is generated by the class of p, so
F (Z/p2) = Z/p. Moreover,

Z/p3

p2Z/p3
∼= Z/p2,

so F (Z/p3) is the the submodule of Z/p2 of elements killed by p, which is generated by p
and isomorphic to Z/p, so F (Z/p3) = Z/p. Now

F (f) : Z/p→ Z/p

is the map induced by multiplication by p, so it is the zero map. The map

g : Z/p2 → Z/p

is the canonical quotient by the subgroup generated by p; any element in

F (Z/p3) = HomZ(Z/p,Z/p2)

corresponds to choosing an element of order p, and thus in the subgroup generated by p, so
applying g always results in 0. We conclude that F (g) = 0. Finally, this shows that applying
F to the original short exact sequence gives us the complex

0 // Z/p 0 // Z/p 0 // Z/p // 0,

which is not exact anywhere.

One amazing fact, however, is that even if a functor is not exact, it must always preserve
split short exact sequences.

Exercise 47. Show that additive functors preserve split short exact sequences.

We are now ready for our first important example of a left exact functor: Hom is left
exact.
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Theorem 3.14. Let M be an R-module.

a) The covariant functor HomR(M,−) is left exact: for every exact sequence

0 // A
f
// B

g
// C

of R-modules, the sequence

0 // HomR(M,A)
HomR(M,f)

// HomR(M,B)
HomR(M,g)

// HomR(M,C)

is exact.

b) The contravariant functor HomR(−,M) is left exact: for every exact sequence

A
f
// B

g
// C // 0

of R-modules, the sequence

0 // HomR(C,M)
HomR(g,M)

// HomR(B,M)
HomR(f,M)

// HomR(A,M)

is exact.

Proof. To make the notation less heavy, we will write

f∗ := HomR(M, f) and g∗ := HomR(M, g)

and similarly
f ∗ := HomR(f,M) and g∗ := HomR(g,M).

Since additive functors send complexes to complexes, as outlined in Remark 7.37, we at
least know that

0 // HomR(M,A)
HomR(M,f)

// HomR(M,B)
HomR(M,g)

// HomR(M,C)

and

0 // HomR(C,M)
HomR(g,M)

// HomR(B,M)
HomR(f,M)

// HomR(A,M)

are functors, so in particular

g∗f∗ = 0 =⇒ im f∗ ⊆ ker g∗

and
f ∗g∗ = 0 =⇒ im g∗ ⊆ ker f ∗.
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a) We have two things to show:

f∗ is injective:

Suppose that h ∈ HomR(M,A) is such that f∗(h) = 0. By definition, this means that
fh = 0. But f is injective, so for any m ∈M

fh(m) = 0 =⇒ h(m) = 0.

We conclude that h = 0, and f∗ is injective.

ker g∗ ⊆ im f∗:

Let h ∈ HomR(M,B) be in the kernel of g∗. Then gh = g∗(h) = 0, so for each m ∈M ,
gh(m) = 0. Then h(m) ∈ ker g = im f , so there exists a ∈ A such that f(a) = h(m).
Since f is injective, this element a is unique for each m ∈ M . So setting k(m) := a
gives us a well-defined function k : M −→ A. We claim that k is in fact an R-module
homomorphism. To see that, notice that if k(m1) = a1 and k(m2) = a2, then

f(a1 + a2) = f(a1) + f(a2) = h(m1) + h(m2) = h(m1 +m2),

so that k(m1 +m2) = a1 + a2 = k(m1) + k(m2). Similarly, given any r ∈ R,

f(ra1) = rf(a1) = rh(m1) = h(rm1),

so k(rm1) = ra1 = rk(m1). Finally, this element k ∈ HomR(M,A) satisfies

f∗(k)(m) = f(k(m)) = h(m)

for all m ∈M , so f∗(k) = h and h ∈ im f∗.

b) Again, we have two things to show:

g∗ is injective:

If g∗(h) = 0 for some h ∈ HomR(C,M), then hg = g∗(h) = 0. Consider any c ∈ C.
Since g is surjective, there exists b ∈ B such that g(b) = c. Then h(c) = hg(b) = 0, so
h = 0.

ker f ∗ ⊆ im g∗:

Let h ∈ HomR(B,M) be in ker f ∗, so that hf = 0. Given any c ∈ C, there exists
b ∈ B such that g(b) = c, since g is surjective. Let k : C −→M be the function defined
by k(c) := h(b) for some b with g(b) = c. This function is well-defined, since whenever
g(b′) = g(b) = c, b−b′ ∈ ker g = im f , say b−b′ = f(a), and thus h(b−b′) = h(f(a)) = 0.
Moreover, we claim that k is indeed a homomorphism of R-modules. If c1, c2 ∈ C, and
g(b1) = c1, g(b2) = c2, then g(b1 + b2) = c1 + c2, so

k(c1 + c2) = h(b1 + b2) = h(b1) + h(b2) = k(b1) + k(b2).

Finally, this element k ∈ HomR(C,M) is such that g∗(k) satisfies

(g∗(k))(b) = k(g(b)) = h(b)

for all b ∈ B, so g∗(k) = h, and h ∈ im g∗.
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So HomR(M,−) preserves kernels, and HomR(−, N) sends cokernels to kernels. However,
Hom is not right exact in general.

Example 3.15. Consider the short exact sequence of abelian groups

0 // Z // Q // Q/Z // 0,

where the first map is the inclusion of Z into Q, and the second map is the canonical
projection. The elements in the abelian group Q/Z are cosets of the form p

q
+ Z, where

p
q
∈ Q, and whenever p

q
∈ Z, p

q
+ Z = 0. While Theorem 3.14 says that

0 // HomZ(Z/2,Z) // HomZ(Z/2,Q) // HomZ(Z/2,Q/Z)

is exact, we claim that this cannot be extended to a short exact sequence, since the map
HomZ(Z/2,Q) −→ HomZ(Z/2,Q/Z) is not surjective.

On the one hand, there are no nontrivial homomorphisms from Z/2 to either Z nor Q,
since there are no elements in Z nor Q of order 2. This shows that

HomZ(Z/2,Q) ∼= 0.

On the other hand, HomZ(Z/2,Q/Z) is nonzero: to give a homomorphism of abelian groups
Z/2 → Q/ZZ is to choose an element in Q/Z of order 2. Since 1

2
+ Z is an element of

order 2 in Q/Z, the map sending 1 in Z/2 to 1
2
+ Z in Z/Q is nonzero. So after applying

HomZ(Z/2,−), we get the exact sequence

0 // 0 // 0 // HomZ(Z/2,Q/Z).

So this shows that HomZ(Z/2,−) is not an exact functor, only left exact.

Similarly, we can show that HomZ(−,Z) is not exact:

Example 3.16. Let’s apply HomZ(−,Z) to the short exact sequence

0 // Z // Q // Q/Z // 0.

This time, Theorem 3.14 says that

0 // HomZ(Q/Z,Z) // HomZ(Q,Z) // HomZ(Z,Z).

is exact. We claim that the last map is not surjective.
First, we claim that HomZ(Q,Z) = 0. Indeed, if f : Q −→ Z is a homomorphism of

abelian groups, then for all n ⩾ 1 we have

f(1) = nf(
1

n
).

So f(1) is an integer that is divisible by every integer, which is impossible unless f(1) = 0.
We conclude that f = 0, and thus HomZ(Q,Z) ∼= 0. So our exact sequence above is actually

0 // HomZ(Q/Z,Z) // 0 // HomZ(Z,Z).
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By Exercise 38, HomZ(Z,Z) ∼= Z ̸= 0, so the last map in our sequence can’t possibly be
surjective, so our sequence is not a short exact sequence.

The other fun consequence is that since HomZ(Q,Z) = 0 and we have an exact sequence

0 // HomZ(Q/Z,Z) // HomZ(Q,Z) = 0,

we can now conclude that
HomZ(Q/Z,Z) = 0.

The last observation is a common trick: once we know we have an exact sequence involving
certain modules we do not know, we can sometimes calculate them exactly by studying the
other modules and maps in the exact sequence.

We can use the left exactness of Hom to compute some modules of interest:

Example 3.17. Let R be a commutative ring and M be a finitely presented R-module.
This means that M has a presentation with finitely many generators and relations, which
translates into an exact sequence of the form

Rm f
// Rn //M // 0.

Since Rm and Rn are free modules, we can think of the map f as multiplication by a matrix
A with n rows and m columns, after we fix a basis for Rn and Rm. Applying HomR(−, R)
to the exact sequence above, we get an exact sequence

0 // HomR(M,R) // HomR(R
n, R)

f∗
// Hom(Rm, R).

By Exercise 38, HomR(R
n, R) ∼= Rn and HomR(R

m, R) ∼= Rm. Moreover, we claim that f ∗

is multiplication by the transpose of A.
First, note that given a basis {e1, . . . , en} for Rn, we get a dual basis {e∗1, . . . , e∗n} for

HomR(R
n, R), where

e∗i (ej) =

{
1 if i = j

0 otherwise.

Similarly, we have a dual basis {e∗1, . . . , e∗m} for HomR(R
m, R) ∼= Rm; we might as well assume

that we picked the canonical basis in both cases, so that we can use similar notation on both.
Now the map f ∗ is also given by multiplication by a matrix, now having m rows and

n columns. To calculate its jth column, we need to calculate f ∗(e∗j), which is given by
precomposition with f , so f ∗(e∗j) = e∗jA; this reads off the jth row of A. Thus f ∗ is indeed
multiplication by AT , and we have an exact sequence

0 // HomR(M,R) // Rn AT
// Rm.

In particular, we have shown that HomR(M,R) is the kernel of multiplication by AT .
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3.2 Tensor products

Definition 3.18. Fix a ring R, and consider:

• a right R-module M ,

• a left R-module N ,

• an abelian group L.

A function f :M ×N −→ L is R-biadditive if for all m,m′ ∈M , all n, n′ ∈ N , and all
r ∈ R we have

• f(m+m′, n) = f(m,n) + f(m′, n)

• f(m,n+ n′) = f(m,n) + f(m,n′)

• f(mr, n) = f(m, rn).

When R is a commutative ring, suppose that L is also an R-module. We say that a
function f : M × N −→ L is R-bilinear if for all m,m′ ∈ M , all n, n′ ∈ N , and all r ∈ R
we have

• f(m+m′, n) = f(m,n) + f(m′, n)

• f(m,n+ n′) = f(m,n) + f(m,n′)

• f(rm, n) = f(m, rn) = rf(m,n).

Note that an R-bilinear function is an R-biadditive function that satisfies

f(rm, n) = f(m, rn) = rf(m,n).

Example 3.19. The product on R is an R-biadditive function R×R −→ R. The first two
rules follow from distributivity of multiplication over the sum; the final rule is a consequence
of the associativity of multiplication.

When R is commutative, this is an R-bilinear function.

Definition 3.20. Let M be a right R-module and let N be a left R-module. The tensor
product of M and N is an abelian group M ⊗R N together with an R-biadditive function
τ : M × N −→ M ⊗R N with the following universal property: for every abelian group A
and every R-biadditive map f : M × N −→ A, there exists a unique group homomorphism
f̃ :M ⊗R N −→ A such that the following diagram commutes:

M ⊗R N
f̃

##

M ×N

τ

OO

f
// A

We will now show that tensor products exist and are unique up to isomorphism; in
particular, we can talk about the tensor product of M and N .



83

Lemma 3.21. Let R be any ring,M be a right R-module, and N a left R-module. The tensor
product of M and N is unique up to unique isomorphism. More precisely, if M ×N τ1−→ T1
and M ×N τ2−→ T2 are two tensor products, then there exists a unique isomorphism T1

i−→ T2
such that

T1

i

��

M ×N

τ1
88

τ2 &&
T2

Proof. First, note that the universal property of the tensor product implies that there exists
a unique φ such that

Ti
φ

""

M ×N

τi

OO

τi
// Ti

commutes. Since the identity map Ti −→ Ti is such a map, it must be the only such map.
Similarly, there are unique maps φ1 : T1 −→ T2 and φ2 : T2 −→ T1 such that

T1
φ1

""

T2
φ2

""

M ×N

τ1

OO

τ2
// T2 M ×N

τ2

OO

τ1
// T1

both commute. Stacking these up, we get commutative diagrams

T1
φ1

""

T2
φ2

""

T2
φ2

��

T1
φ1

��

M ×N

τ1

OO

τ1
//

τ2

<<

T1 M ×N

τ2

OO

τ2
//

τ1

<<

T2.

Note that the identity maps on T1 and T2 are homomorphisms T1 → T1 and T2 → T2 that
would make each of these triangles commute:

T1
id1

""

T2
id2

""

M ×N

τ1

OO

τ2
// T2 M ×N

τ2

OO

τ1
// T2.

By uniqueness, φ2φ1 must be the identity on T1 and φ1φ2 must be the identity on T2. In
particular, T1 and T2 are isomorphic, and the isomorphisms φ1 and φ2 are unique.
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Theorem 3.22. Given any right R-modules M and any left R-module N , their tensor
product M ⊗R N exists, and it is given by the abelian group M ⊗R N defined as follows:

• Generators: For each pair of elements m ∈M and n ∈ N , we have a generator m⊗n.

• Relations: the generators of m ⊗ n satisfy the following relations, where m,m′ ∈ M ,
n, n′ ∈ N , and r ∈ R:

m⊗ (n+ n′) = m⊗ n+m⊗ n′

(m+m′)⊗ n = m⊗ n+m⊗ n′

(mr)⊗ n = m⊗ (rn).

Proof. Let F be the free abelian group on the set M × N . In what follows, we identify a
pair (m,n) ∈M ×N with the corresponding basis element for F . Let S be the subgroup of
F generated by

S =


(m,n+ n′)− (m,n)− (m,n′)
(m+m′, n)− (m,n)− (m′, n)

(mr, n)− (m, rn)

∣∣∣∣∣∣
m,m′ ∈M
n, n′ ∈ N
r ∈ R


 .

Let M ⊗R N := F/S, and let m ⊗ n denote the class of (m,n) in the quotient. We claim
that this abelian group M ⊗R N is a tensor product for M and N , together with the map

M ×N τ //M ⊗N
(m,n) � //m⊗ n

Notice τ is the restriction of the quotient map F −→ F/S to the basis elements of F .
Moreover, by construction of M ⊗R N , the following identities hold:

m⊗ (n+ n′) = m⊗ n+m⊗ n′

(m+m′)⊗ n = m⊗ n+m⊗ n′

(mr)⊗ n = m⊗ (rn)

Together, these make τ an R-biadditive map. The map M ×N −→ F that sends each pair
(m,n) to the corresponding basis element is R-bilinear by construction. Moreover, there is
a natural quotient map F −→M ⊗R N , and these maps make the diagram

M ×N

i
##

τ //M ⊗R N

F

:: ::

commute.
Now suppose that A is any other abelian group, and letM×N f−→ A by any R-biadditive

map. Since F is the free R-module on M ×N , f induces a homomorphism of abelian groups
φ : F −→ A such that φ ◦ i = f , meaning f(m,n) = φ(m,n) for all m ∈ M and all n ∈ N .
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Finally, the fact that f is bilinear implies that S ⊆ kerφ. Therefore, φ induces a group
homomorphism on F/S =M ⊗R N . All this fits in the following commutative diagram:

M ×N

f

��

i ((

τ //M ⊗R N

f̃

��

F

66 66

φ

��

A

Finally, this map f̃ we constructed satisfies f̃(n ⊗ n) = f(m,n), and since M ⊗R N is
generated by such elements, f̃ is completely determined by the images of m ⊗ n, and thus
unique.

The construction in Theorem 3.22 gives us generators m ⊗ n for M ⊗R N . These are
usually called simple tensors. So any element in M ⊗R N is of the form

k∑
i=1

mi ⊗ ni.

Such expressions are not unique. For a cheap example, consider the relations we used to
constructM⊗RN from the abelian group onM×N , which gives us nontrivial ways to write
the 0 element in M ⊗R N :

0 = m⊗ (n+ n′)−m⊗ n−m⊗ n′

0 = (m+m′)⊗ n−m⊗ n−m⊗ n′

0 = (mr)⊗ n−m⊗ (rn).

This makes things unexpectedly tricky. For starters, the tensor product of two nonzero
modules might be zero nevertheless. Also, whenever we try to define some R-module homo-
morphism from M ⊗R N into some other R-module, we must carefully check that our map
is well-defined, which is in principle not an easy task. Therefore, the easiest way to define
some R-module homomorphism from M ⊗R N is to give some R-bilinear map from M ×N
into our desired R-module.

In summary: the tensor product M ⊗RN of M and N is generated by the simple tensors
m⊗n, but it’s important to remember (though we’re all bound to forget once or twice) that
not all elements in M ⊗R N are simple tensors. Moreover, even if M and N are nonzero,
M ⊗R N could very well be zero.

Remark 3.23. Two group homomorphisms M ⊗R N −→ L coincide if and only if they
agree on simple tensors, since these are generators for M ⊗R N .

Remark 3.24. In any tensor product M ⊗RN , the simple tensor 0⊗ 0 is the zero element,
and

m⊗ 0 = 0 = 0⊗ n

for all m ∈M and n ∈ N .
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Let’s see some examples of how tensor products can be zero.

Example 3.25. We claim that Z/2⊗ZQ = 0, despite the fact that both of these Z-modules
are nonzero. To see that, simply note that given any a ∈ Z/2 and any p ∈ Q,

a⊗ p = a⊗ 2p

2
= (2a)⊗ p

2
= 0⊗ p

2
= 0.

Since Z/2⊗ZQ is generated by simple tensors, which are all 0, we conclude that Z/2⊗ZQ = 0.

Example 3.26. Consider the abelian group Q/Z. Again, this is very much nonzero, and
yet we claim that Q/Z⊗Z Q/Z = 0. For any simple tensor,(

p

q
+ Z

)
⊗
(a
b
+ Z

)
=

(
bp

bq
+ Z

)
⊗
(a
b
+ Z

)
=

(
p

bq
+ Z

)
⊗ b

(a
b
+ Z

)
=

(
p

bq
+ Z

)
⊗ 0 = 0⊗ 0 = 0.

Example 3.27. Let p and q be distinct prime integers. Then p has inverse modulo q, say
ap ≡ 1 mod q, and q has an inverse modulo p, say bq ≡ 1 mod p. Given any simple tensor
n⊗m in Z/p⊗Z Z/q,

n⊗m = ((bq)n)⊗ ((ap)m) = (pbn)⊗ (qam) = 0⊗ 0.

Since all simple tensors are 0 and Z/p ⊗Z Z/q is generated by simple tensors, we conclude
that Z/p⊗Z Z/q = 0.

More generally, the following holds:

Exercise 48. Show that if d = gcd(m,n), then Z/n⊗Z Z/m ∼= Z/d.

Of course not all tensor products are zero. A good method for showing that a particular
element m in a module M is nonzero is to give a homomorphism from M sending m to some
nonzero element. We apply this technique to tensor products: to show that a particular
element x in M ⊗RN is nonzero, we construct a homomorphism from M ⊗RN that takes x
no some nonzero element. This is typically easier for simple tensors: we need an R-biadditive
map out of M ×N that sends the corresponding pair to a nonzero element.

Example 3.28. Consider the abelian group 2Z⊗Z Z/2. The map

2Z× Z/2 // Z/2
(a, b) � // ab

2

is Z-bilinear, and thus it induces a homomorphism 2Z ⊗Z Z/2 −→ Z/2. Via this map,
2⊗ 1 7→ 1 ̸= 0, so 2⊗ 1 is nonzero in 2Z⊗Z Z/2, and 2Z⊗Z Z/2 ̸= 0.

Moreover, not all elements in a tensor product are simple tensors.

Exercise 49. Let R = Z[x] and consider the ideal I = (2, x). Show that in I ⊗R I, the
element 2⊗ 2 + x⊗ x is not a simple tensor.
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We can sometimes give M ⊗R N the structure of an R-module.

Remark 3.29. Let R be a commutative ring, and let M and N be R-modules. We can give
M ⊗R N the structure of an R-module, as follows: given r ∈ R and a simple tensor m⊗ n,

r(m⊗ n) = (rm)⊗ n = m⊗ (rn).

We can then extend this linearly to all other elements of M ⊗RN . We leave it as an exercise
to check that this does indeed make the abelian group M ⊗R N into an R-module.

Alternatively, over a commutative ring we can define the tensor product as follows:

Definition 3.30. Let R be a commutative ring and M and N be R-modules. The tensor
product ofM andN is an R-moduleM⊗RN together with an R-bilinear map τ :M×N −→
M ⊗R N with the following universal property: for every R-module A and every R-bilinear
map f : M × N −→ A there exists a unique R-module homomorphism f̃ : M ⊗R N −→ A
such that the following diagram commutes:

M ⊗R N
f̃

##

M ×N

τ

OO

f
// A

One can now check that if we take the abelian groupM⊗RN , which is the unique abelian
group which satisfies the universal property of the tensor product (as defined for a general
ring R), and endow it with the R-module structure defined in Remark 3.29, the resulting
R-module satisfies the universal property in Definition 3.30, and the argument we gave in
Lemma 3.21 can be repurposed to show that this is the unique R-module satisfying this
universal property.

Remark 3.31. We can express the universal property of the tensor product in the framework
of Definition 1.87. For simplicity, assume that R is a commutative ring. Consider the functor
Bilin(M ×N,−) : R-Mod −→ Set that sends an R-module A to the set of R-bilinear maps
M × N −→ A, and a map of R-modules f A −→ B to the function of sets induced by
post-composition of functions. The universal property of the tensor product is encoded in
the representable functor Bilin(M ×N,−) : R-Mod −→ Set together with the bilinear map
τ ∈ Bilin(M ×N,M ⊗RN). Indeed, this says that τ induces a natural isomorphism between
HomR(M ⊗R N,−) and Bilin(M ×N,−) by sending each R-module A to the bijection

HomR(M ⊗R N,A) // Bilin(M ×N,A)
f � // Bilin(M ×N, f)τ = f∗(τ) = fτ.

The fact that this is a bijection says that for every R-bilinear map g there exists a unique
R-module homomorphism f such that

M ⊗R N
f

##

M ×N

τ

OO

g
// A

commutes. So this is indeed the universal property we described before.
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More generally, M ⊗R N has a module structure when one of M or N is a bimodule.

Definition 3.32. Fix rings R and S. An (R, S)-bimodule is an abelian group M together
with a left R-module structure and a right S-module structure such that for all r ∈ R, s ∈ S,
and m ∈M ,

(rm)s = r(ms).

One sometimes writes RMS to indicate M is an (R, S)-bimodule. An R-bimodule is an
(R,R)-bimodule.

Example 3.33.

a) Let Mm,n(R) denote the ring of m × n matrices with entries in a ring R. We can
also view Mm,n(R) as an (Mm,m,Mn,n)-bimodule via left and right multiplication of
matrices.

b) Any two-sided ideal I of a ring R is an R-bimodule.

c) Let R be a commutative ring and let M be any left R-module. Then M is also a right
R-module under the same module structure, by setting

m · r := rm.

Moreover, M is also an R-bimodule using both of these structures at once.

d) Let f : R→ S be a ring homomorphism. We can view S as an (R, S)-bimodule via

t · s · r := tsf(r)

for t, s ∈ S and r ∈ R, where the right hand side is just multiplication in s. Similarly,
S can be viewed as an (S,R)-bimodule and as an (R,R)-bimodule.

e) Let R be a commutative ring of prime characteristic p > 0, meaning that R contains
a copy of Fp, or equivalently, that

1 + · · ·+ 1︸ ︷︷ ︸
p times

= 0.

Then R is an R-bimodule with the left module structure given by the Frobenius map

R
F // R

r � // rp

and right module structure given by the usual multiplication on R. More precisely,
given r, s, t ∈ R,

r · s · t := rpst

where the right hand side is just multiplication in R.
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Exercise 50. Let M be an (S,R)-bimodule and N a left R-module. Consider M ×N as a
left S-module via

s(m,n) = (sm, n).

Then M ⊗R N is a left S-module via

s

(∑
i

mi ⊗ ni

)
= (smi)⊗ ni.

The map
M ×N //M ⊗R N
(m,n) //m⊗ n

is left S-linear, and for any left S-moduleA and left S-linearR-biadditive map b :M×N → A,
there is a unique left S-linear map α :M ⊗R N → A such that α(m⊗ n) = b(m,n).

Similarly, for a left R-module M and an (R, S)-bimodule N , M ×N is a right S-module
via

(m,n)s = (m,ns).

Then M ⊗R N is a right S-module via(∑
i

mi ⊗ ni

)
s = mi ⊗ (nis),

and the map
M ×N //M ⊗R N
(m,n) //m⊗ n

is right S-linear, and for any S-module A and right S-linear R-biadditive map b :M×N → A,
there is a unique right S-linear map α :M ⊗R N → A such that α(m⊗ n) = b(m,n).

We can also take tensor products of maps.

Lemma 3.34. Let R be a ring, f : A → C be a homomorphism of right R-modules, and
g : B → D be a homomorphism of left R-modules. There exists a unique homomorphism of
abelian groups f ⊗ g : A⊗R B −→ C ⊗R D such that

(f ⊗ g)(a⊗ b) = f(a)⊗ g(b)

for all a ∈ A and b ∈ B. When R is commutative, this map f ⊗ g is a homomorphism of
R-modules. Moreover, if A and B are (S,R)-bimodules and f is left S-linear, then f ⊗ g is
also a homomorphism of left S-modules, and if C and D are (R, S)-bimodules and g is right
S-linear, then f ⊗ g is also a homomorphism of right S-modules.

Proof sketch. The function
A×B // C ⊗R D
(a, b) � // f(a)⊗ g(b)

is R-biadditive, and R-bilinear when R is commutative, and right or left S-linear in the
bimodule case, so the universal property of tensor products in each case gives the desired
homomorphism and its uniqueness.
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Lemma 3.35. Given R-module maps A1
f1
// A2

f2
// A3 and B1

b1 // B2
g2
// B3 , the

composition of f1 ⊗ g1 satisfies f2 ⊗ g2

(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2f1)⊗ (g2g1).

Proof. It’s sufficient to check that these maps agree on simple tensors, and indeed they both
take a⊗ b to (f2f1(a))⊗ (g2g1(b)).

We are particularly interested in tensor products because of the tensor functor.

Theorem 3.36. Let M be a right R-module. There is an additive covariant functor

M ⊗R − : R-Mod −→ Ab

that takes each R-module N to M ⊗RN , and each R-module homomorphism f : A −→ B to
the homomorphism of abelian groups 1M ⊗ f :M ⊗R A −→M ⊗R B.

When R is commutative, we can viewM⊗R− as an additive functor R-Mod→ R-Mod.

Proof. Let T := M ⊗R −. First, note that T preserves identities, meaning T (1N) = 1T (N),
since the identity map onM⊗RN agrees with T (1N) = 1M⊗1N on simple tensors. Moreover,
T preserves compositions, since by Lemma 3.35 we have

T (f)T (g) = (1⊗ f)(1⊗ g) = 1⊗ (fg) = T (fg).

Therefore, T is a functor. To check that it is an additive functor, we need to prove that
T (f + g) = T (f) + T (g) for all f, g ∈ HomR(A,B). It is sufficient to check that the maps
T (f + g) = 1⊗ (f + g) and T (f) + T (g) = 1⊗ f + 1⊗ g agree on simple tensors. Indeed,

T (f + g)(a⊗ b) = (1⊗ (f + g))(a⊗ b)
= a⊗ (f + g)(b)

= a⊗ f(b) + g(b)

= a⊗ f(b) + a⊗ g(b)
= (1⊗ f)(a⊗ b) + (1⊗ g)(a⊗ b)
= T (f)(a⊗ b) + T (g)(a⊗ b).

We conclude that T (f + g) = T (f) + T (g).

Definition 3.37. Given a ring R and a right R-module M , the functor M ⊗R − is the
tensor product functor.

Note that we were purposely vague on the target of the tensor product functor: when R
is commutative, we get both a functor R-Mod → Ab and a functor R-Mod → R-Mod.
The two functors are essentially the same: the tensor product functor R-Mod→ Ab is the
composition of functor R-Mod→ R-Mod followed by the forgetful functor R-Mod→ Ab.

We can similarly define the tensor product functor −⊗R N ; when R is commutative, it
turns out that the two constructions are essentially the same.
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Lemma 3.38 (Commutativity of tensor products). Let R be a commutative ring. There is
a natural isomorphism M ⊗R − ∼= − ⊗R N . In particular, for all R-modules M and N we
have

M ⊗R N ∼= N ⊗RM.

Proof. One can check (exercise!) that the mapM×N −→ N⊗RM given by (m,n) 7→ n⊗m
is R-biadditive, and R-bilinear if R is commutative. The universal property of the tensor
product M ⊗R N gives us a homomorphism φ of abelian groups or R-modules, depending
on the case, such that the diagram

M ⊗R N
φ

%%

M ×N

99

// N ⊗RM
(m,n) � // n⊗m

.

commutes. Similarly, we get a map ψ and a commutative diagram

N ⊗RM
ψ

%%

N ×M

99

//M ⊗R N
(m,n) � // n⊗m

.

Then φψ agrees with the identity on N ⊗R M on simple tensors, so it is the identity.
Similarly, ψφ is the identity on M ⊗R N , and these are the desired isomorphisms.

The statement about naturality is more precisely the following: for every R-module
maps f : M1 −→ M2 and g : N1 −→ N2, our isomorphisms M1 ⊗R N1

∼= N1 ⊗R M1 and
M2 ⊗R N2

∼= N2 ⊗RM2 make the diagram

M1 ⊗R N1

∼= //

f⊗g

��

N1 ⊗RM1

g⊗f

��

M2 ⊗R N2

∼= // N2 ⊗RM2

commute. To check this, it’s sufficient to check commutativity on simple tensors, and indeed

m⊗ n_

��

� // n⊗m_

��

M1 ⊗R N1

∼= //

f⊗g

��

N1 ⊗RM1

g⊗f

��

M2 ⊗R N2

∼= // N2 ⊗RM2

f(m)⊗ g(n) � // g(n)⊗ f(m).
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Lemma 3.39 (Associativity of tensors). Given a right R-module A, an (R, S)-bimodule B,
and a left S-module C,

(A⊗R B)⊗S C ∼= A⊗R (B ⊗S C).

Proof. Fix c ∈ C. The map

A×B // A⊗R (B ⊗R C)

(a, b) � // a⊗ (b⊗ c)

is R-biadditive, so it induces a homomorphism of abelian groups

φc : A⊗R B −→ A⊗R (B ⊗R C).

This map is in fact a homomorphism of R-modules when R is commutative. Moreover,

(A⊗R B)× C // A⊗R (B ⊗R C)

(a⊗ b, c) � // a⊗ (b⊗ c)

is also R-biadditive, and it induces a homomorphism that sends (a ⊗ b) ⊗ c to a ⊗ (b ⊗ c).
Similarly, we can define a homomorphism

A⊗R (B ⊗R C) // (A⊗R B)⊗R C

a⊗ (b⊗ c) � // (a⊗ b)⊗ c.

The composition of these two homomorphisms in either order is the identity on simple
tensors, and thus they are both isomorphisms.

Lemma 3.40. Let R be any ring. There is a natural isomorphism between R⊗R − and the
identity functor on R-Mod. In particular, for every left R-module M there is an isomor-
phism of R-modules

R⊗RM ∼= M.

Proof. First, note that R is an R-bimodule, so R⊗RM is a left R-module. The map

R×M //M

(r,m) � // rm

is R-biadditive (by the distributive laws), R-bilinear (by associativity of the action on a

module), and R-linear, so it induces a homomorphism of R-modules R⊗RM
φM //M. By

definition, φM is surjective. Moreover, the map

M
fM // R⊗RM

m � // 1⊗m

is a homomorphism of R-modules, since

fM(a+ b) = 1⊗ (a+ b) = 1⊗ a+ 1⊗ b and fM(ra) = 1⊗ (ra) = r(1⊗ a) = rfM(a).
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For every m ∈ M , φMfM(m) = φM(1 ⊗ m) = 1m = m, and for every simple tensor,
fMφM(r ⊗m) = fM(rm) = 1⊗ (rm) = r ⊗m. This shows that φM is an isomorphism.

Finally, given any f ∈ HomR(M,N), since f is R-linear we conclude that the diagram

r ⊗m_

��

� // rm_

��

R⊗RM
φM //

1⊗f

��

M

f

��

R⊗N φN

// N

r ⊗ f(m) � // rf(m) = f(rm)

commutes, so our isomorphism is natural.

Similarly to the Hom functor, tensor behaves well with respect to arbitrary direct sums.

Theorem 3.41. Let M be a right R-module, and let {Ni}i∈I be an arbitrary family of left
R-modules. Then the map

M ⊗R

(⊕
i∈I

Ni

)
∼=//
⊕
i∈I

M ⊗R Ni

m⊗ (ai)i
� // (m⊗ ai)

is an isomorphism of abelian groups in general, of R-modules in the commutative case, of S-
modules if each Ni is an (S,R)-bimodule, and of right S-modules if N is an (R, S)-bimodule.
Moreover, this isomorphism is natural: given two families of left R-modules {Ai}i∈I and
{Bj}j∈J , and left R-module homomorphisms σij : Ai −→ Bj, the R-module homomorphisms⊕

i∈I

Ai
σ //

⊕
j∈J

Bj

(ai)i∈I
� // (σij(ai))j∈J

and σ̃ =
⊕
i∈I

σij :
⊕
i∈I

M ⊗R Ai −→
⊕
j∈J

M ⊗R Bj

give a commutative diagram

M ⊗R

(⊕
i∈I

Ai

)
1⊗σ
��

∼= //
⊕
i∈I

M ⊗R Ai

σ̃

��

M ⊗R

(⊕
j∈J

Bj

)
∼=
//
⊕
j∈J

M ⊗R Bj.
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Proof. First, note that the function

M ×

(⊕
i∈I

Ai

)
//
⊕
i∈I

(M ⊗R Ai)

(m, (ai)i)
� // (m⊗ ai)

is R-bilinear, so it induces a homomorphism

M ⊗R

(⊕
i∈I

Ai

)
τ //
⊕
i∈I

(M ⊗R Ai) .

For each k ∈ I, let ιk denote the inclusion map Ak ⊆
⊕

iAi. The universal property of
the coproduct (which in the case of R-modules, means the direct sum) gives an R-module
homomorphism ⊕

i∈I

(M ⊗R Ai) λ //M ⊗R
⊕
i∈I

(Ai)

(m⊗ ai)i � //m⊗
∑
i

ιi(ai)

which we obtain by assembling the R-module homomorphisms 1⊗ ιi. It is routine to check
that λ is the inverse of τ , which must then be an isomorphism. Finally, we can check
naturality by checking commutativity of the square above, element by element:

m⊗ (ai)i
� //

_

��

(m⊗ ai)i_

��

m⊗ (σij(ai))i
� // (m⊗ σij(ai)).

Remark 3.42. By commutativity of the tensor product, we also get natural isomorphisms(⊕
i∈I

Ni

)
⊗RM

∼= //
⊕
i∈I

Ni ⊗RM.

The following follows as a corollary of Lemma 3.40 and Theorem 3.41:

Exercise 51. Show that if F and G are free R-modules on bases {eλ}λ∈Λ and {eγ}γ∈Γ,
respectively, then F ⊗R G is the free R-module on basis

{eλ ⊗ eγ | λ ∈ Λ, γ ∈ Γ}.

In particular,
Rn ⊗Rm ∼= Rnm.
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Example 3.43. Let R be any ring and consider R2 ⊗R R2. Let e1 = (1, 0) ∈ R2 and
e2 = (0, 1) ∈ R2. We claim that the element e1⊗e2+e2⊗e1 is not a simple tensor. Suppose,
by contradiction, that there exist v, y ∈ R2 such that

e1 ⊗ e2 + e2 ⊗ e1 = v ⊗ w.

Since {e1, e2} is a basis for the free module R2, we can write

v = v1e1 + v2e2 and w = w1e1 + w2e2.

Substituting above, we see that

v ⊗ w = (v1e1 + v2e2)⊗ (w1e1 + w2e2)

= v1w1e1 ⊗ e1 + v1w2e1 ⊗ e2 + v2w1e2 ⊗ e1 + v2w2e2 ⊗ e2.

But by Exercise 51, {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} is a basis for the free R-module
R2 ⊗R2 ∼= R4, so we can now compare coefficients: since

e1 ⊗ e2 + e2 ⊗ e1 = v1w1e1 ⊗ e1 + v1w2e1 ⊗ e2 + v2w1e2 ⊗ e1 + v2w2e2 ⊗ e2,

we must have 
v1w1 = 1
v1w2 = 0
v2w1 = 0
v2w2 = 1

=⇒


v1 and w1 are units
v1w2 = 0
v2w1 = 0
v2 and w2 are units

But since v1 is a unit and v1w2 = 0, we must have w2 = 0; similarly, since v2 is a unit and
v2w1 = 0, we must have w1 = 0. But we have both w1 = w2 = 0 and that w1, w2 are units,
which is a contradiction. We conclude that e1 ⊗ e2 + e2 ⊗ e1 is not a simple tensor.

One of the reasons tensor products are useful is that we can use tensor products to extend
module structures to ring extensions.

Remark 3.44. Let f : R → S be a ring homomorphism. Since S is an (S,R)-bimodule,
the abelian group S ⊗R M has a left S-module structure for every left R-module M . Thus
S ⊗R − determines a functor from R-modules to S-modules.

Definition 3.45. Let f : R → S be a ring homomorphism. The extension of scalars
from R to S is the functor S ⊗R − : R-Mod −→ S-mod: for each R-module M , we get an
S-module S ⊗RM with

s ·

(∑
i

si ⊗mi

)
:=
∑
i

(ssi)⊗mi,

and for each R-module homomorphism f : M → N we get the S-module homomorphism
1⊗R f : S ⊗RM −→ S ⊗R N .

This functor is closely related to restriction of scalars: we will soon show that restriction
and extension of scalars are adjoint functors.



96

Definition 3.46. Let f : R → S be a ring homomorphism. The restriction of scalars
functor from S to R is the functor f ∗ : S-mod −→ R-Mod that takes each S-module M
to the R-module f ∗M with underlying abelian group M and R-module structure

r ·m := f(r)m

induced by f . Moreover, for each S-module homomorphism g : M −→ N we get the R-
module homomorphism f ∗(g) : f ∗(M) −→ f ∗(N) defined by f ∗(g)(m) := g(n).

Exercise 52. Check that restriction of scalars as defined above is indeed a functor.

Tensor is right exact.

Theorem 3.47. Let M be a right R-module. The functor M ⊗R − is right exact, meaning
that for every exact sequence

A i // B
p
// C // 0

the sequence

M ⊗R A
1⊗i
//M ⊗R B

1⊗p
//M ⊗R C // 0

is exact.

Proof. Since additive functors send complexes to complexes, (1 ⊗ p)(1 ⊗ i) = 0. We have
two more things to show:

1⊗ p is surjective: Consider any m1⊗ c1+ · · ·+mn⊗ cn ∈M ⊗RC. Since p is surjective,
we can find b1, . . . , bn ∈ B such that p(bi) = ci. Therefore,

(1⊗ p)(m1⊗ b1 + · · ·+mn⊗ bn) = m1⊗ p(b1) + · · ·+mn⊗ p(bn) = m1⊗ c1 + · · ·+mn⊗ cn.

ker(1⊗ p) = im(1⊗ i): Let I = im(1 ⊗ i). We have already shown that I ⊆ ker(1 ⊗ p),
so 1⊗ p induces a map q : (M ⊗R B)/I −→ M ⊗R C. Let π : M ⊗R B −→ (M ⊗R B)/I be
the canonical projection. By definition, qπ = 1⊗ p.

Consider the map

M × C f
// (M ⊗R B)/I

(m, c) � //m⊗ b

,

where b is such that p(b) = c. First, we should check this map f is well-defined. To see
that, suppose that b′ ∈ B is another element with p(b′) = c, so that p(b − b′) = 0. Then
b− b′ ∈ ker p = im i, so m⊗ (b− b′) ∈ im(1⊗ i) ⊆ I. Therefore, m⊗ b = m⊗ b′ modulo I,
and f is well-defined.

Moreover, one can check (exercise!) that f is R-biadditive, so it induces a homomorphism
of R-modules M ⊗R C −→ (M ⊗R B)/I, which we will denote by f̂ . We will show that f̂ is
a left inverse of q, so q is injective. And indeed, given mi ∈M and bi ∈ B, we have

f̂ q

(
n∑
i=1

mi ⊗ bi

)
= f

(
n∑
i=1

mi ⊗ p(bi)

)
=

n∑
i=1

f(mi ⊗ p(bi)) =
n∑
i=1

mi ⊗ bi.

We conclude that q is injective, and thus

ker(1⊗ p) = ker(qπ) = ker π = I = im(1⊗ i).
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However, tensor is not exact.

Example 3.48. Consider the short exact sequence

0 // Z i // Q p
// Q/Z // 0.

Applying the functor Z/2⊗Z −, we get an exact sequence

Z/2⊗Z Z
1⊗i
// Z/2⊗Z Q

1⊗p
// Z/2⊗Z Q/Z // 0.

However, we claim that 1⊗ i is not injective. On the one hand, by Lemma 3.40 we have an
isomorphism Z/2 ⊗Z Z ∼= Z/2 ̸= 0. On the other hand, we have seen in Example 3.25 that
Z/2⊗Z Q = 0, so the map 1⊗ i : Z/2→ 0 cannot possibly be injective.

We can now show that extension of scalars turns an R-module into the S-module with
the same presentation.

Remark 3.49. Let R be a ring, M be a right R-module, and N be a left R-module. We
can compute M ⊗R N by taking a presentation of M

R⊕Γ ϕ
// R⊕Λ //M // 0

and tensoring with N to get

N⊕Γ // N⊕Λ //M ⊗R N // 0,

so M ⊗R N is the cokernel of the map N⊕Γ → N⊕Λ induced by ϕ. We can also compute
M ⊗R N by taking a presentation of N

R⊕Ξ ψ
// R⊕Ω // N // 0

and tensoring with M to get

M⊕Ξ //M⊕Ω //M ⊗R N // 0,

so M ⊗R N is isomorphic to the cokernel of the map M⊕Γ →M⊕Λ induced by ψ.
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3.3 Localization

Recall that a multiplicatively closed subset of a ring R is a set W ∋ 1 that is closed for
products. The three most important classes of multiplicatively closed sets are the following:

Example 3.50. Let R be a commutative ring.

1) For any f ∈ R, the set W = {1, f, f 2, f 3, . . . } is a multiplicatively closed set.

2) If P ⊆ R is a prime ideal, the set W = R \ P is multiplicatively closed: this is an
immediate translation of the definition.

3) An element that is not a zerodivisor is called a nonzerodivisor or regular element.
The set of regular elements in R forms a multiplicatively closed subset. When R is a
domain, this set is precisely the set of all nonzero elements R \ {0}.

Definition 3.51 (Localization of a ring). Let R be a commutative ring, and W be a multi-
plicative set with 0 /∈ W . The localization of R at W is a ring, denoted by W−1R or RW ,
given by where ∼ is the equivalence relation

r

w
∼ r′

w′ if there exists u ∈ W such that u(rw′ − r′w) = 0.

The operations are given by

r

v
+
s

w
=
rw + sv

vw
and

r

v

s

w
=

rs

vw
.

The zero in W−1R is 0
1
and the multiplcative identity is 1

1
. There is a canonical ring homo-

morphism

R //W−1R

r � // r
1

.

Note that we write elements inW−1R in the form r
w
even though they are equivalence classes

of such expressions.
Let M be an R-module. The localization of M at W is the W−1R-module W−1M or

MW given by

W−1M :=
{m
w

∣∣∣ m ∈M,w ∈ W
}
/ ∼

where ∼ is the equivalence relation
m

w
∼ m′

w′ if u(mw′ − m′w) = 0 for some u ∈ W . The

operations are given by

m

v
+
n

w
=
mw + nv

vw
and

r

v

m

w
=
rm

vw
.

The zero in the module W−1M is given by 0
1
.

Here are the most important examples of localizations you will come across in commu-
tative algebra.
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Example 3.52 (Most important localizations). Let R be a commutative ring.

1) For f ∈ R and W = {1, f, f 2, f 3, . . . } = {fn | n ⩾ 0}, we usually write Rf for W−1R.

2) WhenW is the set of nonzerodivisors on R, we callW−1R the total ring of fractions
of R. When R is a domain, this is just the fraction field of R, and in this case this
coincides with the localization at the prime (0), as described below.

3) For a prime ideal P in R, we generally write RP for (R \ P )−1R, and call it the
localization of R at P . Given an ideal I in R, we sometimes write IP to refer to
IRP , the image of I via the canonical map R→ RP . Notice that when we localize at
a prime P , the resulting ring is a local ring (RP , PP ). We can think of the process of
localization at P as zooming in at the prime P . Many properties of an ideal I can be
checked locally, by checking them for IRP for each prime P ∈ V (I).

Remark 3.53. If R is a domain, the equivalence relation defining the localization simplifies
to rw′ = r′w. In particular, Frac(R) = R(0) = (R \ {0})−1R is a localization of R.

If R is not a domain, the canonical map R→ W−1R is not necessarily injective.

Example 3.54. Consider R = k[x, y]/(xy). The canonical maps R −→ R(x) and R −→ Ry

are not injective, since in both cases y is invertible in the localization, and thus

x 7→ x

1
=
xy

y
=

0

y
=

0

1
.

In W−1R, every element of W becomes a unit. The following universal property says
roughly that W−1R is the smallest R-algebra in which every element of W is a unit.

Theorem 3.55. Let R be a commutative ring, and W a multiplicative set with 0 /∈ W .
Let S be an R-algebra in which every element of W is a unit. Then there is a unique
homomorphism α such that the following diagram commutes:

R //

��

W−1R

α
{{

S

where the vertical map is the structure homomorphism and the horizontal map is the canonical
homomorphism.

Proof. Given an R-algebra S such that every element of W is a unit, where the algebra
structure is induced by the ring homomorphism f : R→ S, consider the map

W−1R α // S
r
w

� // f(w)−1f(r).

First, note that our assumption that every element of W is invertible in S means that f(w)
is invertible in S, and thus f(w)−1f(r) makes sense. Moreover, we claim that α is a ring
homomorphism:

α(1) = f(1)−1f(1) = 1,
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and moreover

α

(
a

u

b

v

)
α

(
ab

uv

)
= f(uv)−1f(ab)

= (f(u)−1f(a))(f(v)−1f(b))

= α
(a
u

)( b
v

)
and

α

(
a

u
+
b

v

)
α

(
av + bu

uv

)
= f(uv)−1f(av + bu)

= (f(u)−1f(v)−1)(f(a)f(v) + f(b)f(u))

= (f(u)−1f(a) + (f(v)−1f(b)

= α
(a
u

)
+

(
b

v

)
.

Our definition of α gives us

α
(r
1

)
= f(1)−1f(r) = f(r),

as desired. Moreover, if β : W−1R→ S is any ring homomorphism such that

β(
r

1
) = f(1)−1f(r) = f(r),

then

β
(r
s

)
= β

(s
1

)−1

β
(r
1

)
= f(s)−1f(r) = α

(s
1

)−1

α
(r
1

)
= α

(r
s

)
.

This proves our uniqueness claim.

Definition 3.56. Let R be a commutative ring and let W be a multiplicative subset of R.
The localization at W is the functor R-Mod → W−1R-Mod that sends each R-module
M to the W−1R-module W−1M , and that sends each R-module homomorphism f :M → N
to the homomorphism of W−1R-modules given by

W−1M //W−1N
m
w

� // f(m)
w
.

We might denote this functor by W−1(−) or (−)W . When W is the complement of a prime
ideal P , we write the localization at P as (−)P .

Exercise 53. Show that for all R-module homomorphisms f :M → N ,

W−1M //W−1N
m
w

� // f(m)
w

is a homomorphism of modules over W−1R.
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Exercise 54. Show that localization is an exact additive functor.

Theorem 3.57. Let R be a commutative ring, and W ∋ 1 a multiplicative subset of R.
Then the localization at W and W−1R⊗− are naturally isomorphic functors. In particular,
for every R-module M , there is an isomorphism of W−1R-modules

W−1R⊗RM ∼= W−1M,

and given an R-module map α :M → N , the map of W−1R-modules W−1R⊗α corresponds
to W−1α = αW under these isomorphisms.

Proof. The bilinear map W−1R×M //W−1M

( r
w
,m) � // rm

w

induces a homomorphism ψ : W−1R×M → W−1M that is surjective.
For an inverse map, set ϕ(m

w
) := 1

w
⊗m. To see this is well-defined, suppose m

w
= m′

w′ , so
there exists some v ∈ W such that v(mw′ −m′w) = 0. Then,

ϕ
(m
w

)
− ϕ

(
m′

w′

)
=

1

w
⊗m− 1

w′ ⊗m
′.

We can multiply through by vww′

vww′ to get

vw′

vww′ ⊗m−
vw

vww′ ⊗m
′ =

1

vww′ ⊗ v(mw
′ −m′w) = 0.

To see this is a homomorphism, we note that

ϕ

(
m

w
+
m′

w′

)
= ϕ

(
mw′ +m′w

ww′

)
=

1

ww′ ⊗ (mw′ +m′w) =
1

ww′ ⊗mw
′ +

1

ww′ ⊗m
′w

=
w′

ww′ ⊗m+
w

ww′ ⊗m
′ =

1

w
⊗m+

1

w′ ⊗m
′ = ϕ

(m
w

)
+ ϕ

(
m′

w′

)
,

and

ϕ
(
r
m

w

)
=

1

w
⊗ rm = r

(
1

w
⊗m

)
= rϕ

(m
w

)
.

The composition ϕ ◦ ψ sends

r

w
⊗m 7→ rm

w
7→ 1

w
⊗ rm =

r

w
⊗m.

Since this is the identity on simple tensors, and simple tensors generated the tensor product,
it must be the identity.

For the claim about maps, we need check that ψN ◦ (W−1R⊗ α) = W−1α ◦ ψM for every
R-module homomorphism α! :M → N . And indeed,

(ψN ◦ (W−1R⊗ α))
( r
w
⊗m

)
= ψN

( r
w
⊗ α(m)

)
=
rα(m)

w

=
α(rm)

w
= W−1α

(rm
w

)
= (W−1α ◦ ψM)

( r
w
⊗m

)
.
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Finally, we note that our isomorphismsW−1R⊗R M ∼= W−1M give a natural isomorphism
between the localization functor W−1(−) and the tensor functor W−1R⊗R−. Indeed, given
a map of R-modules M

f−→ N , the diagram

W−1R⊗M ψM //

id⊗f

��

W−1M

W−1(f)

��

W−1R⊗N
ψN

//W−1N

commutes, since it commutes for simple tensors:

r
w
⊗m //

id⊗f

��

rm
w

W−1(f)

��

r
w
⊗ f(m) // rf(m)

w
= f(rm)

w
.

Now since localization is exact, we conclude that W−1R⊗R − is an exact functor for all
commutative rings R and all multiplicatively closed subsets W .

Exercise 55. Let R be a commutative noetherian ring, W be a multiplicative set, M be a
finitely generated R-module, and N an arbitrary R-module. Show that

HomW−1R(W
−1M,W−1N) ∼= W−1HomR(M,N).

In particular, if P is prime,

HomRP
(MP , NP ) ∼= HomR(M,N)P .

Localization is a very powerful tool in commutative algebra. Many important concepts
localize well, in the sense that to prove that R or a module satisfy a certain property, it is
often sufficient to show that all localizations of R or of that module also have that property.
This is a very common and helpful technique in commutative algebra. For example, a
module M is zero if and only if all its localizations are zero; one can even reduce to showing
all localizations of M at a prime ideal are zero.

One important thing to keep in mind, however, is that if M is a finitely generated R-
module, a localization MW of M is typically not finitely generated over R, though it is
finitely generated over RW .

Exercise 56. Let R be a domain and let f ∈ R be a nonzero nonunit. Then Rf is not a
finitely generated R-module.

To solve this exercise, however, one needs a little bit of commutative algebra that we are
not covering in this course.
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3.4 Hom-tensor adjunction

The Hom and tensor functors are closely related. First, we note that HomR(A,B) can be a
module over a ring S when A or B have a bimodule structure.

Exercise 57. Let R and S be rings.

• If A is an (R, S)-bimodule and B is a left R-module, then HomR(A,B) has a left
S-module structure via (s · f)(a) = f(as).

• If A is an (R, S)-bimodule and B is a right S-module, then HomS(A,B) has a right
R-module structure via (f · r)(a) = f(ra).

• If B is an (S,R)-bimodule and A is a right R-module, then HomR(A,B) has a left
S-module structure via (s · f)(a) = sf(a).

• If B is an (S,R)-bimodule and A is a left S-module, then HomS(A,B) has a right
R-module structure via (f · r)(a) = f(a)r.

These structures can be a bit confusing at first – especially since we have left module
structures written on the right and vice-versa. While the exercise is not difficult, it can be
extremely enlightening – we strongly recommend the reader tries their hand at the details.

The following statements are known as Hom-tensor adjunction – and as we will see, they
do encode an adjunction of functors.

Theorem 3.58. Let R and S be rings. Assume that

• A is a right R-module,

• B is an (R, S)-bimodule, and

• C is a right S-module.

There is a natural isomorphism of abelian groups

HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C)).

If A also has a (T,R)-bimodule structure, or C has a (T, S)-bimodule structure, then this is
an isomorphism of (left or right, respectively) T -modules.

Theorem 3.59. Let R and S be rings. Assume that

• A is a left R-module,

• B is an (S,R)-bimodule, and

• C is a left S-module.

There is a natural isomorphism of abelian groups

HomS(B ⊗R A,C) ∼= HomR(A,HomS(B,C)).
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We leave the details to the reader, and prove the case when the underlying rings are
commutative. First, let’s do the case when R = S.

Theorem 3.60 (Hom-tensor adjunction I). Let R be a commutative ring and let M , N , and
P be R-modules. There is an isomorphism of R-modules

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P ))

that is natural on M , N , and P .

Proof. The universal property of the tensor product says that to give an R-module homo-
morphism M ⊗R N −→ P is the same as giving an R-bilinear map M × N −→ P . Given
such a bilinear map f , the map n 7→ f(m⊗ n) is R-linear for each m ∈ M , so it defines an
R-module homomorphism N −→ P . Now the assignment

M // HomS(N,P )

m // (n 7→ f(m⊗ n))

is R-linear, f is an R-module homomorphism, and m 7→ m⊗ n is R-linear on m.
Conversely, given an R-module homomorphism f ∈ HomR(M,HomR(N,P )), one can

check (exercise!) that (m,n) 7→ f(m)(n) is an R-bilinear map, so it induces an R-module
homomorphism M ⊗R N −→ P . Moreover, the two constructions are inverse to each other.

So we have constructed a bijection of Hom-sets

HomR(M ⊗R N,P ) τ // HomR(M,HomR(N,P ))

f � // (m 7→ (n 7→ f(m⊗ n)))

(m⊗ n 7→ g(m)(n)) g�oo

.

It’s routine to check that both of these bijections are indeed homomorphisms of R-modules,
so we leave it as an exercise.

Finally, naturality means we have the following commutative diagrams:

A

f

��

HomR(A⊗R N,P )
∼= // HomR(A,HomR(N,P ))

//

B HomR(B ⊗R N,P )

(f⊗1N )∗

OO

∼=
// HomR(B,HomR(N,P ))

f∗

OO
,

A

f

��

HomR(M ⊗R A,P )
∼= // HomR(M,HomR(A,P ))

//

B HomR(M ⊗R B,P )

(1M⊗f)∗
OO

∼=
// HomR(M,HomR(B,P ))

(f∗)∗

OO
,

and

A

f

��

HomR(M ⊗R N,A)
∼= //

f∗
��

HomR(M,HomR(N,A))

(f∗)∗

��

//

B HomR(M ⊗R N,B) ∼=
// HomR(M,HomR(N,B))

.

We leave checking these do indeed commute as an exercise.
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Corollary 3.61 (Tensor and Hom are adjoint functors). Let R be a commutative ring, and
M an R-module. The functor − ⊗R M : R-Mod −→ R-Mod is left adjoint to the functor
HomR(M,−) : R-Mod −→ R-Mod.

Proof. The adjointness translates into the fact that for all R-modules N and P there is a
bijection

HomR(N ⊗RM,P ) ∼= HomR(N,HomR(M,P ))

which is natural on N and P , which is a corollary of Theorem 3.60.

Later, when we talk about more general abelian categories, we will see that this adjunction
implies that Hom is left exact and that tensor is right exact; in fact, this is a more general fact
about adjoint pairs. For now, we want to discuss a more general version of this Hom-tensor
adjunction.

Theorem 3.62 (Hom-tensor adjunction II). Let f : R → S be a ring homomorphism of
commutative rings. Let M be an R-module, and P and N be S-modules. There is an
isomorphism of abelian groups

HomS(M ⊗R N,P ) ∼= HomR(M,HomS(N,P )).

Moreover, this isomorphism is natural on M , N , and P , so it induces natural isomorphisms

• between HomS(−⊗R N,P ) and HomR(−,HomS(N,P )).

• between HomS(M ⊗R −, P ) and HomR(M,HomS(−, P )).

• between HomS(M ⊗R N,−) and HomR(M,HomS(N,−)).

Proof. Consider the map

HomS(M ⊗R N,P ) τ // HomR(M,HomS(N,P ))

f � //m 7→ (n 7→ f(m⊗ n))

.

Fix f . For each m ∈ M , let τm be the map N −→ P defined by τm(n) := f(m ⊗ n). Note
that τm is indeed a homomorphism of S-modules, since it is the composition of two S-module
maps, f and m⊗R idN , where m is the constant map M −→M equal to m.

We should check that our proposed map τ is indeed a map of abelian groups. It is
immediate from the definition that τ sends the 0-map to the 0-map. Moreover, given S-
module homomorphisms f, g :M ⊗N −→ P , and any n ∈ N , we have

τm(f + g)(n) = (f + g)(m⊗ n) by definition

= f(m⊗ n) + g(m⊗ n) since f and g are S-module maps

= τm(f)(n) + τm(g)(n) by definition

so τm(f + g) = τm(f) + τm(g) for all m ∈M , and thus τ(f + g) = τ(f) + τ(g).
Suppose that τ(f) = 0. Then for every m ∈M and every n ∈ N ,

0 = τ(f)(m)(n) = τm(f)(n) = f(m⊗ n),
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so f vanishes at every simple tensor, and we must have f = 0. On the other hand, if
we are given g ∈ HomR(M,HomS(N,P )), consider the map M × N −→ P defined by
f̃(m,n) = g(m)(n). Since g is a homomorphism of R-modules, it is R-linear onm. Moreover,
for each fixed m, g(m) is a homomorphism of S-modules, so in particular g(m) is R-linear.
Together, these say that f̃ is an R-bilinear map. Let f be the homomorphism of R-modules
M ⊗R N −→ P induced by f̃ . By definition, f(m ⊗ n) = f̃(m,n) = g(m)(n), so τ(f) = g.
We conclude that τ is a bijection.

We leave the statements about naturality as exercises.

Corollary 3.63 (Adjointness of restriction and extension of scalars). Let f R −→ S be a
ring homomorphism. The restriction of scalars functor f ∗ : S-Mod −→ R-Mod is the right
adjoint of the extension of scalars functor f∗ : R-Mod −→ S-Mod.

Proof. We need to show that for every R-module M and every S-module N there are bijec-
tions

HomS(f∗(M), N) ∼= HomR(M, f ∗(N))

which are natural on both M and N . By Theorem 3.62, we have natural bijections

HomS(M ⊗R S,N) ∼= HomR(M,HomS(S,N)).

The module M ⊗R S is precisely f∗(M). By Exercise 38, HomS(S,N) ∼= N as an S-module.
An isomorphism of S-modules HomS(S,N) −→ N is in particular an R-linear map, and thus
also an isomorphism of R-modules. So HomS(S,N) ∼= f ∗(N) as R-modules. Therefore, the
Hom-tensor adjuntion gives us the natural bijections we were looking for.

The idea is that restriction of scalars and extension of scalars are the most efficient ways
of making an R-module out of an S-module, and vice-versa.



Chapter 4

Enough (about) projectives and
injectives

While Hom and tensor are not exact functors in general, HomR(M,−), HomR(−,M), and
M ⊗R − can be exact functors for carefully chosen modules M . In this chapter, we intro-
duce these three classes of modules (projective, injective, and flat modules) and study their
properties. Throughout, we consider general rings and left modules.

4.1 Projectives

Definition 4.1. Let R be a ring. An R-module P is projective if given any surjective
R-module homomorphism s : A → B and any R-module homomorphism f : P → B, there
exists an R-module homomorphism g such that the diagram

P
g

��

f
��

A s
// B // 0

commutes.

Remark 4.2. The commutativity of the diagram

P
g

��

f
��

A s
// B // 0

says that s∗(g) = f , where s∗ is the map HomR(P,A) −→ HomR(P,B) induced by s.
Whenever this happens, we say that g is a lifting of f , and that f lifts, or that f factors
through A.

There are projective modules over any ring, as the next result shows; in fact, free modules
are always projective.

107
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Theorem 4.3. Free modules are projective.

Proof. Let F be a freeR-module. Suppose we are givenR-module homomorphisms s : A→ C
and f : F → C such that s is surjective. Fix a basis B = {bi}i for F . Since s is surjective, for
each i we can choose ai ∈ A such that s(ai) = f(bi). Consider the function u : B −→ A given
by u(bi) = ai. The universal property of free modules says that there exists an R-module
homomorphism g : F −→ A that coincides with u for all basis elements. Now

sg(bi) = su(bi) = s(ai) = f(bi),

so sg agrees with f for all basis elements. Since B generates F , we conclude that sg = f .

Projective modules are precisely those that make the covariant Hom functor exact.

Theorem 4.4. Let P be an R-module. The functor HomR(P,−) is exact if and only if P is
projective.

Proof. By Theorem 3.14, HomR(P,−) is left exact. The statement is that P is projective if
and only for any short exact sequence

0 // A
i // B

p
// C // 0 ,

the induced map s∗: HomR(P,B) −→ HomR(P,C) is surjective. Say we are given a surjective
map

B
p
// C // 0 .

The induced map s∗ is surjective if and only if for every f ∈ HomR(P,C) there exists a
lifting g ∈ HomR(P,B) of f , meaning s∗(g) = f . By Remark 4.2, the existence of such a g
for all such surjective maps s is precisely the condition that P is projective.

Corollary 4.5. For any ring R, HomR(R,−) is exact. More generally, if F is any free
R-module, then HomR(F,−) is exact.

Proof. By Theorem 4.3, free modules, and R in particular, are projective. By Theorem 4.4,
HomR(F,−) must be exact for any free R-module F .

However, not every projective module is free. But before we see such examples, we need
to know a bit more about projective modules.

First, we show that we can rephrase the condition that a module is projective or injective
in terms of split exact sequences.

Theorem 4.6. An R-module P is projective if and only if every short exact sequence

0 // A // B // P // 0

splits.
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Proof. (⇒) Consider a short exact sequence

0 // A
f
// B

g
// P // 0 .

If P is projective, the identity map on P lifts to a map P −→ B, meaning that

P
h

��

B g
// P // 0

commutes. This says that our map h

0 // A
f
// B

g
// P //

h

aa 0

is a splitting for our short exact sequence, which must then be split, by Lemma 2.19.
(⇐) Conversely, suppose that every short exact sequence

0 // A // B // P // 0

splits, and consider any diagram

P

f

��

B p
// C // 0.

Let F be a free module that surjects onto P — for example, the free module on a set of
generators of P — and fix a surjection π : F ↠ P . By assumption, the short exact sequence

0 // kerπ // F π // P //

h

aa 0

splits, so by Lemma 2.19 there exists h such that πh = idP . Now since F is free, we can
define an R-module map ĝ : F −→ B that such that

F π
//

ĝ

��

P

g
��

h
{{

f

��

B s
// C // 0

commutes, by sending each basis element b ∈ F to any lift of fπ(b) in B via s. Now set
g := ĝh, and note that

sg = sĝh by definition

= fπh by commutativity

= f since πh = idP ,

so g is a lift of s by f .
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We have seen that free modules are projective; what other modules are projective?

Definition 4.7. An R-module M is a direct summand of an R-module N if there exists
an R-module A such that A⊕M ∼= N .

Remark 4.8. Saying that M is a direct summand of N is equivalent to giving a splitting π
of the inclusion map i :M ↪→ N , meaning that πi = idN . As we have argued in Lemma 2.19,
such a splitting π gives

N = im i⊕ kerπ.

Essentially repeating the argument we used in Lemma 2.19, every element in N can be
written as

n = (n− iπ(n)) + iπ(n),

where iπ(n) ∈ im i and n − iπ(n) ∈ kerπ, and kerπ ∩ im i = 0 because if i(a) ∈ kerπ then
a = πi(a) = 0.

Note that when we are dealing with graded modules over a graded ring, the kernels and
images of graded maps are graded modules, and the equality N = im i ⊕ kerπ is a graded
direct sum of graded modules.

Theorem 4.9. An R-module is projective P if and only if P is a direct summand of a free
R-module. In particular, a finitely generated R-module P is projective if and only if P is a
direct summand of Rn for some n.

Proof. (⇒) Let P be a projective module, and fix a free module F surjecting onto P . If P
is finitely generated, we can take F = Rn for some n. The short exact sequence

0 // kerπ // F
π // P // 0

must split by Theorem 4.6, so P is a direct summand of F .
(⇐) Now suppose P is a direct summand of a free module F . In particular, we have an

inclusion map i : P −→ F that splits, so it comes together with a projection map π : F −→ P
such that πi = idP . Given any diagram

P

f

��

B s
// C // 0,

we can define an R-module homomorphism h such that sh = fπ, so that the following
diagram commutes:

F π
//

h
��

P

i
{{

f

��

B s
// C // 0,

Setting g := hi, we do indeed obtain sg = f , since

sg = shi by definition

= fπi because sh = fπ

= f since πi = idP .
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Remark 4.10. While every module M is a quotient of a free module F , so that we always
have a surjection π : F → M , not every module embeds into a free module; and even if M
is a submodule of some free module F , the inclusion map M ⊆ F is not necessarily split.
On the other hand, as we showed in Theorem 4.9 that M is projective if and only if we can
write it as a quotient of a free module F , say π : F → M , and π splits, so that in fact M
embeds into F and that map splits.

Corollary 4.11. Let R be any ring.

1) Every direct summand of a projective module is projective.

2) Every direct sum of projective modules is projective.

Proof.

1) SupposeM⊕A ∼= P for some projective module P . By Theorem 4.9, there exists a free
R-module F and an R-module B such that P⊕B ∼= F . ThenM⊕A⊕B ∼= P⊕B ∼= F ,
and by Theorem 4.9 this implies M is projective.

2) Let {Pi}i∈I be a family of projective modules. By Theorem 4.9, there exist free modules
Fi such that each Pi is a direct summand of Fi. Therefore, ⊕Pi is a direct summand
of ⊕iFi, which is also free. By Theorem 4.9, this implies that ⊕Pi is projective.

We are finally ready to give examples showing that projective modules are not necessarily
free.

Example 4.12. The ring R = Z/(6) can be written as a direct sum of the ideals

I = (2) and J = (3).

Indeed, R = I + J and I ∩ J = 0, so R = I ⊕ J . By Corollary 4.11, I and J are projective
R-modules. However, I and J are not free. This can easily be explained numerically: every
finitely generated free R-module is of the form Rn, so it has 6n elements for some n, while
I and J have 3 and 2 elements respectively.

Finally, to emphasize its importance we record here an easy result that we have used
repeatedly at this point, and which will be very important later on.

Lemma 4.13. For every R-module M , there exists a free module F surjecting onto M . If
M is finitely generated, we can take F to be finitely generated.

We will often need only a weaker version of this: that every module is a quotient of a
projective module.
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4.2 Injectives

Injective modules are dual to projectives.

Definition 4.14. An R-module I is injective if given an injective R-module homomor-
phism i : A −→ B and an R-module homomorphism f : A −→ I, there exist an R-module
homomorphism g such that

I

0 // A

f

OO

i
// B

g
__

commutes.

These are precisely the modules I such that HomR(−, I) is exact.

Theorem 4.15. An R-module I is injective if and only if HomR(−, I) is exact, meaning
that for every short exact sequence

0 // A i // B
p
// C // 0

we get an exact sequence

0 // HomR(C, I)
p∗
// HomR(B, I)

i∗ // HomR(A, I) // 0.

Proof. By Theorem 3.14, HomR(−, I) is left exact, so for any short exact sequence

0 // A
i // B

p
// C // 0

we get an exact sequence

0 // HomR(C, I)
p∗
// HomR(B, I)

i∗ // HomR(A, I).

So the content of the theorem is that I is injective if and only if for every injective R-module
homomorphism i : A −→ B, the induced map i∗ is surjective. Now notice that i∗ is surjective
if and only if every f ∈ HomR(A, I) lifts to some g ∈ HomR(B, I), meaning

I

0 // A

f

OO

i
// B

g
__

commutes. That is precisely what we want for I to be injective.

Giving examples of injective modules is much harder than giving examples of projective
modules, but we will see some examples later. First, we prove some properties of injective
modules.

The class of injectives modules is closed for products and finite direct sums.
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Lemma 4.16. Given any family {Mi}i∈I of injective modules,
∏

i∈IMi is injective.

Proof. Let πj :
∏

i∈IMi −→Mj be the projection onto the jth factor. Given any diagram∏
i∈IMi

0 // A

f

OO

i
// B,

the fact that Mi is injective gives us R-module homomorphisms gi such that

Mi

0 // A

πif

OO

i
// B

gi
``

commutes for each i. Now the R-module homomorphism

B
g
//
∏

i∈IMi

b � // (gi(b))

makes the diagram ∏
i∈IMi

0 // A

f

OO

i
// B

g
cc

commute, so
∏

i∈IMi is injective.

Lemma 4.17. If M ⊕N = E is an injective R-module, then so are M and N .

Proof. Any diagram
M

0 // A

f

OO

i
// B

can be extended to a map A −→ E by composing f with the inclusion of the first factor.
Since E is injective, there exists h such that

M
j
// E

0 // A

f

OO

i
// B

h

OO

commutes. Let π : E −→ M be the projection onto M , so that πj = idM . Now if we set
g := πh,

M // E

π
zz

0 // A

f

OO

i
// B

h

OO gi =πhi by definition

=πjf by commutativity

=f because πj = idM .
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Theorem 4.18 (Baer Criterion). An R-module E is injective if and only if every R-module
homomorphism I −→ E from an ideal I in R can be extended to the whole ring, meaning
that there exists g making the diagram

E

0 // I

f

OO

// R

g
__

commute.

Proof. On the one hand, if E is injective then our condition is simply a special case of the
definition of injective module. On the other hand, suppose that this condition holds, and
consider any diagram

E

0 //M

f

OO

// N.

To simplify notation, let’s assume our mapM −→ N is indeed the inclusion of the submodule
M , so we can write m ∈ N for the image of m in N . Consider the set

X := {(A, g) | A is a submodule of N,M ⊆ A ⊆ N, and g extends f}.

First, notice X is nonempty, since (M, f) ∈ X. Moreover, we can partially order X by
setting (A, g) ⩽ (B, h) if A ⊆ B and h|A = g. So we have a nonempty partially ordered set;
let’s show we can apply Zorn’s Lemma to it.

Given a chain in X, meaning a sequence

(A1, g1) ⩽ (A2, g2) ⩽ · · ·

of nested submodules A1 ⊆ A2 ⊆ · · · and maps gi that extend all gj with j ⩽ i, let
A :=

⋃
iAi, and define

A
g

// E

a // gi(a) if a ∈ Ai.
Since all the gi are homomorphisms of R-modules, this map g is indeed a map of R-modules.
Moreover, g is well-defined, since the gi(a) = gj(a) whenever a ∈ Ai ∩ Aj. By construction,
this map extends all the gi, so we conclude that (A, g) is an upper bound for our chain.
Moreover,M ⊆ A ⊆ N follows immediately from our construction, and since each gi extends
f , so does g. We conclude that (A, g) ∈ X, and more generally that any chain in X has an
upper bound in X. So Zorn’s Lemma applies.

By Zorn’s Lemma, X has a maximal element, say (A, g). We claim that A = N . Suppose
not, and let n ∈ N be an element not in A. One can easily check that

I := {r ∈ R | rn ∈ A}

is an ideal in R, and that
I h // E

r // g(rn)

is an R-module homomorphism.
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By assumption, we can extend h to an R-module homomorphism R −→ E, which we
will write as h as well. Now the R-module homomorphism

A+Rn
φ

// E

a+ rn // g(a) + h(r)

is well-defined by construction, since any rn ∈ A satisfies g(rn) = h(r), and if rn = r′n then
h(r) = rn = r′n = h(r′). Finally, this map agrees with g on A, and thus it agrees with f on
M , so (A+Rn, φ) ∈ X and (A, g) ⩽ (A+Rn, φ). By the maximality of (A, g), we conclude
that A + Rn = A, and thus n ∈ A, which is a contradiction. We conclude that A = N .
Therefore, g makes the diagram

E

0 //M

f

OO

// N.

g
aa

commute.

Over a noetherian ring, an arbitrary sum of injective modules is still injective.

Corollary 4.19. Let R be a noetherian ring. If {Mj}j∈J are all injective R-modules, then

so is
⊕
j∈J

Mj.

Proof. By Theorem 4.18, it is enough to show that any R-module map

f : I →
⊕
j∈J

Mj

from an ideal I extends to R. Since R is noetherian, I is finitely generated, so let I =
(a1, . . . , an). For each i = 1, . . . , n, the element f(ai) = (bi,j)j∈J has bi,j ̸= 0 only for finitely
many values of j ∈ J . Then

K := {j ∈ J | f(ai)j ̸= 0 for some i = 1, . . . , n}
is a finite set, and f(I) ⊆

⊕
j∈KMj. Direct sums of finitely many modules coincide with

their product, so by Lemma 4.16,
⊕

j∈KMj is injective. Therefore, there exists g such that⊕
k∈KMk

0 // I

f

OO

// R

g

aa

commutes. Now
⊕

k∈KMk is a submodule of
⊕

j∈JMj, so we can think of g as an R-module
homomorphism with codomain

⊕
j∈JMj, and⊕

j∈JMj

0 // I

f

OO

// R

g

aa

commutes.
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We can now give some interesting examples of injective modules.

Example 4.20. If R is a domain, then the fraction field Q = R(0) is an injective R-module.

Proof. By Baer’s Criterion, we just need to show that every R-module homomorphism f :
I → Q can be extended to R. If I = 0, f is the zero map, so we can simply extend it to the
zero map I → Q. So suppose that I ̸= 0. First, note that for any nonzero a, b ∈ I,

af(b) = f(ab) = bf(a),

so
1

a
f(a) =

1

b
f(b).

So let

c :=
1

a
f(a) for any nonzero a ∈ I.

Let
R

g
// Q

r � // rc.

In other words, g is the R-module homomorphism determined by setting 1 7→ c. Now we
claim that g extends f : indeed, given any a ∈ I,

g(a) = ac = a
1

a
f(a) = f(a).

Thus by Baer’s Criterion, Q must be an injective R-module.

By Lemma 4.17, finite direct sums of injective modules are injective; when R is noethe-
rian, we can take arbitrary direct sums. So when R is a noetherian domain, and Q is its
fraction field, any Q-vector space is also an injective R-module. In fact, one can remove
the noetherianity assumption, and prove directly that every Q-vector space is an injective
R-module by using an argument similar to the one in Example 4.20.

Exercise 58. Show that if R is a domain and Q is its fraction field, then every Q-vector
space is an injective R-module.

It is elementary to show that every R-module is a quotient of a free module. The dual
statement is true as well, but it is a lot more delicate. That’s our next goal; our work starts
with divisible modules.

Definition 4.21. An R-module D is divisible if for every nonzero r ∈ R and every d ∈ D
there exists b ∈ D such that rb = d.

Remark 4.22. Given r ∈ R, and an R-moduleM , the multiplication by r map M
·r //M

is an R-module homomorphism. The R-module M is divisible if and only if multiplication
by r is surjective for all nonzero r ∈ R.
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Lemma 4.23. Any quotient of a divisible module is also divisible.

Proof. Let D be a divisible R-module and E be a submodule of D. Let r ∈ R and d+ E ∈
D/E. By assumption, there exists a ∈ D such that ra = d. The image a + E of a in D/E
is still a solution to r(a+ E) = d+D, so indeed E is divisible.

Lemma 4.24. Over a domain, every injective module is divisible.

Proof. Suppose that E is an injective R-module, where R is a domain. Fix r ∈ R and a ∈ E.
Since R is a domain, we have sr = s′r ⇒ s = s′ for any s, s′, r ∈ R. In particular, each
element in (r) can be written uniquely as sr for some s ∈ R. In particular, the map of
R-modules

(r) // E

sr // sa

is well-defined. Since E is injective, we can extend this to a homomorphism f : R −→ E.
Finally, f(1) ∈ E is an element such that e = f(r) = rf(1), and E is divisible.

This not true in general if we do not assume R is a domain.

Example 4.25. Let k be a field and R = k[x]/(x2). On the one hand, R is not a divisible
R-module, since there is no y ∈ R such that xy = 1. On the other hand, R is actually an
injective module over itself, although we do not have the tools to justify that this is indeed
an injective R-module.1

The converse of Lemma 4.24 does not hold in general, and quotients of injective modules
are not necessarily injective.

Exercise 59. Let R = k[x, y], where k is a field, let Q = frac(R) be the fraction field of R.
The R-module M = Q/R is divisible but not injective.

But the converse of Lemma 4.24 does hold for some special classes of rings.

Lemma 4.26. Let R be a principal ideal domain. An R-module E is injective if and only
E is divisible.

Proof. Given Lemma 4.24, we only need to show that divisible modules are injective. By
Baer’s Criterion, we only need to show that any map from an ideal to E can be extended to
the whole ring. So let E be a divisible R-module, and consider any map I −→ E from an
ideal I to E. If I = 0, we could extend our map by taking the 0 map from R to E, so we
might as well assume that I ̸= 0. By assumption, I = (a) for some a ∈ R, and since E is
divisible, there exists e ∈ E such that f(a) = ae. Now consider the multiplication by r map,

R
g
// E

r // re.

For every r ∈ R, g(ra) = rae = rf(a) = f(ra), so g extends f . Therefore, by Theorem 4.18,
E is injective.

1Using fancy words you might learn in Commutative Algebra II, this ring R is an example of a complete
intersection, which is a subclass of Gorenstein rings. Moreover, dimR = 0 – this is something you’d learn
about in Commutative Algebra II. Now it turns out (and this is a nontrivial fact) that Gorenstein rings of
dimension 0 are injective modules over themselves.
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Lemma 4.27. Over a principal ideal domain, quotients of injective modules are injective.

Proof. If E is injective, it is also divisible, by Lemma 4.24. Given any submodule D ⊆ E,
any e ∈ E, and a nonzero r ∈ R, there exists y ∈ E such that ry = e, and so this also holds
in E/D. Then E/D is divisible, and thus injective by 4.26.

Given an injective abelian group, we can always use it to construct an injective R-module
over our favorite ring R.

Lemma 4.28. Given an injective abelian group D and a ring R, HomZ(R,D) is an injective
R-module.

Proof. Let E := HomZ(R,D). This abelian group E is a left R-module, via

r · f := (a 7→ f(ar)).

We claim that E is actually an injective R-module. By Theorem 4.15, it is sufficient to prove
that HomR(−,HomZ(R,D)) is an exact functor. By Hom-tensor adjunction, the functor
HomR(−,HomZ(R,D)) is naturally isomorphic to HomZ(−⊗Z R,D). This last functor is a
composition:

HomZ(−⊗Z R,D) = HomZ(−, D) ◦ (−⊗Z R).

On the one hand, −⊗ZR is naturally isomorphic to the identity on R-Mod, by Lemma 3.40,
so it is exact. On the other hand, D is an injective Z-module, so HomZ(−, D) is exact by
Theorem 4.15. The composition of exact functors is exact, and thus HomR(−,HomZ(R,D))
is exact.

Example 4.29. Since Q is a divisible abelian group, by Lemma 4.28 for any ring R the
R-module HomZ(R,Q) is injective.

When we talked about projective modules, we showed that every module is a quotient
of a projective – in fact, every module is a quotient of a free module. The dual statement
is true as well: that every module embeds into an injective module. We will soon see that
these two statements are extremely important.

While the statement about projectives is relatively simple – it’s essentially a consequence
of the universal property of free modules – the fact about injectives is a lot more delicate;
the work we just did on divisible modules was precisely so we could show this deep and
important fact.

First, we show that every abelian group can be embedded into an injective abelian group.

Lemma 4.30. Every abelian group M is a submodule of some injective abelian group.

Proof. On the one hand, M is a quotient of some free abelian group, say M ∼= (⊕iZ)/K.
Now Z embeds in Q, and thus M embeds into a quotient of ⊕iQ. By Example 4.20, Q is an
injective abelian group, and by Corollary 4.19, ⊕iQ is an injective abelian group, since Z is
a noetherian ring. By Lemma 4.27, any quotient of ⊕iQ is also injective, so we have shown
that M embeds into an injective abelian group, say D.

In fact, the proof above can be repeated over any PID: if R is a PID, we can show that
any R-module M embeds into an injective module, and in fact M embeds into some number
of copies of the fraction field Q.

We can finally show that over any ring, every module can be embedded into an injective
module.
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Theorem 4.31. Every R-module M is a submodule of some injective R-module.

Proof. First, by Lemma 4.30 we can view M as a subgroup of some injective abelian group
D. Let i :M −→ D be the inclusion map and E := HomZ(R,D).

By Lemma 4.28, E is an injective R-module. Since Hom is left exact, by Theorem 3.14,
HomZ(R,−) preserves the inclusion I, so we have an inclusion HomZ(R,M) ⊆ HomZ(R,D).
Now consider the map

M
ψ
// HomZ(R,M)

m // (r 7→ rm).

This is an R-module homomorphism:

• Given a, b ∈M ,

ψ(a+ b)(r) = r(a+ b) = ra+ rb = ψ(a)(r) + ψ(b)(r),

so ψ(a+ b) = ψ(a) + ψ(b).

• Given r ∈ R, m ∈M , and s ∈ R,

ψ(rm)(s) = s(rm) = r(sm) = rψ(m)(s),

so ψ(rm) = rψ(m).

Moreover, if ψ(m) = 0 then m = ψ(m)(1) = 0. So ψ is injective, and thus composing ψ with
our previous inclusion HomZ(R,M) ⊆ HomZ(R,D) gives us an inclusion φ of M into the
injective R-module HomZ(R,D). However, the inclusion HomZ(R,M) ⊆ HomZ(R,D) is a
priori only a map of abelian groups, so we should check that φ is indeed R-linear. In order
to do this, we need to be careful (at least in the case when R is not commutative) with how
we defined the left R-module structure on HomZ(R,D) in Exercise 57: this is a situation
where we view R as a (Z, R)-bimodule and D as a left Z-module, so HomZ(R,D) is a left
R-module via

r · f is the R-map given by (r · f)(a) = f(ar).

The map we need to show is R-linear is

M
φ

// HomZ(R,D)

m � // φm = (r 7→ i(rm)).

Regarding i as a simple inclusion, i(m) simply views the element m as an element of D; to
simplify notation, we drop the i: so for each m ∈ M , φ(m) is the map φm : R −→ D given
by

φm(r) = rm.

For every r ∈ R, m ∈M , and s ∈ R,

φrm(s) = s(rm) by definition

= (sr)m using the module axioms

= φm(sr) by definition

= rφm(s) by definition of the left R-module structure on HomZ(R,D)

so φ(rm) = rφ(m). This shows that φ is an inclusion of R-modules.
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And finally, just like we did for projectives, we can characterize injectives in terms of
split short exact sequences.

Theorem 4.32. An R-module I is injective if and only if every short exact sequence

0 // I // B // C // 0

splits.

Proof. Let I be an injective R-module, and consider any short exact sequence

0 // I i // B
p
// C // 0.

Since I is injective, there exists a map g making

I

0 // I
i
// B

g
__

commute, and such a g gives a splitting for our short exact sequence.
Conversely, suppose that every short exact sequence 0 // I // B // C // 0

splits, and consider a diagram
I

0 // A

f

OO

i
// B.

By Theorem 4.31, I embeds into some injective R-module E, say by the inclusion j. By
assumption, the short exact sequence

0 // I
j
// E // coker j // 0

splits, so there exists a map q : E −→ I such that qi = idI . Since E is injective, we can lift
i through jf , obtaining an R-module homomorphism ℓ such that

I
j
// E

q

}}

0 // A

f

OO

i
// B

ℓ

OO

commutes. Now g := qℓ satisfies

gi =qℓi by definition

=qjf by commutativity

=f since qj = idI ,
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so
I

0 // A

f

OO

i
// B.

g
``

commutes.

Before we move on from injective modules, let us say a word about how the story con-
tinues. The next chapter is quite beautiful, and it is a shame we have no time to discuss it
in detail this semester.

We proved above that every module M is a submodule of some injective module. One
can even do better and talk about the smallest injective module that M embeds in; this
is called the injective hull E(M) of M . One could describe E(M) by saying that it is
the intersection of all the injective modules that contain M , but this is not a very practical
description. Injective hulls can also be described through the theory of essential extensions,
a topic which we do not have time to discuss this semester. We leave the definition here just
for fun, but we do not have the time to talk about it at length.

Definition 4.33. Let M ⊆ E. We say E is an essential extension of M if every nonzero
submodule N ⊆ E intersects M nontrivially, meaning E ∩ M ̸= 0. More generally, an
injective map α :M −→ E is an essential extension if α(M) ⊆ E is an essential extension in
the sense above.

One then shows that an R-module M is injective if and only if it has no proper essential
extensions E ⊇M . This proves that a maximal essential extension E of M is injective, and
that there are no other injective modules I with of M ⊆ I ⊆ E. Moreover, one can show
that any two maximal essential extension of M are isomorphic – and thus we can talk about
the maximal essential extension of M , up to isomorphism, which is

But the theory of injectives, and injective hulls in particular, is much more complicated
than the theory of projectives. WhenM is a finitely generated module, we can always find a
finitely generated projective (even free!) module surjecting ontoM ; in contrast, the injective
hull E(M) might not be finitely generated – in fact, E(M) is typically not finitely generated
even when M is cyclic.

The story of the structure of injective modules then continues in a beautiful way. Over
a noetherian ring, it turns out that every injective module can be decomposed into a direct
sum of injective modules of the form E(R/P ), where P is a prime ideal in R. Moreover, the
injective modules E(R/P ) are the indecomposable injective modules, so the basic building
blocks of injective modules. One can in fact compute the injective hull of any finitely
generated R-module very explicitly. A lot of this was proved in Eben Matlis’ beautiful PhD
thesis [?], but sadly we do not have time for the details this semester. The details, however,
are very important, for example to develop the theory of local cohomology – a topic which
we will briefly mention later on.
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4.3 Flat modules

Finally, we turn to the modules that make the tensor product exact.

Definition 4.34. An R-module M is said to be flat if M ⊗R − is an exact functor.

Remark 4.35. By Theorem 3.47, M ⊗R − is right exact. Therefore, M is flat if and only
if for every injective R-module map i : A −→ B,

M ⊗R A
1⊗i
//M ⊗R B is injective.

Lemma 4.36. Given a family of R-modules {Mi}i∈I , the direct sum ⊕iMi is flat if and only
if every Mi is flat. In particular, direct summands of flat modules are flat.

Proof. Given a family of R-module homomorphisms fi : Mi −→ Ni, there is an R-module
homomorphism ⊕

i∈IMi
(fi)i∈I

//
⊕

i∈I Ni

(mi)
� // (fi(mi))

which is injective if and only if every fi is injective.
Let f : A −→ B be an injective R-module homomorphism. There is a commutative

diagram (⊕
i∈I

Mi

)
⊗R A

φ:=1⊗f
��

∼= //
⊕
i∈I

Mi ⊗R A

(1⊗f)i=:ψ

��
(⊕

i∈I

Mi

)
⊗R B ∼=

//
⊕
i∈I

Mi ⊗R B

where the horizontal maps are the isomorphisms from Theorem 3.41. In particular, φ is
injective if and only if ψ is injective. Moreover, ψ is injective if and only if each component
is injective, meaning 1⊗ f :Mi ⊗ A −→Mi ⊗B is injective for all i.

On the one hand,
⊕

i∈IMi is flat if and only if for every injective map f , the corresponding
ϕ is injective. On the other hand, all the Mi are flat if and only if for every injective map
f , 1⊗ f : Mi ⊗ A −→ Mi ⊗ B is injective for all i, or equivalently, as explained above, if ψ
is injective for any given injective map f . This translates into the equivalence we want to
show.

All projectives are flat.

Theorem 4.37. Let R be any ring. Every projective R-module is flat.

Proof. First, recall thatR⊗R− is naturally isomorphic to the identity functor, by Lemma 3.40,
and thus exact (see Remark 3.11). This shows that R is flat, and thus any free module, be-
ing a direct sum of copies of R, must also be flat by Lemma 4.36. Finally, every projective
module is a direct summand of a free module, by Theorem 4.9. Direct summands of flat
modules are flat, by Lemma 4.36, so every projective module is flat.
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We can test whether a given module if flat by looking at the finitely generated submodules.

Theorem 4.38. If every finitely generated submodule of M is flat, then M is flat.

Proof. Let i : A −→ B be an injective map of R-modules. We want to show that

M ⊗R A
1⊗i
//M ⊗R B

is injective. Suppose that u ∈ ker(1M ⊗ i). We are going to construct a finitely generated
submodule N ⊆ M , with j : N → M the inclusion, and an element v ∈ N ⊗R A such that
v ∈ ker(1N⊗i) and u = (j⊗1A)(v). Once we do that, our submodule N is finitely generated,
and thus flat by assumption, so 1N ⊗ i is injective; therefore, v = 0 and thus we must have
u = 0. Therefore, 1M ⊗ i is injective, and we conclude that M is flat.

Let’s say that u = m1 ⊗ a1 + · · ·+mn ⊗ an. In Theorem 3.22, we constructed the tensor
product M ⊗R B as a quotient of the free abelian group F on M × B by the subgroup S
with all the necessary relations we need to impose. This gives us a short exact sequence

0 // S // F
π //M ⊗R B // 0.

The fact that m1 ⊗ i(a1) + · · ·+mn ⊗ i(an) = 0 means we can rewrite this element as π(s)
for some s ∈ S. This element s is can be written as a finite sum s = q1+ · · ·+ qr of elements
of the form

(m, b+ b′)− (m, b)− (m, b′), (m+m′, b)− (m, b)− (m′, b), or (mr, b)− (m, rb).

Now let C be the set obtained by collecting theM -coordinates of elements ofM×B appearing
in any of the qi, as follows:

• if qi = (m, b+ b′)− (m, b)− (m, b′), we let m ∈ C;

• if qi = (m+m′, b)− (m, b)− (m′, b), we let m,m′ ∈ C;

• and if qi = (mr, b)− (m, rb).

For each i, we pick only one such representation of qi, so that C is a finite set. Let c1, . . . , ct
be the finitely many elements of C, and take N to be the finitely generated submodule of
M generated by m1, . . . ,mn and c1, . . . , ct. Note that q1 + · · ·+ qr is an element of the free
module on N ×B, and thus

m1 ⊗ i(a1) + · · ·+mn ⊗ i(an) = 0 in N ⊗R B.

Consider v = m1 ⊗ a1 + · · ·+mn ⊗ an ∈ N ⊗R A. Now

(j ⊗ 1A)(v) = (j ⊗ 1A)(m1 ⊗ a1 + · · ·+mn ⊗ an) = m1 ⊗ a1 + · · ·+mn ⊗ an ∈M ⊗R A,

and

(1N ⊗ i)(v) = (1N ⊗ i)(m1 ⊗ a1 + · · ·+mn ⊗ an) = m1 ⊗ i(a1) + · · ·+mn ⊗ i(an) = 0,

as desired.
The reason we needed to add in these extra elements is that a priori N⊗RB is not neces-

sarily a submodule ofM⊗B, so we do not necessarily havem1⊗i(a1)+· · ·+mn⊗ i(an) = 0
in (Rm1 + · · ·+Rmn)⊗B without adding in all relations that make it true.
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Definition 4.39. Let R be a domain and M be an R-module. The torsion submodule of
M is

T (M) := {m ∈M | rm = 0 for some regular element r ∈ R}.

The elements of T (M) are called torsion elements, and we say that M is torsion if
T (M) =M . Finally, M is torsion free if T (M) = 0.

Lemma 4.40. If R is a domain and M is a flat R-module, then M is torsion free.

Proof. Let Q = frac(R) be the fraction field of R, which is a torsion free R-module. Now
M ⊗R Q is a Q-vector space, so isomorphic to a direct sum of copies of Q. In particular,
M ⊗R Q is torsion free as an R-module. Since M is flat, the inclusion R ⊆ Q induces an
injective R-module map

0 //M ⊗R R //M ⊗R Q,

and since M ∼= M ⊗RR, by Lemma 3.40, we conclude that M is isomorphic to a submodule
ofM⊗RQ. Submodules of torsion free modules are also torsion free, soM is torsion free.

In general, the converse does not hold.

Example 4.41. Let k be a field and R = k[x, y]. Consider the ideal m = (x, y). This is
a submodule of the torsion free module R, and thus m is torsion free. However, it is not
flat. Suppose, by contradiction, that m is a flat module; then when we apply m⊗R − to the
inclusion m ⊆ R we must get an inclusion

m⊗R m
φ
// m⊗R ∼= m .

However, the element x⊗ y − y ⊗ x ∈ m⊗R m is taken to

φ(x⊗ y − y ⊗ x) = x⊗ y − y ⊗ x = xy ⊗ 1− yx⊗ 1 = 0,

while we claim that x⊗ y − y ⊗ x is not zero in m⊗R m.
This can be done in the usual way, by setting up an R-bilinear map m×m→ R/m, and

showing that the resulting homomorphism of R-modules m⊗Rm→ R/m sends x⊗y−y⊗x
to something nonzero. Since this point of our study of homological algebra we’d like to avoid
boring arguments about R-biadditive maps, here is an alternative proof.

Consider the canonical quotient map m→ m/m2, and note that m/m2 can also be viewed
as a 2-dimensional R/m-vector space with generators e1 := x + m and e2 := y + m. Since
tensor is right exact, by Theorem 3.47, we get an induced surjection

m⊗R m ↠ m/m2 ⊗R m.

Similarly, tensoring with m/m2 is also right exact, so we get a surjection

m/m2 ⊗R m ↠ m/m2 ⊗R m/m2.

Composing the two, we get a surjection

m⊗R m ↠ m/m2 ⊗R m/m2
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which sends x⊗ y − y ⊗ x to e1 ⊗ e2 − e2 ⊗ e1. By Exercise 60,

m/m2 ⊗R m/m2 ∼= m/m2 ⊗R/m m/m2;

the isomorphism sends e1⊗e2−e2⊗e1 to e1⊗e2−e2⊗e1. By Exercise 51, e1⊗e2 and e2⊗e1
are linearly independent, and thus e1⊗ e2− e2⊗ e1 ̸= 0. We conclude that x⊗ y− y⊗x ̸= 0
in m⊗R m.

Above we used the following elementary but useful fact about tensor products:

Exercise 60. Let R be a commutative ring, I an ideal in R, and letM and N be R-modules
such that I ⊆ ann(M) ∩ ann(N). Show that there is an isomorphism

M ⊗R N ∼= M ⊗R/I N.

The converse of Lemma 4.40 does hold over a PID.

Lemma 4.42. If R is a principal ideal domain, an R-module M is flat if and only if it is
torsion free.

Proof. The fact that flat implies torsion free is a special case of Lemma 4.40. So suppose M
is a torsion free R-module. First, we will deal with the case when M is finitely generated.
The structure theorem for PIDs says that M must be isomorphic to a direct sum of copies
of cyclic modules. The cyclic module R/I has torsion – all the elements are killed by I –
unless I = 0. Therefore, M must be isomorphic to a direct sum of copies of R, and thus free.
By Theorem 4.3, M is projective, and by Theorem 4.37 projectives are flat, so M is flat.

Now let M be any torsion free R-module. All of the finitely generated submodules of
R are also torsion free, and thus flat by what we have shown above. By Theorem 4.38, M
must be flat.

But not all flat modules are projective.

Example 4.43. The Z-module Q is torsion free and thus flat, by Lemma 4.42. However, Q
is not a projective Z-module. Suppose, by contradiction, that Q is a projective Z-module.
By Theorem 4.9, Q must be a direct summand of a free module, say F =

⊕
I Z. Consider

the inclusion ι : Q ↪→ F , and pick i ∈ I such that the image of Q contains some element
with a nonzero entry in the i component. Now consider the projection π : F −→ Z onto the
ith factor. By assumption, the composition πi : Q −→ Z is nonzero. However, there are no
nontrivial abelian group homomorphisms Q −→ Z, contradicting the fact that πi is nonzero.
We conclude that Q is not projective.

For finitely generated modules over a commutative noetherian local ring, every flat mod-
ule is free, and thus flat, projective, and free all coincide. However, to prove that we need a
little bit of commutative algebra, which we introduce in the next section.

Theorem 4.44 (Flatness of localization). Let R be a commutative ring, and W ∋ 1 a
multiplicative subset of R. Then W−1R is flat over R.

Proof. By Theorem 3.57, tensoring with W−1R is localizing at W . But localization is exact,
so tensoring with W−1R is exact, and thus W−1R is a flat R-module.
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So for example, if R is a domain then its fraction field Q is a flat module.

Definition 4.45. An R-module F is faithfully flat if F is flat and F ⊗RM ̸= 0 for every
nonzero R-module M .

Exercise 61. Let R be a commutative ring. Show that the following are equivalent:

a) F is faithfully flat.

b) F is flat and for every maximal ideal m, mF ̸= F .

c) The complex

A
f
// B

g
// C

is exact if and only if

F ⊗R A
1⊗f
// F ⊗R B

1⊗g
// F ⊗R C

is exact.

4.4 Commutative local rings

We have shown that

Free =⇒ projective =⇒ flat.

Over a local ring, these three notions actually coincide. To show this, we need a little
bit of commutative algebra. First, some notation: when R is a local ring, meaning R has
a unique maximal ideal m, we write (R,m) to denote the ring R and its maximal ideal.
Now note that for any R-module M , the module M/mM is annihilated by m, so it is also a
module over a ring R/m, which is a field.

The following is a classical result in commutative algebra, known by some as Nakayama’s
Lemma. As noted in [?, page 8], Nakayama himself claimed that this should be attributed to
Krull and Azumaya, but it’s not clear which of the three actually had the commutative ring
statement first. So some authors (eg, Matsumura) prefer to refer to it as NAK. There are
actually a range of statements, rather than just one, that go under the banner of Nakayama’s
Lemma a.k.a. NAK.

Theorem 4.46 (NAK). Let (R,m, k) be a local ring, and M be a finitely generated module.
If M = mM , then M = 0.

The theorem above is the theorem most commonly referred to as NAK. The proof involves
only elementary tools, and a fun linear algebra-inspired trick called the Determinantal Trick.
While we will not include the details here, they can be found in any standard Commutative
Algebra book. We will however use this result to prove another statement that is also
commonly referred to as NAK, which allows us to talk about minimal generating sets for
finitely generated modules over local rings.
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Remark 4.47. Let R be any commutative ring, and consider an R-module M and an ideal
I. If IM = 0, meaning that am = 0 for all a ∈ I and all m ∈ M , then M can be given the
structure of an R/I-module, as follows: for any m ∈M and any r ∈ R,

(r + I)m = rm.

The fact that I kills M is what makes this action well-defined. The fact that M is actually
an R-module under this action is a consequence of the fact thatM is an R-module; checking
these details is routine, and we leave them as an exercise.

Notice that the structure of M as an R/I-module is essentially the same as its structure
as an R-module. There are many properties of M as an R-module that pass onto its R/I-
module structure, and typically such results are easy to check.

Here is a special case of this: if (R,m) is a commutative local ring, andM is an R-module,
then the module M/mM is killed by m, and thus it is also a module over R/m. Now notice
that R/m is a field, so M/mM is actually a vector space over the field R/m.

Theorem 4.48. Let (R,m) be a commutative local ring, and M be a finitely generated
module. For m1, . . . ,ms ∈M ,

m1, . . . ,ms generate M ⇐⇒ m1, . . . ,ms generate M/mM.

Thus, any generating set for M consists of at least dimk(M/mM) elements.

Proof. The implication (⇒) is clear. For (⇐), given m1, . . . ,ms ∈ M such that m1, . . . ,ms

generate M/mM , consider

N := Rm1 + · · ·+Rms ⊆M.

Since M/mM is generated by the image of N , we have M = N + mM . By taking the
quotient by N , we see that

M/N = (N +mM)/N = m (M/N) .

By Theorem 4.46, M/N = 0 and thus M = N .

As we mentioned above, this allows us to talk about minimal generating sets.

Definition 4.49. Let (R,m) be a local ring, and M a finitely generated module. A set of
elements {m1, . . . ,mt} is a minimal generating set of M if the images of m1, . . . ,mt form
a basis for the R/m vector space M/mM .

Note that every finitely generated module over a local ring has a minimal generating set,
that every minimal generating set has the same number of elements, and that any set of
generators for M contains a minimal generating set, all thanks to plain old linear algebra.
In particular, we can now define the following:

Definition 4.50. LetM be a finitely generated module over a commutative local ring (R,m).
The minimal number of generators of M , denoted µ(M), is the number of elements in
any minimal generating set for M .
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We now have the key commutative algebra ingredients needed to show that for finitely
generated modules over a noetherian local ring, projective = free. However, we need one
more homological tool we haven’t developed yet, so we will hold off on proving this for now
– in fact, you will soon be able to prove it easily, so the following problem will be in the next
problem set:

Exercise 62. Let (R,m) be a commutative local ring, and let M be a finitely presented
module. Then

M is flat ⇐⇒ M is projective ⇐⇒ M is free.

Kaplansky [?] showed that this holds even for modules that are not necessarily finitely
presented, but generated by countably many elements.

Definition 4.51. An R-moduleM is locally free ifMP is a free RP -module for every prime
ideal P .

Exercise 63. Let R be a commutative ring, M and N be R-modules, and P be a prime
ideal. Show that

(M ⊗R N)P ∼= MP ⊗RP
NP .

Exercise 64. Let R be a commutative ring, P be a prime ideal, and M be an RP -module.
Let N be M as an R-module via restriction of scalars. Then as RP -modules, we have an
isomorphism

NP
∼= M.

Exercise 65. Let R be a commutative ring. Show that a homomorphism of R-modules
f :M → N is surjective if and only if fP is surjective for all primes P .

Exercise 66. LetR be a noetherian ring,W be a multiplicative set,M be a finitely generated
R-module, and N an arbitrary R-module. Show that

HomW−1R(W
−1M,W−1N) ∼= W−1HomR(M,N).

In particular, if P is prime,

HomRP
(MP , NP ) ∼= HomR(M,N)P .

Theorem 4.52. Let R be a commutative noetherian ring and let M be a finitely presented
R-module. Then

M is projective ⇐⇒ M is flat ⇐⇒ M is locally free.

Proof. We already know that projectives are flat, by Theorem 4.37.
Suppose M is flat. We claim that MP is flat for every prime ideal P . First, note that

MP
∼= RP ⊗R M , by Theorem 3.57; moreover, RP is a flat R-module by Exercise 54. Note

moreover that any RP -module can also be viewed as an R-module by extension of scalars
along the canonical localization map. Now given any short exact sequence of RP -modules,
say

0 // A // B // C // 0,
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tensoring with MP over RP can be done in two steps: first we view this as a short exact
sequence of R-modules, and tensor with M , but M is a flat R-module, so

0 // A⊗RM // B ⊗RM // C ⊗RM // 0

is exact. Then we tensor with RP , but this is also flat R-module, so we get a short exact
sequence again:

0 // (A⊗RM)⊗R RP
// (B ⊗RM)⊗R RP

// (C ⊗RM)⊗R RP
// 0.

By Theorem 3.57 and Exercise 63, for each RP -module X we have

(X ⊗RM)⊗R RP
∼= (X ⊗RM)P ∼= XP ⊗RP

MP .

But XP
∼= X, by Exercise 64, so we conclude that

(X ⊗RM)⊗R RP
∼= X ⊗RP

MP .

Thus
0 // A⊗RP

MP
// B ⊗RP

MP
// C ⊗RP

MP
// 0

is exact, and MP is a flat RP -module.
So whenever M is flat, MP is a flat RP -module for all primes P . By Exercise 62, MP

must be free over RP for all primes P , that is, M is locally free.
Finally, suppose that M is locally free. We want to show that M is projective. So by

Theorem 4.4, we need to show that for all surjective R-module maps f : A → B, the map
f∗ : HomR(M,A)→ HomR(M,B) is surjective. By Exercise 65, it is enough to show that fP
is surjective for all primes P . By Exercise 66,

HomRP
(MP , AP ) ∼= HomR(M,A)P and HomRP

(MP , BP ) ∼= HomR(M,B)P ,

and
(f∗)P = (fP )∗ : HomRP

(MP , AP )→ HomRP
(MP , BP ).

But MP i free, and thus projective by Theorem 4.3, so (fP )∗ is surjective. Since this holds
for all P , by Exercise 65 we conclude that f∗ is surjective, and thus M is projective.

Note that the noetherianity assumption is just so that finitely generated implies finitely
presented; the statement is also true for a general commutative ring if instead of finitely
generated modules we take finitely presented.
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Resolutions

To describe an R-module M , we need to know a set of generators and the relations among
those generators. If we continue that process, and ask for relations among the relations
(treating the relations as generators for the module of relations), and relations among the
relations among the relations, and so on, we construct what is known as a free resolution
for M . Free resolutions play a key role in many important constructions, and encode a
lot of interesting information about our module. For example, if the module came from
some geometric setting, geometric information about the module gets reflected in the free
resolution. Studying the resolutions of all finitely generated modules over a ring R also tells
us important information about the ring itself, and its singularities.

In this chapter we will introduce free resolutions, and more generally projective resolu-
tions, as well as their injective counterpart. We will also study free resolutions in a bit more
detail over commutative local noetherian rings, and the graded analogue. For more details
on the basics of graded free resolutions, we recommend Irena Peeva’s excellent book [?].

5.1 Projective resolutions

Definition 5.1. Let M be an R-module. A projective resolution is a complex

P• = · · · // Pn // · · · // P1
// P0

// 0
n 1 0

where all the Pi are projective, H0(P ) =M , and Hi(P ) = 0 for all i ̸= 0. We may also write
a projective resolution for M as an exact sequence

· · · // Pn // · · · // P1
// P0

//M // 0
n 1 0

where all the modules Pi are projective. The resolution is free if all the Pi are free.

You will find both these definitions in the literature, often indicating the second option
as an abuse of notation. We will be a bit sloppy and consider both equivalently, since at the
end of the day they contain the same information. One often uses the word acyclic to refer
to a complex that is exact everywhere except at homological degree 0; but we caution the
reader that some authors use the word acyclic to refer to exact complexes. For that reason,
we will avoid the word acyclic altogether.

130
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Theorem 5.2. Every R-module has a free resolution, and thus it has a projective resolution.

Proof. Let M be an R-module. We are going to construct a projective resolution quite
explicitly. The first step is to find a projective module P0 that surjects onto M . In fact, we
can find a free module surjecting onto M , by Lemma 4.13. Now consider the kernel of that
projection, say

0 // K0
i0 // P0

π0 //M // 0.

Set ∂0 := π0. There exists a free module P1 surjecting onto K0. Now the map ∂1 = i0π1
satisfies im ∂1 = K0 = ker ∂0.

0

!!

0

K0

i0
==

!!

P1

π1
==

∂1
// P0

∂0 //M.

Now the process continues analougously. We find a free module P2 surjecting ontoK1 := ker ∂1,
and set

0

!!

0

K0

==

i0

!!

P2

π2 !!

∂2 // P1

π1
==

∂1
// P0

∂0 //M.

K1

!!

i1

==

0

==

0.

At each stage, πi : Pi −→ Ki−1 is a surjective map, Ki := ker ∂i, ii is the inclusion of the
kernel of ∂i into Pi, and we get short exact sequences

0 // Kn+1
in+1

// Pn+1
πn+1

// Kn
// 0.

In fact, im(in+1) = ker ∂n+1 = ker(inπn+1) = ker πn+1. We can continue this process for as
long as Pn ̸= 0, and the resulting sequence will be a projective resolution for M .

A free resolution
· · · // F2

// F1
// F0

//M

gives us a detailed description of our module M :

• F0 gives us generators for M .

• F1 gives us generators for all the relations among our generators for M .

• The next module describes the relations among the relations among our generators.

And so on.
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Definition 5.3. If P is a projective resolution of M , we say that P has length d if Pn = 0
for all n > d and Pd ̸= 0. If no such d exists, we say that P has infinite length. If M has no
finite projective resolution, we say that M has infinite projective dimension; otherwise, the
projective dimension of M is the smallest length of a projective resolution.

Remark 5.4. A module M has pdim(M) = 0 if and only M is projective. Indeed, note
that if M is projective, then

0 //M //M // 0
0

is a projective resolution of M . On the other hand, if M has a projective resolution

0 // P //M // 0
0

then exactness tells us that P ∼= M .

Example 5.5. Let us construct a free resolution for Z/2 over Z. First, since Z/2 has only
one generator, we can start with the canonical surjection π : Z→ Z/2. Note that ker π = (2)
is generated by just one element again, so we can take

Z 2 // Z π // Z/2.

But now the map Z 2−→ Z is injective, so we are done, and

0 // Z 2 // Z // Z/2 // 0

is a free resolution for Z/2. This shows that pdim(Z/2) ⩽ 1. Also, Z/2 is not projective: we
showed in Example 3.15 that HomZ(Z/2,−) is not exact. Thus pdim(Z/2) = 1.

Example 5.6. Consider a field k and R = k[x]/(x3). Let us construct a free resolution for
M = R/(x). We can start with the canonical surjection R→M ; the kernel is (x), which is
cyclic, so our resolution begins with

R x // R //M.

Now the kernel of R
x−→ R is (x2), which is again cyclic. Our resolution continues with

R x2 // R x // R //M.

Next, we need to compute the kernel of multiplication by x2; but that is (x), a cyclic module,
and the next step in the resolution is

R
x // R

x2 // R
x // R //M.

But now we have a repeating pattern! Our two-periodic resolution goes on forever:

· · · // R
x2 // R

x // R
x2 // R

x // R //M.

In fact, it turns out that pdim(M) = ∞. But to really justify that, we need to understand
that this is a minimal free resolution.
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To talk about minimal free resolutions we need some reasonable conditions to hold. For
the rest of the section, all rings will be commutative, and in fact we will be focusing on two
types of rings: commutative local rings or N-graded algebras over fields.

When k is a field, the polynomial ring R = k[x1, . . . , xn] can be given an N-grading by
setting deg(xi) = di for some di ∈ N. The most common N-grading, also known as the
standard grading, is the one where we declare deg(xi) = 1 for all i. Once we declare the
degrees of the variables, we can extend that grading to all monomials as follows:

deg (xa11 · · ·xann ) = a1d1 + · · ·+ andn.

A homogeneous element in R is any k-linear combination of monomials of the same
degree. We write Ri for the set of all homogeneous elements of degree i, which is an abelian
group under addition, and note that

R =
⊕
i

Ri.

Note also that RiRj ⊆ Ri+j for all i and j. More generally, a graded ring is any ring that
can be decomposed in pieces of this form, meaning that

R =
⊕
i

Ri and RiRj ⊆ Ri+j.

The elements in Ri are called homogeneous elements of degree i. Similarly, a graded R-
module is a module such that

M =
⊕
i

Mi and RiMj ⊆Mi+j.

A homomorphism of graded R-modules φ : M → N that such that φ(Mi) ⊆ Ni+d for all i
is a graded map of degree d. Any graded map can be thought of as a map of degree 0 by
shifting degrees. We write M(−d) for the graded R-module with M(−d)i =Mi−d.

When R = k[x1, . . . , xn] is standard graded,

Ri =
⊕

a1+···+an=i

xa11 · · ·xann .

Note here that 0 can be though of as a homogeneous element of any degree; one sometimes
declares deg(0) = −∞. An ideal I in R is a homogeneous ideal if it can be generated by
homogeneous elements; one can show that this is equivalent to

I =
⊕
i

(I ∩Ri).

Finally, whenever I itself is homogeneous, the grading on R passes onto R/I, with

(R/I)i = Ri/Ii.

We will be concerned with finitely generated N-graded k-algebras R with R0 = k, which are
of the form R = k[x1, . . . , xn]/I for some homogeneous ideal I. One nice feature of such rings
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is that while there might be many maximal ideals, there is only one homogeneous maximal
ideal, which is given by

R+ :=
⊕
i>0

Ri.

In many ways, the behavior of such a graded ring and its unique homogeneous maximal ideal
R+ is an analogue to the behavior of a local ring R and its unique maximal ideal ideal m,
though one always needs to provide a separate proof for the graded and local versions.

Definition 5.7. Let (R,m) be either a commutative local ring or a commutative N-graded
k-algebra with R0 = k and homogeneous maximal ideal m = R+. A complex

· · · // F2
∂2 // F1

∂1 // F0
// · · ·

is minimal if im ∂n+1 ⊆ mFn for all n.

Remark 5.8. A complex (F, ∂) is minimal if and only if the differentials in the complex
F ⊗RR/m are all identically 0. If all the Fi are free, fix a basis for each Fi. The differentials
∂i can be represented by matrices, though possibly infinite. We will be primarily interested
in the case of finitely generated modules over noetherian rings, which are finitely presented,
so all the Fi are finitely generated as well, and each ∂i corresponds to some finite matrix. In
this case, our complex is minimal if and only if all the entries in the matrices representing
∂i are in m, whatever our chosen bases are.

Lemma 5.9. Let R be a commutative ring. Suppose (R,m) is either a local ring or an N-
graded k-algebra with R0 = k and homogeneous maximal ideal m = R+. Let M be a finitely
generated (graded) R-module. A free resolution

F = · · · // F2
∂2 // F1

∂1 // F0

for M is a minimal complex if and only if for all n the module Fn is the free module on a
minimal set of generators for ker ∂n−1, which in the graded case must be homogeneous.

Proof. Suppose there exists an n such that Fn is the free module on some non-minimal set
of generators m1, . . . ,ms for Kn−1 := ker ∂n−1; so there is a basis e1, . . . , es for Fn such that
∂n(ei) = mi, and the images of m1, . . . ,ms in the vector space Kn−1/mKn−1 are linearly
dependent. Then there exists r1, . . . , rs ∈ R, not all in m, such that r1m1 + · · ·+ rsms = 0
in R. In the graded case, we can take all these coefficients ri to be homogeneous. At least
one of these coefficients is not in m, and thus it must be invertible,1 so we can multiply by
its inverse. So perhaps after reordering our elements, we get

ms = r1m1 + · · ·+ rs−1ms−1.

Then
es − r1e1 − · · · − rs−1es−1 ∈ ker ∂n = im ∂n+1

is not in mFn, so im ∂n+1 ⊈ mFn.

1In the graded case, homogeneous elements not in m are nonzero elements in R0 = k, and thus invertible.
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Now suppose that im ∂n+1 ⊈ mFn for some n. Let e1, . . . , es be a basis for Fn, so that
∂n(e1), . . . , ∂n(es) form a generating set for Kn−1 := ker ∂n−1. By assumption, ker ∂n =
im ∂n+1 contains some (homogeneous, in the graded case) element that is not in mFn. So
there is an element r1e1 + · · ·+ rses ∈ ker ∂n not in mFn. In particular, some ri /∈ m, which
we can assume without loss of generality to be r1. Multiplying by the inverse of r1, we get
some ci ∈ R such that

e1 − c2e2 − · · · − cses ∈ ker ∂n,

so
∂n(e1) = c2∂n(e2) + · · ·+ cs∂n(es).

This is a nontrivial relation among our chosen set of generators of Kn−1, which must then
be non-minimal.

So to construct a minimal free resolution of M , we simply take as few generators as
possible in each step. Ultimately, we can talk about the minimal free resolution of M . To
show that, we need some definitions and a lemma.

Definition 5.10. Let (F, ∂) and (G, δ) be complexes of R-modules. The direct sum of F
and G is the complex of R-modules F ⊕G that has (F ⊕G)n = Fn ⊕Gn, with differentials
given by

Fn+1
∂n+1

// Fn

⊕ ⊕
Gn+1 δn+1

// Gn,

together with the complex maps F → F ⊕ G and G → F ⊕ G given by the corresponding
inclusion in each homological degree.

Remark 5.11. When R is a graded ring and M is a graded R-module, we can talk about
graded direct summands of M . A module N is a graded direct summands of M if N is a
graded R-module, there is an injective graded map N →M (of degree 0), and this inclusion
splits by a graded splitting (of degree 0). This is a strictly stronger condition than simply
being a direct summand.

Exercise 67. Show that the direct sum of complexes is the coproduct in the category Ch(R).

Remark 5.12. The homology of a direct sum is the direct sum of the homologies, since

(∂n, δn)(a, b) = (0, 0) ⇐⇒ ∂n(a) = 0 and δn(b) = 0,

and

(a, b) ∈ im(∂n, δn) if and only if a ∈ im ∂n and b ∈ im ∂n.

Thus

Hn(F ⊕G) =
ker(∂n, δn)

im(∂n+1, δn+1)
=

ker ∂n
im ∂n+1

⊕ ker δn
im δn+1

= Hn(F )⊕ Hn(G).



136

Remark 5.13. Suppose that C is a subcomplex of D, and that we know that each Cn is a
direct summand of Dn, say by Dn = Cn ⊕Bn. In order for C to be a direct summand of D,
we also need that the differentials of D behave well with C: for each n, we need to check
that ∂n(Bn) ⊆ Bn−1 and ∂n(Cn) ⊆ Cn−1. This does not always hold.

Definition 5.14. A complex C of R-modules is trivial if it is a direct sum of complexes of
the form

· · · // 0 // R
1 // R // 0 // · · · .

Example 5.15. The complex

0 // R

1
0


// R2

(
0 1

)
// R // 0 =

0 // R
1 //// R // 0

⊕
0 // R

1 //// R // 0

is trivial.

Remark 5.16. Trivial complexes are exact: they are the direct sums of exact complexes,
and by Remark 5.12 taking homology commutes with direct sums.

Lemma 5.17. Let (R,m) be either a commutative local ring or a commutative N-graded
k-algebra with R0 = k and homogeneous maximal ideal m = R+. Every (graded) complex

· · · // T2
∂2 // T1

∂1 // T0 // 0

of finitely generated (graded) free R-modules that is exact everywhere must be trivial.

Proof. Since T0 is projective, Theorem 4.6 says that the short exact sequence

0 // ker ∂1 // T1
∂1 // T0 // 0

splits, so T1 ∼= ker ∂1 ⊕ T0. In fact, ∂1 is the canonical projection map T0 ⊕ ker ∂1 → T0, and
our original exact sequence breaks off as

· · · // T2
∂2 // ker ∂1 // 0

⊕
0 // T0

1 // T0 // 0.

In particular, since 0 // T0
1 // T0 // 0 is trivial and homology commutes with taking

direct sums of complexes, by Remark 5.12, we conclude that

· · · // T2
∂2 // ker ∂1 // 0

is also exact everywhere. In particular, we have also shown that ker ∂1 is a (graded) di-
rect summand of the (graded) free R-module T1. In the local case, ker ∂1 is projective by
Theorem 4.9, and thus free by Exercise 62. In the graded setting, one can also show that
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ker ∂1 is free. So we are back at our original situation, and we can repeat the same argument
repeatedly to show that our complex breaks off as the direct sum of the trivial complexes

0 // ker ∂n
1 // ker ∂n // 0

and must therefore be trivial.

Theorem 5.18. Consider a complex

P = · · · // Pn // · · ·P1
//

∂1 // P0
∂0 //M // 0

with all the Pi projective R-modules, and let

C = · · · // Cn // · · ·C1
//

δ1 // C0
δ0 // N // 0

be any exact complex. Every R-module map f :M → N lifts to a map of complexes φ : P →
C, and any two such lifts are homotopic.

Moreover, if R is a commutative graded k-algebra, M and N are finitely generated graded
R-modules, Pn and Cn are finitely generated graded R-modules, and f is a degree-preserving
homomorphism, then the induced map of complexes is made out of degree-preserving R-
module maps.

Proof. Since P0 is projective and δ0 is surjective, there exists an R-module homomorphism
φ0 such that

P0

φ0

��

∂0 //M //

f

��

0

C0 δ0
// N // 0

commutes. Notice in fact that

δ0φ0(im ∂1) ⊆ δ0φ0(ker ∂0) because P is a complex

= f∂0(ker ∂0) by commutativity of the square above

= 0,

so φ0(im ∂1) ⊆ ker δ0 = im δ1. In the graded case, note that we can define φ0 by sending the
elements bi in a homogeneous basis of P0 to homogeneous ci ∈ C0 such that δ0(ci) = f∂0(bi).

We now proceed by induction. Suppose we have constructed Pn−1
φn−1−−−→ Cn−1 such that

φn−1(im ∂n) ⊆ im δn. Since Pn is projective, there exists a map φn such that

Pn
∂n //

φn

��

Pn−1

φn−1

��

Cn δn
// im δn
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commutes. And again,

δnφn(im ∂n+1) ⊆ δnφn(ker ∂n) because P is a complex

= φn−1∂n(ker ∂n) by commutativity of the square above

= 0,

so φn(im ∂n+1) ⊆ ker δn = im δn+1.
We can now inductively construct our map of complexes φ lifting f .
Now suppose we are given two such maps of complexes P −→ C lifting f , say φ and ψ.

Note that φ−ψ and 0 are two liftings of the zero map. We are going to show that any map
lifting the zero map M −→ N must be nullhomotopic, which will then imply that φ and ψ
are homotopic as well (essentially via the same homotopy!).

So let φ : P −→ C be a map of complexes lifting the zero map M −→ N , so that the
following commutes:

· · · // P1

φ1

��

∂1 // P0

φ0

��

∂0 //M //

0

��

0

· · · // C1
δ1 // C0

δ0 // N // 0

We will explicitly construct a nullhomotopy for φ by induction. First, set hn = 0 for all
n < 0. The commutativity of the rightmost square tells us that δ0φ0 = 0, so

imφ0 ⊆ ker δ0 = im δ1.

Since P0 is projective, there exists an R-module homomorphism h0 such that

P0

h0

||

φ0

��

C1 δ1
// im δ1

commutes, and thus φ0 = δ1h0 = δ1h0 + h−1∂0. Notice also that

δ1(φ1 − h0∂1) = φ0∂1 − δ1h0∂1 because φ is a map of complexes

= (φ0 − δ1h0)∂1 factoring

= 0 since φ0 = δ1h0,

so im(φ1 − h0∂1) ⊆ ker δ1 = im δ2.
Now assume that we have constructed maps h0, . . . , hn such that φn = hn−1∂n + δn+1hn

and im(φn+1 − hn∂n+1) ⊆ im δn+2. Since Pn+1 is projective, we can find a map hn+1 such
that

Pn+1

hn+1

zz

φn+1−hn∂n+1

��

Cn+2 δn+2

// im δn+2
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commutes, so φn+1 = δn+2hn+1 + hn∂n+1. Now

δn+2(φn+2 − hn+1∂n+2) = φn+1∂n+2 − δn+2hn+1∂n+2 since φ is a map of complexes

= (φn+1 − δn+2hn+1)∂n+2

= hn∂n+1∂n+2 by commutativity of the triangle above

= 0 since ∂n+1∂n+2 = 0.

So we again obtain im(φn+2 − hn+1∂n+2) ⊆ ker δn+1 = im δn+2. By induction, this process
allows us to construct our homotopy h.

Theorem 5.19. Let (R,m) be a commutative noetherian ring, which is either a local ring
or an N-graded graded k-algebra with R0 = k and homogeneous maximal ideal m = R+. If F
is a minimal free resolution of M , then any free resolution for M is isomorphic to a direct
sum of F with a trivial complex. In particular, the minimal free resolution of M is unique
up to isomorphism.

Proof. Suppose that G is another free resolution of M . By Theorem 5.18, there are complex
maps ψ : G −→ F and φ : F −→ G that lift the identity map on M . Then ψφ : F −→ F
is a map of complexes that lifts the identity on M , and thus by Theorem 5.18 φψ must be
homotopic to the identity on F . Let h be a homotopy between ψφ and the identity, so that
for all n,

id−ψnφn = ∂n+1hn + hn−1∂n.

Since F is minimal, we have im ∂n ⊆ mFn−1 and im ∂n+1 ⊆ mFn, so im(id−ψnφn) ⊆ mFn
for all n. Our first goal will be to show that ψφ is an isomorphism.

First we do the local case. Let A be the matrix representing ψnφn in some fixed basis
for Fn, and note that id−ψnφn is represented by Id − A, so all the entries in Id − A must
be in m. Our matrix A can be written as

A =


1 + a11 a12 · · · a1s
a21 1 + a22 · · · a2s
...

...
. . .

...
...

as1 · · · as s−1 1 + ass


for some aij ∈ m, so that det(A) = 1 + a for some a ∈ m. In particular, det(A) is invertible,
and ψnφn is an isomorphism.

In the graded case, we have to be a bit more careful: not all elements that are not in m are
invertible, this is only true for homogeneous elements. First, we fix a basis of homogeneous
elements f1, . . . , fs for Fn with deg(f1) ⩽ deg(f2) ⩽ · · · ⩽ deg(fs), and set Φ := id−ψnφn.
Since our map Φ is degree-preserving, Φ(fi) is homogeneous for each i, and so we can write
Φ(fi) as a linear combination of our basis elements f1, . . . , fs using only pieces of degree
deg(Φ(fi)). We obtain a matrix C = (cij) such that cij ̸= 0 =⇒ deg(cij) = deg(fj)−deg(fi),
and C represents Φ, meaning Φ(fi) = ci1f1 + · · · + cisfs for all i. Now all the entries of
C = Id−A must be in m, so in particular we must have aii = 1 for all i. Moreover, since we
chose our basis to have increasing degrees, deg(cij) = 0 whenever i < j. Since we must also
have cij ∈ m whenever i ̸= j, we conclude that cij = 0 for i < j. We conclude that A is an
upper triangular matrix. Finally, det(A) = a11 · · · ass = 1, and A is invertible.
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So we have shown in both cases that ψnφn is an isomorphism for all n. By Exercise 25,
ψφ is in fact an isomorphism of complexes, so let ξ : F → F be its inverse. Now we want to
claim that φ splits as a map of complexes. Notice that

(ξψ)φ = ξ(ψφ) = idF ,

so let us take ξψ to be our proposed splitting for φ. Note that (ξψ)nφn = idn implies that
our map ξψ provides splittings for the R-module maps in each degree, by Lemma 2.19, so
Gn = φn(Fn)⊕ ker(ξnψn). we just need to prove that this splitting holds as complexes, that
is, that G = φ(F )⊕ ker(ξψ) as complexes. So let K := ker(ξψ), and denote the differential
in G by δ. We need to check that δ(φ(F )) ⊆ φ(F ) and δ(K) ⊆ K.

Since φ is a map of complexes, δφ = φ∂, so we do get δ(φ(F )) ⊆ φ(F ). Given a ∈ Kn+1,
we can write δn+1(a) = φ(b) + c for some b ∈ Fn and Kn, since Gn = φ(Fn)⊕Kn. Then

b = id(b)

= ξnψnφn(b) since ξnψn is a splitting for φn

= ξnψn(φn(b) + c) since c ∈ Kn

= ξnψnδn+1(a) by assumption

= ξnδn+1ψn(a) since ψ is a map of complexes

= δn+1(ξnψn)(a) since ξ is a map of complexes

= 0 since a ∈ Kn.

We conclude that δn+1(a) ∈ Kn, and δ(K) ⊆ K. We have now shown that G ∼= F ⊕K.
Finally, we are going to show that K is a trivial complex. First, we claim that Kn is free

for all n. We have already shown that Kn is a (graded) direct summand of a (graded) free
module. In the local case, Theorem 4.9 says that Kn is projective, and then Exercise 62 says
that Kn must in fact be free. In the graded setting, one can show that any graded module
which is a direct sum of a finitely generated graded R-module is a graded free module. In
both cases, Kn is free.

Since G ∼= F ⊕K, we have Hn(G) ∼= Hn(F )⊕Hn(K). Since F and G are both (graded)
free resolutions for M , they have the same homology: Hn(F ) = Hn(G) = 0 for all n ̸= 0,
and H0(F ) = H0(G) = M . We conclude that K is exact everywhere. Finally, Lemma 5.17
shows that K is trivial.

Theorem 5.20 (Horseshoe Lemma). Consider a short exact sequence of modules

0 // A
f
// B

g
// C // 0.

Let P be a projective resolution of A, and R be a projective resolution of C. There exists a
projective resolution Q of B and maps of complexes F and G lifting f and g such that

0 // P
F // Q

G // R // 0

is a short exact sequence of complexes.
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Proof. First, we need to introduce some general notation: given homomorphisms f :M → L
and g : N → L with the same target, we will write f ⊕ g for the homomorphism M ⊕N → L
given by (f ⊕ g)(m,n) = f(m) + g(n). Moreover, we will denote the differential of P by ∂P ,
and the differential of R by ∂R.

For each n ⩾ 0, set Qn := Pn ⊕ Rn, and let Fn : Pn −→ Qn and Gn : Qn −→ Rn

be the canonical projections. By Corollary 4.11, Qn is projective for all n. Moreover, by
construction we get short exact sequences

0 // Pn
Fn // Qn

Gn // Rn
// 0

for all n. We will construct the missing differentials ∂Q inductively.
Since R0 is projective and g is surjective, there exists γ such that

0 // P0
F0 //

∂0
��

Q0
G0 // R0

γ

}} ��

∂0
��

// 0

0 // A
f
// B g

// C // 0

commutes. Set ∂Q0 := (f∂P0 )⊕ γ. The universal property of the coproduct guarantees that

0 // P0
F0 //

∂0
��

Q0

∂Q0
��

G0 // R0

γ
}} ��

∂0
��

// 0

0 // A
f
// B g

// C // 0

commutes. By the Five Lemma, ∂Q0 is surjective. Moreover, ∂P0 is also surjective, so
coker(∂P0 ) = 0. By the Snake Lemma,

0 // ker ∂P0 // ker ∂Q0 // ker ∂R0 // coker(∂P0 ) = 0

is exact. We then proceed by induction, and at each step we apply the base case to the
commutative diagram with exact rows

0 // Pn+1
Fn+1

//

∂Pn+1
��

Qn+1
Gn+1

// Rn

∂Rn+1

��

// 0

0 // ker ∂Pn // ker ∂Qn // ker ∂Rn // 0

where the vertical arrows are surjective because P and R are projective resolutions and
thus exact. Notice that by construction, the image of ∂Qn+1 is contained in ker ∂Qn , which
guarantees that ∂ is a differential.

This inductive process allows us to build a complex of projectives Q and a short exact
sequence of complexes

0 // P
F // Q

G // R // 0.
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Applying the long exact sequence in homology, we get exact sequences

0 = Hn(P ) // Hn(Q) // Hn(R) = 0

for all n ⩾ 1, and thus Hn(Q) = 0. Moreover, we constructed δQ0 so that

Q1
δ1 // Q0

// B

is exact, and thus H0(Q) = B. We conclude that Q is a projective resolution of B.

Now that we know that minimal free resolutions exist and are unique (in the local and
graded settings), we will take the rest of this section to briefly discuss how minimal free
resolutions contain a lot of important information about our modules. For example, we
want to keep track of the kernels of the differentials in a minimal free resolution.

Definition 5.21. Let (R,m) be a commutative ring, either a local ring or an N-graded
k-algebra with R0 = k and homogeneous maximal ideal m = R+. Let F be a minimal free
resolution for the finitely generated (graded) R-module M . For each n ⩾ 1, the submodule

Ωn(M) := im ∂n = ker ∂n−1

is the nth syzygy of M .

Remark 5.22. For each n, we have a short exact sequence

0 // ker ∂n // Fn // im ∂n // 0.

But ker ∂n = Ωn(M) and im ∂n = Ωn−1(M), so we get a short exact sequence

0 // Ωn(M) // Fn // Ωn−1(M) // 0.

Syzygies are indeed well-defined up to isomorphism.

Remark 5.23. Suppose that F and G are two minimal free resolutions for M . By The-
orem 5.19, there exists an isomorphism between F and G, say φ. Since φ is a map of
complexes, φ∂F = ∂Gφ, and thus φ must send elements in ker ∂F into elements in ker ∂G.
Similarly, an inverse ψ to φ sends ker ∂G into ker ∂F . In each homological degree, the induced
maps ker ∂Fn −→ ker ∂Gn and ker ∂Fn −→ ker ∂Gn are inverse, and thus isomorphisms. In the
graded case, one can show that we obtain graded isomorphisms, so that the graded syzygies
are also well-defined up to isomorphism.

The number of generators in each homological degree is also an important invariant.

Definition 5.24. Let (R,m) be a commutative ring, either a local ring or an N-graded
k-algebra with R0 = k and homogeneous maximal ideal m = R+. Let F be a minimal free
resolution for the finitely generated (graded) R-module M . The nth betti number of M is

βi(M) := rank Fi = µ(Fi).
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In the graded case, we can also talk about graded betti numbers. When M is a graded
module, we can write a resolution that keeps track of the grading.

Definition 5.25. Let R be a commutative N-graded graded k-algebra with R0 = k and
homogeneous maximal ideal m = R+. Let M be a graded R-module. The (i, j)th betti
number of M , βij(M), counts the number of generators of Fi in degree j. We often collect
the betti numbers of a module in its betti table:

β(M) 0 1 2 · · ·
0 β00(M) β01(M) β02(M)
1 β11(M) β12(M) β13(M)
2 β22(M) β23(M)
...

. . .

By convention, the entry corresponding to (i, j) in the betti table of M contains βi,i+j(M),
and not βij(M). This is how Macaulay2 displays betti tables.

Example 5.26. Let R = k[x, y, z] and M = R/(xy, xz, yz). The minimal free resolution for
M is

0 // R2


z 0
−y y
0 −x


// R3

(
xy xz yz

)
// R //M.

From this minimal resolution, we can read the betti numbers of M :

• β0(M) = 1, since M is a cyclic module;

• β1(M) = 3, and these three quadratic generators live in degree 2;

• β2(M) = 2, and these represent linear syzygies on quadrics, and thus live in degree 3.

To write a graded free resolution for M , we choose all maps to have degree 0, so that the
graded free modules in each degree are sums of copies of shifts of R. Here is the graded free
resolution of M :

0 // R(−3)2


z 0
−y y
0 −x


// R(−2)3

(
xy xz yz

)
// R //M.

Notice that the graded shifts in lower homological degrees affect all the higher homological
degrees as well. For example, when we write the map in degree 2, we only need to shift the
degree of each generator by 1, but since our map now lands on R(−2)3, we have to bump up
degrees from 2 to 3, and write R(−3)2. The graded betti number βij(M) of M counts the
number of copies of R(−j) in homological degree i in our resolution. So we have

β00 = 1, β12 = 3, and β23 = 2.
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We can collect the graded betti numbers of M in its betti table:

β(M) 0 1 2
0 1 − −
1 − 3 2

.

Example 5.27. Let k be a field, R = k[x, y], and consider the ideal

I = (x2, xy, y3)

which has two generators of degree 2 and one of degree 3, so there are graded betti numbers
β12 and β13. The minimal free resolution for R/I is

0 //

R(−3)1⊕
R(−4)1


y 0
−x y2

0 −x


//

R(−2)2⊕
R(−3)1

(
x2 xy y3

)
// R // R/I.

β23(R/I) = 1
β24(R/I) = 1

β12(R/I) = 2
β13(R/I) = 1

So the betti table of R/I is
β(M) 0 1 2

0 1 − −
1 − 2 1
2 − 1 1

.

In fact, even if all we know is the betti numbers of M , there is lots of information to we
can extract about M . For more about the beautiful theory of free resolutions and syzygies,
see [?]. For a detailed treatment of graded free resolutions, see [?].

5.2 Injective resolutions

Injective resolutions are analogous to projective resolutions, but now we want to approximate
our module M by injectives.

Definition 5.28. Let M be an R-module. An injective resolution of M is a complex

E = 0 // E0
// E1

// E2
// · · ·

with each Ei injective, H0(E) = M , and Hn(E) = 0 for all n ̸= 0. We may abuse notation
and instead say that an injective resolution of M is an exact sequence

0 //M // E0
// E1

// E2
// · · · .
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Remark 5.29. This is the first example we have encountered where we have a cocomplex
rather than a complex. Its homology should technically be referred to as cohomology, and
written with superscripts:

We can construct injective resolutions in a similar fashion to how we constructed projec-
tive resolutions.

Theorem 5.30. Every R-module M has an injective resolution.

Proof. By Theorem 4.31, every R-module embeds into an injective module. So we start by
taking an injective R-module E0 containing M , and look at the cokernel of the inclusion.

0 //M
i0 // E0

π0 // coker i0 // 0.

Now coker i0 includes in some other injective module E1.

0 //M
i0 // E0

π0
##

∂0 // E1

coker i0

$$

i1

;;

0

::

0

Take ∂0 := i1π0. Since i1 is injective,

ker ∂0 = ker(i1π0) = ker π0 = im i0.

Notice also that coker i0 = im ∂0 = ker(E1 −→ coker ∂0). So we can now we continue in a
similar fashion, by finding an injective module E2 that coker ∂0 embeds into.

0

$$

0

coker ∂0

::

i2

$$

0 //M
i0 // E0

π0
##

∂0 // E1

π1
::

∂1
// E2

coker i0

i1
$$

;;

0

::

0

By construction and since i2 is injective, ker ∂1 = im ∂0, and our complex is exact at E1. The
process continues analogously.
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We can again define a minimal injective resolution for M as one where at each step we
take the smallest injective module that coker in embeds into; this is called the injective hull
ofM . Perhaps unsurprisingly, one can show that the minimal injective resolution of a finitely
generated module over a local ring is unique up to isomorphism. The analogues to the betti
numbers are called Bass numbers, although now there are some major differences. When we
construct a minimal free resolution, we have only to count copies of R in each homological
degree, while there are many different building blocks for injective modules — the injective
hulls of R/P , where P ranges over the prime ideals in R. So for each homological degree i,
we get one bass number for each prime ideal P .

Example 5.31. Let’s construct a minimal free resolution for the abelian group Z. We
start by including Z in Q, and then note that the cokernel Q/Z is actually injective, by
Lemma 4.26 and Lemma 4.23. So Q/Z embeds in itself, and our resolution stops there. So
the short exact sequence

0 // Z // Q // Q/Z // 0

is in fact a minimal injective resolution for Z.



Chapter 6

Derived functors

While Hom and tensor are not exact functors, we can measure their lack of exactness using
their derived functors Ext and Tor. These are the poster child examples of what are called
derived functors, which can be constructed over any abelian category provided we have
enough projective or injective objects. In this chapter, we will construct derived functors
over R-Mod (which does have enough injectives and enough projectives), and then later we
will discuss the general construction.

6.1 The general construction

We start with the general construction of derived functors, although we will soon focus on
concrete examples, most importantly Ext and Tor, the derived functors of hom and tensor.

In the following definition, when we say resolution we mean the non-augmented reso-
lution; so a projective resolution for M is a complex P of projectives with H0(P ) = M ,
Hi(P ) = 0 for all i ̸= 0, and Pi = 0 for all i < 0, while an injective resolution for M is a
cocomplex E of injectives with H0(E) =M , Hi(P ) = 0 for all i ̸= 0, and Pi = 0 for all i < 0.

Definition 6.1 (Derived functors). Let F : R-Mod −→ S-Mod be a covariant right exact
functor. The left derived functors of F are a sequence of functors

LiF : R-Mod −→ S-Mod, for i ⩾ 0,

defined as follows:

• For each R-module A, fix a projective resolution P of A, and set

LiF (A) := Hi(F (P )).

• Given a R-module homomorphism f : A→ B, fix projective resolutions P of A and Q
of B, and a map of complexes φ : P → Q lifting f . Then

LiF (f) := Hi(F (φ)).
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Let F : R-Mod −→ S-Mod be a covariant left exact functor. The right derived
functors of F are a sequence of functors

RiF : R-Mod −→ S-Mod, for i ⩾ 0,

defined as follows:

• For each R-module A, fix an injective resolution E of A, and set

RiF (A) := Hi(F (E)).

• Given an R-module homomorphism f : A→ B, fix injective resolutions E of A and I
of B, and a map of complexes φ : P → Q extending f . Then

RiF (f) := Hi(F (φ)).

Let F : R-Mod −→ S-Mod be a contravariant left exact functor. The right derived
functors of F are a sequence of functors

RiF : R-Mod −→ S-Mod, for i ⩾ 0,

defined as follows:

• For each R-module A, fix a projective resolution P of A, and set

RiF (A) := Hi(F (P )).

• Given an R-module homomorphism f : A→ B, fix projective resolutions P for A and
Q for B, and a map of complexes φ : P → Q extending f . Then

RiF (f) := Hi(F (φ)).

Finally, let F : R-Mod −→ S-Mod be a contravariant right exact functor. The left
derived functors of F are a sequence of functors

LiF : R-Mod −→ S-Mod, for i ⩾ 0,

defined as follows:

• For each object A in A, fix an injective resolution E of A, and set

LiF (A) := Hi(F (E)).

• Given an arrow A
f−→ B, fix injective resolutions A −→ E and B −→ I, and a map of

complexes E
φ−→ I extending f . Then

LiF (f) := Hi(F (φ)).
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It is not clear a priori that this construction is well-defined, but we will soon show that
is indeed the case.

Remark 6.2. If F is exact, then Hi(F (C)) = F (Hi(C)), by Exercise 45, so LiF = 0 for all
i > 0.

Remark 6.3. If P is projective, then 0 → P → 0 is a projective resolution of P , and thus
LiF (P ) = 0 for all i > 0. Similarly, if E is injective then RiF (E) = 0.

Proposition 6.4. Let F : R-Mod −→ S-Mod be a covariant right exact functor.

a) LiF (A) is well-defined up to isomorphism for every object A.

b) LiF (f) is well-defined for every arrow f .

c) LiF is an additive functor for each i.

d) L0F = F .

Proof.

a) Let P and Q be projective resolutions of A. Theorem 5.18 gives us maps of complexes
φ : P → Q and ψ : Q→ P such that φψ is homotopic to 1Q and ψφ is homotopic to 1P .
Additive functors preserve homotopies, by Remark 7.37, so F (φ)F (ψ) and F (ψ)F (φ)
are homotopic to the corresponding identity maps. Homotopic maps induce the same
map in homology, by Lemma 2.9. Therefore, F (φ) and F (ψ) induce isomorphisms in
homology.

b) Fix projective resolutions P and Q ofM and N . Any two lifts φ and ψ of f :M −→ N
to P −→ Q are homotopic, by Theorem 5.18. Additive functors preserve homotopies,
by Remark 7.37, so F (φ) and F (ψ) are homotopic. Homotopic maps induce the same
map in homology, by Lemma 2.9, so LiF (φ) = LiF (ψ) for each i.

c) Given an arrow f , fix a lift φ of f to projective resolutions of the source and target,
which exists by Theorem 5.18. Since F is an additive functor, Hi(F (φ)) is a homo-
morphism for each i, and thus LiF (f) is a homomorphism between the corresponding
Hom-groups, which as we have seen is independent of our choice of φ.

d) Let A be any R-module and P be a projective resolution of A. Since F is right exact,
and

P1
// P0

// A // 0

is exact, then so is
F (P1) // F (P0) // F (A) // 0.

We claim that H0(F (P )) = F (A). The last sequence above says that

F (A) = coker(F (P1)→ F (P0)),

and H0(F (P )) = F (P0)/ im(F (P1)→ F (P0)) = coker(F (P1)→ F (P0)).
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Exercise 68. Show that the following holds for every covariant left exact functor F :

a) RiF (A) is well-defined up to isomorphism.

b) RiF (f) is well-defined for every arrow f .

c) RiF (f) is an additive functor for every i.

d) R0F = F .

And now we are ready to prove the most important result about derived functors: they
fix the lack of exactness of the functor we are deriving, by inducing a long exact sequence in
homology from any given short exact sequence.

Theorem 6.5. Let F be a right exact covariant functor. Any short exact sequence

0 // A
f
// B

g
// C // 0

induces a natural long exact sequence

· · · // L2F (C) // L1F (A) // L1F (B) // L1F (C) // F (A) // F (B) // F (C) // 0.

Similarly, if F is a left exact covariant functor, we obtain a long exact sequence

0 // F (A) // F (B) // F (C) // R1F (A) // R1F (B) // R1F (C) // R2F (A) // · · · .

If F is a contravariant left exact functor, we obtain a natural long exact sequence

0 // F (C) // F (B) // F (A) // R1F (C) // R1F (B) // R1F (A) // R2F (C) // · · · .

Proof. We give a proof for the case of right exact functors, and the remaining cases follow
by duality. We start by fixing projective resolutions P of A and R of C. By Theorem 5.20,
we can choose a projective resolution Q of B and lifts of f and g such that

0 // P // Q // R // 0

is a short exact sequence of complexes. By Proposition 6.4, LiF does not depend on the
choice of resolution, so we can compute LiF (A), LiF (B), and LiF (C) from P , Q, and R.
Now notice that for each n, Rn is projective, so

0 // Pn // Qn
// Rn

// 0

is a split short exact sequence. Now additive functors preserve split short exact sequences,
by Exercise 94, so

0 // F (Pn) // F (Qn) // F (Rn) // 0

is a short exact sequence for all n. Then

0 // F (P ) // F (Q) // F (R) // 0
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is a short exact sequence of complexes. Note, however, that this sequence is not necessarily
split anymore, since the splittings at each level do not necessarily assemble into a map of
complexes. The Long Exact Sequence in homology now gives us the long exact sequence we
desire.

There were many choices along the way. First, we chose resolutions P , Q, and R, and lifts
of f and g. We have shown our computations of LiF (−) are independent of these choices.
We should check, however, that the resulting connecting arrows are natural transformations
that do not depend on our choice of lifts. Once a lift is fixed, we know we already have
naturality from the Snake Lemma or the Long Exact Sequence in homology.

It remains to check naturality. What is left to check is that given a commutative diagram
with exact rows

0 // A //

a

��

B //

b
��

C

c

��

// 0

0 // A′ // B′ // C ′ // 0

and chosen lifts of the original short exact sequences to projective resolutions, there are maps
of complexes such that

0 // P

α

��

// Q

β
��

// R

γ

��

// 0

0 // P ′ // Q′ // R′ // 0

commutes. Our derived functors LiF will preserve these maps of complexes and the com-
mutativity of the diagram above, so we get commutative diagrams

LiF (C)

LiF (γ)

��

// Li−1F (A)

Li−1F (α)

��

LiF (C
′) // Li−1F (A)

for each i. First, notice that we know that a, b, and c can be lifted to maps of complexes by
Theorem 5.18, and that any two lifts of each a, b, or c are unique up to homotopy. So let’s
start by fixing lifts α of a and γ of c, and we will construct an appropriate lift β of b. Since
the short exact sequences

0 // Pn // Qn
// Rn

// 0

split for each n, we might as well assume that Qn = Pn ⊕ Rn and that the arrows P −→ Q
and Q −→ R are given by the canonical arrows to and from the product ≡ coproduct in
each homological degree. We cannot, however, assume Q = P ⊕ R as complexes, only that
Qn = Pn ⊕Rn in each homological degree n. The commutativity of

0 // Pn //

∂Pn

��

Pn ⊕Rn

∂Qn

��

0 // Pn−1
// Pn−1 ⊕Rn−1
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does imply that ∂Q(P ) ⊆ P , so we can say that ∂Q is of the form

∂Qn =

(
∂Pn µn
0 ∂Rn

)
for each n. Since this is a differential, we have

(∂Qn )
2 = 0 =⇒ ∂Pn−1µn + µn−1∂

R
n = 0.

Similarly, all this applies to ∂Q
′

n , which must be of the form

∂Q
′

n =

(
∂P

′
n µ′

n

0 ∂R
′

n

)
.

We claim that we can define βn =

(
αn νn
0 γn

)
for each n such that β is a map of complexes,

meaning
∂Q

′

n βn = βn−1∂
Q
n .

Writing the corresponding products of matrices, we must have

(
∂P

′
n µ′

n

0 ∂R
′

n

)(
αn νn
0 γn

)
=

(
αn−1 νn−1

0 γn−1

)(
∂Pn µn
0 ∂Rn

)
=⇒


α is a map of complexes
∂P

′
n νn + µ′

nγn = αn−1µn + νn−1∂
R
n

0 = 0
γ is a map of complexes

The only nontrivial statement we want to guarantee is that ∂P
′

n νn+µ
′
nγn = αn−1µn+νn−1∂

R
n .

We can solve this inductively for each n, and construct an appropriate νn inductively. Given
νn−1, set

Γn := αn−1µn + νn−1∂
R
n − µ′

nγn,

We want to construct νn such that Rn
νn //

Γn !!

P ′
n

��

P ′
n−1

commutes, assuming we have constructed

νn−1. First, we claim that ∂P
′

n−1Γn = 0.

∂P
′

n−1Γn =∂P
′

n−1αn−1µn + ∂P
′

n−1νn−1∂
R
n − ∂P

′

n−1µ
′
nγn

=µ′
n−1∂

P ′

n γn + ∂P
′

n−1αn−1µn + ∂P
′

n−1νn−1∂
R
n since µ′

n−1∂
P ′

n = ∂Pn−1µn

By induction,
∂P

′

n−1νn−1 + µ′
n−1γn−1 = αn−2µn−1 + νn−2∂

R
n−1.

Using this to replace ∂P
′

n−1νn−1 in the equation above, we get

∂P
′

n−1Γn =µ′
n−1∂

P ′

n γn + ∂P
′

n−1αn−1µn + (αn−2µn−1 + νn−2∂
R
n−1 − µ′

n−1γn−1)∂
R
n

=αn−2µn−1∂
R
n + ∂P

′

n−1αn−1µn + νn−2∂
R
n−1∂

R
n − µ′

n−1(∂
P ′

n γn + γn−1∂
R
n )

=αn−2∂
P
n−1µn + ∂P

′

n−1αn−1µn + νn−2∂
R
n−1∂

R
n − µ′

n−1(∂
P ′

n γn + γn−1∂
R
n )
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We showed above that ∂P
′

n γn + γn−1∂
R
n = 0. Moreover, ∂Rn−1∂

R
n = 0. We conclude that

∂P
′

n−1Γn =αn−2∂
P
n−1µn + ∂P

′

n−1αn−1µn

=αn−2∂
P
n−1µn + αn−2∂

P ′

n µn since α is a map of complexes

=αn−2(∂
P
n−1µn + ∂P

′

n µn)

=0 since ∂Pn−1µn + ∂P
′

n µn = 0.

So this concludes the proof that ∂P
′

n−1Γn = 0. Therefore, Γn must factor through the ker ∂P
′

n−1:

P ′
n

∂n // P ′
n−1

∂n−1
// P ′
n−2

ker ∂n−1

::

Rnψn

oo

Γn

OO

On the other hand, P ′ is a resolution and thus exact, so im ∂n = ker ∂n−1, and ∂n factors
through ker ∂n−1 as

P ′
n

φn
##

∂n // P ′
n−1

∂n−1
// P ′
n−2

ker ∂n−1

::

Rnψn

oo

Γn

OO

via some epi φn. Finally, Rn is projective, so there exists νn such that

Rn

ψn

��

νn

{{

P ′
n φn

// ker ∂n−1

commutes — this was the νn we were searching for.

Theorem 6.6. Let Ti : R-Mod −→ S-Mod be a sequence of additive covariant functors,
and F : R-Mod −→ S-Mod a right exact functor. Suppose that the following hold:

(1) For every short exact sequence 0 // A // B // C // 0 in R-Mod, we get a
natural long exact sequence

· · · // T2(C) // T1(A) // T1(B) // T1(C) // T0(A) // T0(B) // T0(C) // 0.

(2) T0 is naturally isomorphic to F .

(3) Tn(P ) = 0 for every projective P and all n ⩾ 1.

Then Tn is naturally isomorphic to LnF for all n ⩾ 0.
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Proof. We are going to show that Tn is naturally isomorphic to LnF by all n. The statement
for n = 0 is one of our assumptions. When n = 1, fix an R-module M , and consider a short
exact sequence

0 // K
f
// P //M // 0

with P projective. By assumption (1), we get a long exact sequence on the Ti, and by (2),
there exist isomorphisms τ0 such that the following is a commutative diagram:

T1(P ) // T1(M)
∆1 // T0(K)

τ0(K)
��

T0(f)
// T0(P )

τ0(P )
��

// T0(M)

τ0(M)
��

// 0

L1F (P ) // L1F (M)
δ1
// F (K)

F (f)
// F (P ) // F (M) // 0.

By (3), T1(P ) = 0, and L1F (P ) = 0 by construction. The exactness of each row now implies
that ∆1 and δ1 are both injective. Moreover,

F (f)τ0(K)∆1 = τ0(P )T0(f)∆1 by commutativity of the diagram

= 0 since T0(f)∆1 = 0.

so the image of τ(k)∆1 is contained in kerF (f) = im δ1. Define τ1(M) : T1(M)→ L1F (M) as
follows: we send each a ∈ T1(M) to the unique b ∈ L1F (M) such that δ1(b) = τ0(K)∆1(a).
This is a homomorphism of R-modules because so are δ1, τ0(K), and ∆1. Moreover, since
τ0(K) is an isomorphism and ∆1 is injective, the composition τ0(K)∆1 is injective. As a
consequence, τ1(M) is injective. On the other hand, we claim that τ1(M) is also surjective.
Given any b ∈ L1F (M), since τ0(K) is an isomorphism there exists c ∈ T0(K) such that
τ0(K)(c) = δ1(b). Thus

τ0(P )T0(f)(c) = F (f)τ0(K)(c) by commutativity

= F (f)δ1(b) since τ0(K)(c) = δ1(b)

= 0 since the bottom row is a complex

Since τ0(P ) is an iso, we must have c ∈ ker(T0(f)) = im∆1. Thus we can choose a ∈ T1(M)
such that ∆1(a) = c, which implies that τ1(M)(a) = b. Therefore, τ1(M) is an isomorphism.

This shows that T1(M) ∼= L1F (M). Now let n ⩾ 1, and consider the diagram with exact
rows

Tn+1(P ) // Tn+1(M)
∆n+1

// Tn(K)

τn(K)

��

// Tn(P )

Ln+1F (P ) // Ln+1F (M)
δn+1

// LnF (K) // LnF (P )

By (3), Tn+1(P ) = 0 = Tn(P ), and by construction Ln+1F (P ) = 0 = LnF (P ). Therefore,
∆n+1 and δn+1 are isomorphisms. Since τn(K) is also an isomorphism, we conclude that
Tn+1(M) ∼= Ln+1F (M). Therefore, Tn(M) ∼= LnF (M) for all n.
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It remains to show that these isomorphisms are natural, that is, that any R-module map
f :M → N gives rise to commutative diagrams

Ti(M)

Ti(f)

��

τi(M)
// LiF (M)

LiF (f)

��

Ti(N)
τi(N)

// LiF (N).

We will prove this by induction on i. First, note that the commutativity of the square holds
for i = 0 by (2). Let i ⩾ 1. Fix projectives P and Q and short exact sequences

0 // K // P //M // 0 and 0 // C // Q // N // 0.

Since Q is projective and Q → N is surjective, f lifts to a map g : P → Q. Moreover,
an argument similar to the one we used above shows that we can define a map h giving a
commutative diagram

0 // K

h
��

// P

g

��

//M

f

��

// 0

0 // C // Q // N // 0.

Now consider the following diagram:

Ti(M)

τi(M)

��

Ti(f)

%%

∆i // Ti−1(K)

τi−1(K)

��

Ti−1(h)

xx

3

Ti(N)

τi(N)

��

∆i // Ti−1(C)

τi−1(C)

��

2 1 4

LiF (N)
δi

// Li−1F (C)

5

LiF (M)

LiF (f)

99

δi
// LiF (K)

Li−1F (h)

ff
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• The big square and 1 commute by definition of τi.

• The square 3 commutes because we assumed in (1) that Ti gives rise to long exact
sequences which are natural.

• The square 5 commutes because LiF gives rise to natural long exact sequences, by
Theorem 6.5.

• The square 4 commutes by induction hypothesis.

Our goal is to show that 2 commutes. First, we claim that

δi ◦ τi(N) ◦ Ti(f) = δi ◦ LiF (f) ◦ τi(M).

Indeed, using the commutativity of the various other parts of the diagram, we get

δi ◦ τi(N) ◦ Ti(f) = τi−1(C) ◦∆i ◦ Ti(f) by commutativity of 1

= τi−1(C) ◦ Ti−1(h) ◦∆i by commutativity of 3

= Li−1F (h) ◦ τi−1(K) ◦∆i by commutativity of 4

= Li−1F (h) ◦ δi ◦ τi(M) by commutativity of the big square

= δi ◦ LiF (f) ◦ τi(M) by commutativity of 5 .

On the other hand, the long exact sequence for LiF from Theorem 6.5 says that

LiF (Q) // LiF (N)
δi // Li−1F (C)

is exact, but since i ⩾ 1 and Q is projective we have LiF (Q) = 0 by Remark 6.3. But the
exactness of

0 // LiF (N)
δi // Li−1F (C)

says that δi is injective. Therefore,

δi ◦ τi(N) ◦ Ti(f) = δi ◦ LiF (f) ◦ τi(M) =⇒ τi(N) ◦ Ti(f) = LiF (f) ◦ τi(M),

and 2 commutes, as desired.

There are versions of this theorem for the three remaining cases as well; we record one
of them here:

Theorem 6.7. Suppose Ti : R-Mod −→ S-Mod is a sequence of additive covariant functors
and F : R-Mod −→ S-Mod a left exact functor such that

a) For every short exact sequence 0 // A // B // C // 0 in R-Mod, we get a
long exact sequence

0 // T0(A) // T0(B) // T0(C) // T1(A) // T1(B) // T1(C) // · · · .

b) T0 is naturally isomorphic to F .

c) Tn(E) = 0 for every injective E and all n ⩾ 1.

Then Tn is naturally isomorphic to RnF for all n.

We leave the proof of this and the other two cases as an exercise.
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6.2 A first look at Ext and Tor

It’s time to study some concrete examples of derived functors: Ext, the derived functor of
Hom, and Tor, the derived functor of tensor. Given two modulesM and N , we may consider
the derived functors ofM⊗R−, and then plug in N , or we may consider the derived functors
of − ⊗R N , and plug in M ; it turns out that the two are naturally isomorphic, and this is
the Tor functor:

TorRi (M,N) := Li(M ⊗R −)(N) ∼= Li(−⊗R N)(M).

More precisely, if P is a projective resolution of M , and Q is a projective resolution of N ,

TorRi (M,N) := Hi(P ⊗R N) ∼= Hi(M ⊗R Q).

There are two Hom functors, each with its own derived functor: given R-modules M and
N , we may take a projective resolution P of M , and compute Hi(HomR(P,N)), or we could
take an injective resolution E of N , and compute Hi(HomR(M,E)). It turns out these two
completely different sounding constructions give us isomorphic R-modules:

ExtiR(M,N) := Ri(HomR(M,−))(N) ∼= Ri(HomR(−, N))(M)

∼= Hi(HomR(P,N)) ∼= Hi(HomR(M,E)).

To show that for each of Ext and Tor these two seemingly unrelated definitions agree, we
will need some more tools.

Definition 6.8. The suspension of shift of a complex C is the complex ΣC := C[−1] with

(ΣC)n = Cn−1 and ∂ΣC = −∂C .

Given an integer k, the kth suspension of C is the complex

ΣkC := Σ · · ·Σ︸ ︷︷ ︸
k times

C with ∂Σ
kC = (−1)k∂C .

Note that there are two conventions in the literature, the other one being (ΣC)n = Cn+1.

Definition 6.9. A (homological) double complex over the ring R is a family of R-modules
{Cp,q}p,q∈Z together with homomorphisms of R-modules dh : Cp,q −→ Cp−1,q and d

v : Cp,q −→
Cp,q−1

...

��

...

��

· · · Cp−1,q+1

dv

��

oo Cp,q+1

dv

��

dhoo · · ·oo

· · · Cp−1,q

��

oo Cp,q
dh

oo

��

· · ·oo

...
...

satisfying
dhdh = 0 dvdv = 0 dhdv + dvdh = 0.
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Remark 6.10. Note that if C is a double complex, then each row and each column is a
complex: if we fix p, Cp,• is a complex with differential dv; if we fix q, C•,q is a complex with
differential dh.

What we defined above is a homological double complex. A cohomological double com-
plex would have vertical and horizontal maps that go up in index, and we instead write Cp,q

for the module in position (p, q). Also, please note that there are different conventions in
the literature for whether p refers to the row or column.

Definition 6.11. Given a double complex C, its total complex is the complex given by

Tot⊕(C)n :=
⊕
p+q=n

Cp,q with differential d = dh + dv.

Similarly, the product total complex of C is given by

Tot
∏
(C)n :=

∏
p+q=n

Cp,q with differential d = dh + dv.

Remark 6.12. Let C be a double complex with differentials dv and dh. Then

(dh + dv)(dh + dv) = dhdh︸︷︷︸
0

+ dhdv + dvdh︸ ︷︷ ︸
0

+ dvdv︸︷︷︸
0

= 0,

so (Tot⊕(C), d) and (Tot
∏
(C), d) are indeed complexes.

In order to prove our two definitions of Ext and Tor each agree, we will need two special
double complexes: the tensor and the Hom double complex.

Definition 6.13. Let R be a ring and C and D be complexes of R-modules. The tensor
product double complex of C and D is the double complex C ⊗D given by taking

(C ⊗D)p,q = Cp ⊗Dq dh = ∂C ⊗R 1D, and dv = (−1)p1C ⊗R ∂D.

We call the total complex of the tensor product double complex of C and D the tensor
product of C and D in Ch(R), and denote it by C ⊗D.

Remark 6.14. The tensor product total complex has

Tot⊕(C ⊗D)n =
⊕
p+q=n

Cp ⊗R Dq

and differential
d(x⊗ y) = ∂(x)⊗ y + (−1)px⊗ ∂(y)

for x ∈ Cp and y ∈ Dq.



159

Definition 6.15. Let R be a ring and C and D be complexes of R-modules. The Hom
double complex of C and D is the double complex Hom(C,D) given by

(Hom(C,D))p,q := HomR(C−p, Dq)

with differentials

HomR(C−p, Dq)
dh // HomR(C−p+1, Dq)

f � // f ◦ ∂C
and HomR(C−p, Dq)

dv // HomR(C−p, Dq−1)

f � // (−1)p+q+1∂D ◦ f

.

We call the product total complex of the Hom double complex of C and D the (internal)
Hom complex of C and D, and denote it by Hom(C,D).

Remark 6.16. The Hom complex of C and D is the complex

Hom(C,D)n =
∏

p+q=n

HomR(C−p, Dq)

with differential d(f) = f ◦ ∂C + (−1)p+q+1∂D ◦ f for each f ∈ HomR(C−p, Dq).

Remark 6.17. Given C and D in Ch(R), what is a 0-cycle in the Hom complex Hom(C,D)?
A 0-cycle is a sequence of maps of R-modules fk : Ck → Dk satisfying f∂C − ∂Df = 0, so
the 0-cycles are precisely the maps of complexes C → D. Similarly, a sequence of maps
fk : Ck → Dk is a 0-boundary if there exists a sequence of maps hk : Ck −→ Dk+1 such that
fk = ∂Dhk+hk−1∂

C . In other words, a 0-boundary indicates a homotopy relation — if f − g
is a 0-boundary, f and g are homotopic maps.

Definition 6.18. Let f : C −→ D be a map of complexes. The (mapping) cone of f is
the complex cone(f) with cone(f)n = Cn−1 ⊕Dn and differential given by

∂n :=

(
−∂C 0
f ∂D

)
:

Cn−1
−∂C

//

f

$$

Cn−2

⊕ ⊕

Dn
∂D

// Dn−1

Remark 6.19. There are different conventions for the sign in front of f in the definition of
the differentials on the cone of f . Weibel [?] defines

∂n :=

(
−∂C 0
−f ∂D

)
and some authors even write

∂n :=

(
−∂C 0

(−1)nf ∂D

)
.

All of these choices do make our proposed differential a differential (check it!). The facts
below about the mapping cone are all true up to sign whatever the sign convention we follow.
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Exercise 69. Let f : C → D be a map of complexes. Show that giving a map of complexes
cone(f)→ E is the same as giving

• a map of complexes D
g−→ E, and

• a homotopy between gf and 0.

Exercise 70. Let f : A → B be a map of complexes. Show that f is nullhomotopic if and
only if f factors through the canonical map A→ cone(idA).

Remark 6.20. Given any map of complexes C
f
// D , there is a short exact sequence

0 // D // cone(f) // Σ−1C // 0

determined by the canonical arrows to and from the product ≡ coproduct. The connecting
arrows from the Snake Lemma

Hn−1(C) = Hn(Σ
−1C) δ // Hn−1(D)

are exactly Hn−1(f) : Hn−1(C) −→ Hn−1(D) induced by f , so there is a long exact sequence

· · · // Hn+1(cone(f)) // Hn(C)
Hn(f)

// Hn(D) // Hn(cone(f)) // Hn−1(C) // · · · .

As a consequence, f is a quasi-isomorphism if and only if cone(f) is exact.

Remark 6.21. Given a map of complexes C
f
// D , we can construct a double complex

from f , as follows:
...

∂

��

...

−∂
��

0 D2

∂
��

oo C2
f
oo

−∂
��

0oo

X = 0 D1

∂
��

oo C1
f
oo

−∂
��

0oo

0 D0

∂
��

oo C0
f
oo

−∂
��

0oo

...
...

Note that Tot⊕(X) = cone(f).

Now that we have introduced all the tools we need, the last thing we need is a technical
but very useful lemma.
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Lemma 6.22 (Acyclic Assembly Lemma). Let C be a double complex in R-Mod.

a) If C is an upper half plane double complex with exact rows, meaning Cp,q = 0 whenever
q < 0, then Tot⊕(C) is exact.

b) If C is a right half plane double complex with exact columns, meaning Cp,q = 0 whenever
p < 0, then Tot⊕(C) is exact.

c) If C is an upper half plane double complex with exact columns, meaning Cp,q = 0
whenever q < 0, then Tot

∏
(C) is exact.

d) If C is a right half plane double complex with exact rows, meaning Cp,q = 0 whenever
p < 0, then Tot

∏
(C) is exact.

Proof. Notice that a) ⇔ b) and c) ⇔ d) by switching the indexes. Moreover, we claim that
it is sufficient to show c), since it implies b).

To show that c) implies b), we need some notation. Given a double complex C, consider
the nth truncation τn(C) of C defined by

τn(C)p,q :=


Cp,q if q > n

ker( Cp,n
dv // Cp,n−1 ) if q = n

0 if q < n.

The natural inclusion τn(C)→ C induces an isomorphism in homology for i ⩾ n.
Suppose that C is a right half plane double complex with exact columns, and assume

that c) holds. Then τn(C) still has exact columns, so by c), Tot
∏
(τn(C)) is exact. On the

other hand, notice that up to a vertical shift, τn(C) is a first quadrant double complex, and
for each fixed m, there are only finitely many values of p and q with p + q = m and such
that τn(C)p,q ̸= 0. Therefore, Tot

∏
(τn(Cp,•)) = Tot⊕(τn(Cp,•)), so Tot⊕(τn(Cp,•)) is exact.

We claim that this implies that Tot⊕(C) is exact. One can make this precise by saying
Tot⊕(C) = colimn(Tot

⊕(C)). The point is that any element a ∈ Zk(Tot
⊕(C)), when we

write a explicitly as a = (ap,q) ∈ ⊕p+q=kCp,q in terms of its coordinates in each Cp,q, only
finitely many ap,q are nonzero. Let q be the smallest such that ap,q ̸= 0, and fix any n < q.
Then

a ∈ Zk(Tot⊕(τn(C))) = Bk(Tot
⊕(τn(C))) ⊆ Bk(Tot

⊕(C)).

So Tot⊕(C) is exact, and b) holds.
All we have left to do is to show c), meaning that the product total complex of any

upper half plane double complex C with exact columns is exact. We are going to show
that H0(Tot

∏
(C)) = 0, and the remaining homologies follow by shifting C left and right.

Consider a 0-cycle in Tot
∏
(C), meaning a sequence of elements cp ∈ C−p,p for each p ⩾ 0

such that c = (cp) ∈ Z0(Tot
∏
(C)). So

d(c) = 0⇔ dv(cp) + dh(cp−1) = 0 for all p.

We will construct b−p,p+1 ∈ C−p,p+1 for each p such that dv(b−p,p+1)+d
h(b−p+1,p) = cp, proving

that c ∈ B0(Tot
∏
(C)).
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Set b1,0 = 0 ∈ C1,0 when p = −1. Since C0,−1 = 0, we must have dv(c0) = 0 ∈ C0,−1. We
also assumed that the columns are exact, so in particular the 0th column is exact. We can
then find b0,1 ∈ C0,1 such that dv(b0,1) = c0, and thus dv(b0,1) + dh(b1,0) = c0.

Now we proceed by induction. Suppose we have constructed b−s+1,s for −1 ⩽ s ⩽ p with
the desired property that dv(b−s,s+1) + dh(b−s+1,s) = cs for all s ⩽ p. Then

dv(c−p,p − dh(b−p+1,p)) = dv(cp) + dhdv(b−p+1,p) since dvdh + dhdv = 0

= dv(cp) + dh(cp−1 − dh(b−p+2,p−1)) as dv(b−p+1,p) + dh(b−p+2,p−1) = cp−1

= dv(cp) + dh(cp−1)− dhdh(b−p+2,p−1)

= dv(cp) + dh(cp−1) since dhdh = 0

= 0.

The last equality comes simply from the fact that (dv + dh)(c) = 0. So we have shown that
dv(c−p,p − dh(b−p+1,p)) = 0. Since the columns are exact, we can find b−p,p+1 ∈ C−p,p+1 such
that

dv(b−p,p+1) = c−p,p − dh(b−p+1,p).

Equivalently,
dv(b−p,p+1) + dh(b−p+1,p) = c−p,p.

Exercise 71. Given a double complex C with Cp,q = 0 for all p < n, the horizontal differ-
entials Cn+1,q −→ Cn,q induce a map of complexes

Tot⊕(C>n,•)
φ−→ Cn,• ,

where C>n,• denotes the double complex we obtain from C by excluding the leftmost nonzero
column, and Tot⊕(C) ∼= Σ−1 cone(φ), or equivalently, ΣTot⊕(C) ∼= cone(φ).

We are finally ready to show that the two definitions of Tor coincide.

Theorem 6.23 (Balancing Tor). Let M and N be R-modules, and fix projective resolutions
P of M and Q of N . For all n ⩾ 0, there is an isomorphism

Ln(M ⊗R −)(N) = Hn(M ⊗R Q) ∼= Hn(P ⊗R N) = Ln(−⊗R N)(M).

Proof. Consider π : P0 ↠M and ε : Q0 ↠ N and the first quadrant double complex
...

��

...

��

...

��

P0 ⊗Q2

1⊗∂Q
��

P2 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q2

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P ⊗Q = P0 ⊗Q1

1⊗∂Q
��

P1 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q1

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P0 ⊗Q0 P1 ⊗Q0
∂P⊗1
oo P2 ⊗Q0

∂P⊗1
oo · · ·oo
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Each Pi and Qi is projective and thus flat, by Theorem 4.37, so Pi ⊗R − and − ⊗R Qi are
both exact functors. The rows and columns of our double complex are thus exact everywhere
except for the 0th row and column. We can complete our double complex to make a double
complex C with both exact rows if we add in a column induced by the surjection π:

...

��

...

��

...

��

...

��

M ⊗Q2

��

P0 ⊗Q2π⊗1
oo

1⊗∂Q
��

P2 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q2

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

C = M ⊗Q1

��

P0 ⊗Q1

1⊗∂Q
��

π⊗1
oo P1 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q1

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

M ⊗Q0 P0 ⊗Q0π⊗1
oo P1 ⊗Q0

∂P⊗1
oo P2 ⊗Q0

∂P⊗1
oo · · · .oo

We can also make a double complex D with exact columns by adding in a row induced by ε:

...

��

...

��

...

��

P0 ⊗Q2

1⊗∂Q
��

P2 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q2

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

P0 ⊗Q1

1⊗∂Q
��

P1 ⊗Q1

1⊗∂Q
��

∂P⊗1
oo P2 ⊗Q1

∂P⊗1
oo

1⊗∂Q
��

· · ·oo

D = P0 ⊗Q0

1⊗ε
��

P1 ⊗Q0
∂P⊗1
oo

1⊗ε
��

P2 ⊗Q0

1⊗ε
��

∂P⊗1
oo · · ·oo

P0 ⊗N P1 ⊗Noo P2 ⊗Noo · · ·oo .

By Lemma 6.22, Tot⊕(C) and Tot⊕(D) are both exact. Notice that π ⊗ Q is a map of
complexes Tot⊕(P⊗Q) −→M⊗Q, and P⊗ε is a map of complexes Tot⊕(P⊗Q) −→ P⊗N .
By Exercise 71,

cone(π ⊗Q) = ΣTot⊕(C) and cone(P ⊗ ε) = ΣTot⊕(D).

Since ΣTot⊕(C) and ΣTot⊕(D) are both exact, by Remark 6.20 both

Tot⊕(P ⊗Q) π⊗Q−−−→M ⊗Q and Tot⊕(P ⊗Q) P⊗ε−−−→ P ⊗N

are quasi-isomorphisms, so that

Ln(M ⊗R −)(N) = Hn(M ⊗R Q) ∼= Hn(P ⊗R N) = Ln(−⊗R N)(M).
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Theorem 6.24 (Balancing Ext). Let M and N be R-modules, and fix a projective resolution
P of M and an injective resolution E of N . For all n, there is an isomorphism

RnHomR(M,−)(N) = Hn(HomR(M,E)) ∼= Hn(HomR(P,N)) = RnHomR(−, N)(M).

Proof. We have a surjection π : P0 −→ M and an inclusion ε : M −→ E0. The double
cocomplex HomR(P,E) with HomR(P,E)p,q = HomR(Pp, E

q) and

HomR(Pp, E
q) dh // HomR(Pp+1, E

q)

f � // f ◦ ∂P
and HomR(Pp, E

q) dv // HomR(Pp, Dq+1)

f � // (−1)p+q+1∂E ◦ f

.

is a cohomological first quadrant double complex:

...
...

...

HomR(P0, E
2)

OO

// HomR(P1, E
2)

OO

// HomR(P2, E
2) //

OO

· · ·

Hom(P,E) = HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

We proceed just like in Theorem 6.23, now considering two cohomological double complexes:
...

...
...

...

Hom(M,E2) //

OO

HomR(P0, E
2)

OO

// HomR(P1, E
2)

OO

// HomR(P2, E
2) //

OO

· · ·

C = Hom(M,E2) //

OO

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

Hom(M,E2) //

OO

HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·
and

...
...

...

HomR(P0, E
2)

OO

// HomR(P1, E
2)

OO

// HomR(P2, E
2) //

OO

· · ·

D = HomR(P0, E
1)

OO

// HomR(P1, E
1)

OO

// HomR(P2, E
1) //

OO

· · ·

HomR(P0, N)

OO

// HomR(P1, N)

OO

// HomR(P2, N) //

OO

· · · .
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We obtained C from Hom(P,E) by adding in a column induced by π, and D by adding
in a row induced by ε. Now we notice that

cone(HomR(P,N) −→ Tot⊕(Hom(P,E))) = Tot⊕(C),

and
cone(HomR(M,E) −→ Tot⊕(Hom(P,E))) = Tot⊕(D).

The dual of Lemma 6.22 says that Tot⊕(C) and Tot⊕(D) are both exact, and thus
HomR(P,N) −→ Tot⊕(Hom(P,E)) and HomR(M,E) −→ Tot⊕(Hom(P,E)) are both quasi-
isomorphisms. We conclude that

RnHomR(M,−)(N) = Hn(HomR(P,N)) ∼= Hn(HomR(M,E)) = RnHomR(−, N)(M).

Definition 6.25. Let R be a ring and M and N be R-modules. The ith Tor module from
M to N is

TorRi (M,N) := Li(M ⊗R −)(N) ∼= Li(−⊗R N)(M).

Notice in particular that the R-module TorRi (M,N) is defined only up to isomorphism.

Definition 6.26. Let R be a ring and M and N be R-modules. The ith Ext module from
M to N is

ExtiR(M,N) := RiHomR(M,−)(N) ∼= RiHomR(−, N)(M).

Notice in particular that the R-module ExtiR(M,N) is only defined up to isomorphism.

Theorem 6.5 immediately gives us long exact sequences for Ext and Tor.

Theorem 6.27. Let R be a ring and M an R-module. Every short exact sequence of R-
modules

0 // A
f
// B

g
// C // 0

induces a long exact sequence

· · · // TorRn+1(M,C) // TorRn (M,A) // TorRn (M,B) // TorRn (M,C) // · · ·

· · · // TorR1 (M,C) // A⊗RM // B ⊗RM // C ⊗RM // 0.

Theorem 6.28. For every R-module M , every short exact sequence of R-modules

0 // A
f
// B

g
// C // 0

induces a natural long exact sequence

0 // HomR(M,A) // HomR(M,B) // HomR(M,C) // Ext1R(M,A) // · · ·

· · · // ExtnR(M,B) // ExtnR(M,C) // Extn+1
R (M,A) // · · · .

and

0 // HomR(C,M) // HomR(B,M) // HomR(A,M) // Ext1R(C,M) // · · ·

· · · // ExtnR(B,M) // ExtnR(A,M) // Extn+1
R (C,M) // · · · .
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Theorem 6.29. Let M and N be R-modules. For all i, there are natural isomorphisms

TorRi (M,N) ∼= TorRi (N,M).

Proof. Let P be a projective resolution of M . By Theorem 6.23, TorRi (M,N) = Hi(P ⊗RN)
and TorRi (N,M) = Hi(N ⊗R P ). By Lemma 3.38, M ⊗R N and N ⊗R M are naturally
isomorphic. In fact, m⊗ n 7→ n⊗m determines an isomorphism. So consider the map

Pn ⊗R N
fn
// N ⊗R Pn N ⊗RM

gn
// Pn ⊗R N

m⊗ n � // n⊗m n⊗m � //m⊗ n

which again are isomorphisms for all n. Notice that these fn assemble into a map of complexes

P ⊗R N
f−→ N ⊗R P , since

fn(∂(m⊗ n)) = fn(∂(m)⊗ n) = n⊗ ∂(m) = ∂(n⊗m) = ∂fn+1(m⊗ n).

Since all the fn are isomorphisms, f is an isomorphism of complexes, and must then induce
isomorphisms in homology. We conclude that

TorRi (M,N) = Hi(P ⊗R N) ∼= Hi(N ⊗R P ) = TorRi (N,M).

However, ExtiR(M,N) and ExtiR(N,M) can be dramatically different.

Example 6.30. Let k be a field and R = k[x]. The following is a minimal free resolution
for k = R/(x):

0 // R x // R // k // 0.

To compute ExtiR(k,R), we need only to apply HomR(−, R) to this resolution; one needs to
be careful, though, as this is a contravariant functor. We obtain the following complex:

0 HomR(R,R)oo HomR(R,R)
x∗oo 0.oo

One can show that HomR(x,R) is multiplication by x on HomR(R,R); moreover, we have a
natural isomorphism HomR(R,R) ∼= R, giving us

C = 0 Roo R
xoo 0oo

1 0

In particular,
Ext1(k,R) = H1(C) = R/(x).

In contrast,
Ext1(R, k) = 0

since R is free. Thus Ext1(R, k) ̸∼= Ext1(k,R).
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There is an alternative description of Ext. It turns out that Ext1R(M,N) measures the
extensions of M by N modulo split extensions. More precisely, an extension of M by N
is a short exact sequence

0 // N // B //M // 0.

We can put an abelian group structure on the set of isomorphism classes of extensions of
M by N , using an operation called the Baer sum, and one can show that the resulting
abelian group is isomorphic to Ext1R(M,N). Via this description, the zero in Ext1R(M,N)
corresponds to the split short exact sequence

0 // N // N ⊕M //M // 0.

The higher Ext modules can also be described in a similar fashion. First, we consider
the set of n-fold extensions of N by M , meaning exact sequences of the form

0 // N // B1
// B2

// · · · // Bn
//M // 0

and the equivalence relation on this set given by the existence of a map of complexes

0 // N // B1

��

// · · · // Bn

��

//M // 0

0 // N // C1
// · · · // Cn //M // 0

where the vertical maps are not necessarily isomorphisms. We then define an operation on
the set of equivalence classes of n-fold extensions of N by M that is also called the Baer
sum, and one shows that the resulting abelian group is isomorphic to ExtnR(M,N).

Via this description, Ext1R(M,N) = 0 if and only if every short exact sequence

0 // N // B //M // 0.

splits.

Finally, here are some nice facts about Ext and Tor we leave as exercises.

Exercise 72. IfM and N are finitely generated R-modules and R is a noetherian ring, then
ExtiR(M,N) and TorRi (M,N) are both finitely generated R-modules for all i.

Exercise 73. Let R be a commutative ring and M and N be R-modules. Consider the
R-module homomorphism f :M →M given by multiplication by a fixed element r ∈ R.

a) Show that the map TorRi (f,M) : TorRi (M,N)→ TorRi (M,N) induced by f is multipli-
cation by r on TorRi (M,N).

b) Show that Exti(f,M) : ExtiR(M,N)→ ExtiR(M,N) is multiplication by r on ExtiR(M,N).

c) Show that the map Exti(M, f) : ExtiR(N,M)→ ExtiR(N,M) induced by f is multipli-
cation by r on ExtiR(N,M).

Exercise 74. Let M be an R-module.

a) Show that M is flat if and only if TorR1 (M,N) = 0 for every R-module N .

b) Show that M is projective if and only if Ext1R(M,N) = 0 for every R-module N .

c) Show that M is injective if and only if Ext1R(N,M) = 0 for every R-module N .



168

6.3 Computing Ext and Tor

Given R-modules M and N , we have two possible ways to compute TorRi (M,N) from the
definition.

Construction 6.31. Find a projective resolution

· · · // P2
// P1

// P0
//M // 0

of M . Applying −⊗R N to the resolution (not counting M), we get a complex

· · · // P2 ⊗R N // P1 ⊗R N // P0 ⊗R N // 0 .

Its homology is TorR∗ (M,N):

TorRi (M,N) = Hi

(
· · · // P2 ⊗R N // P1 ⊗R N // P0 ⊗R N // 0

)
.

Alternatively, we can find a free resolution of N , say

· · · // Q2
// Q1

// Q0
// N // 0,

apply M ⊗R −,

· · · //M ⊗R Q2
//M ⊗R Q1

//M ⊗R Q0
// 0 ,

and compute the homology of the resulting complex:

TorRi (M,N) = Hi

(
· · · //M ⊗R Q2

//M ⊗R Q1
//M ⊗R Q0

// 0
)
.

Similarly, we have two possible ways to compute ExtiR(M,N).

Construction 6.32. Find a projective resolution

· · · // P2
// P1

// P0
//M // 0

ofM . Applying the contravariant functor HomR(−, N) to the resolution gives us a cocomplex
rather than a complex:

0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · · .

Its homology is Ext∗R(M,N):

ExtiR(M,N) = Hi
(
0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · ·

)
.

Alternatively, we can find an injective resolution of N , say

0 // N // E0 // E1 // E2 // · · · ,

apply the covariant functor HomR(M,−), which yields the cocomplex

0 // HomR(M,E0) // HomR(M,E1) // HomR(M,E2) // · · · ,

and compute the cohomology of the resulting cocomplex:

ExtiR(M,N) = Hi
(
0 // HomR(M,E0) // HomR(M,E1) // HomR(M,E2) // · · ·

)
.
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It helps to keep a few simple ideas in mind:

• If P is a projective R-module, then

TorRi (M,P ) = TorRi (P,M) = 0

and
ExtiR(P,M) = 0

for all i > 0 and all R-modules M , since 0 −→ P −→ 0 is a projective resolution for
P . This is a special case of Remark 6.3.

• If E is an injective R-module,
ExtiR(M,E) = 0

for all i > 0 and all R-modules M .

• Free resolutions are often easier to compute explicitly, and the best path towards finding
ExtnR(M,N).

• Relating one of our modules to other, easier modules via a short exact sequence can
often simplify complicated computations.

Let’s compute some examples.

Example 6.33. Let’s compute ExtiZ(Z/(2),Z/(3)). Injective resolutions are not so easy to
find, so we start from a projective resolution for Z/(2):

0 // Z 2 // Z // Z/(2) // 0.

Notice that pdimZ(Z/(2)) ̸= 0, since Z/(2) is not a projective Z-module. We found a free
resolution of length 1 for Z/(2), so it must be that pdimZ(Z/(2)) = 1. This immediately
tells us that ExtiZ(Z/(2),Z/(3)) = 0 for all i ⩽ 2. Now we apply HomZ(−,Z/(3)) to our free
resolutions for Z/(2), and obtain

0 // HomZ(Z,Z/(3)) 2∗ // HomZ(Z,Z/(3)) // 0.

0 1

By Exercise 38, HomZ(Z,Z/(3)) ∼= Z/(3), via the isomorphism f 7→ f(1). Since 2∗ was the
map f 7→ (2 · −) ◦ f = 2f(−), we can simplify our complex to

0 // Z/(3) 2 // Z/(3) // 0.

Notice that multiplication by 2 is an isomorphism on Z/(3), so the complex above is exact,
and ExtiZ(Z/(2),Z/(3)) = 0 for all i.
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Example 6.34. Given an integer n > 1,

0 // Z n // Z π // Z/(n) // 0

with π the canonical projection is a free resolution for Z/(n) over Z. Notice that since Z/(n)
is not a free Z-module, there is no shorter free resolution for Z/n. Now we can use this
resolution to compute TorZi (Z/(n),M) and ExtiZ(Z/(n),M) for any Z-module M . For Tor,

TorZi (Z/(n),M) = Hi( 0 // Z⊗Z M
n⊗1

// Z⊗Z M // 0 ).

By Lemma 3.40 Z⊗Z M ∼= M , via the map k ⊗m 7→ km, and the map n⊗ 1M corresponds
to multiplication by n on M . Therefore,

TorZi (Z/(n),M) = Hi( 0 //M
n //M // 0 ),

so

TorZi (Z/(n),M) =


M/nM for i = 0
(0 :M n) for i = 1
0 otherwise.

Notice that TorZ0 (Z/(n),M) = M/nM = Z/nZ ⊗Z M , as we already knew from Proposi-
tion 6.4.

Similarly, we can compute all the Ext modules from Z/(n):

ExtiZ(Z/(n),M) = Hi( 0 // HomZ(Z,M) n∗
// HomZ(Z,M) // 0 ).

By Exercise 38, HomZ(Z,M) ∼= M , via the map f 7→ f(1), and n∗ = HomZ(n,M) corre-
sponds to multiplication by n on M . So

ExtiZ(Z/(n),M) = Hi( 0 //M
n //M // 0 ).

We conclude that

ExtiZ(Z/(n),M) =


M/nM for i = 1
(0 :M n) for i = 0
0 otherwise.

Notice that Ext1Z(Z/(n),M) = (0 :M n) = HomZ(Z/(n),M), as we already knew from
Proposition 6.4.

Alternatively, we can compute ExtiZ(Z/(n),M) and TorZi (Z/(n),M) by looking at some
long exact sequences. The long exact sequence for Tor induced by the short exact sequence

0 // Z n // Z // Z/(n) // 0

is

· · · // TorZn+1(Z/(n),M) // TorZn(Z,M) // TorZn(Z,M) // TorZn(Z/(n),M) // · · ·

· · · // TorZ1 (Z/(n),M) // Z⊗Z M // Z⊗Z M // Z/(n)⊗Z M // 0.
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Since Z is a projective Z-module and thus flat, TorZi (Z,M) = 0 for all i > 0. As a con-
sequence, the long exact sequence above forces TorZ2 (Z/(n),M) = 0. So our long exact
sequence really gets reduced to

0 // TorZ1 (Z/(n),M) // Z⊗Z M // Z⊗Z M // Z/(n)⊗Z M // 0.

Now Z⊗ZM ∼= M via k⊗m 7→ km, and this isomorphism turns n⊗ 1M into multiplication
by n on M , same as above. So TorZ1 (Z/(n),M) is the kernel of multiplication by n on M ,
or (0 :M n).

If we want to compute ExtiZ(Z/(n),M), we should now look at the long exact sequence

0 // HomZ(Z/(n),M) // HomZ(Z,M) n∗
// HomZ(Z,M) // Ext1Z(Z/(n),M) // · · ·

· · · // ExtnZ(Z,M) // ExtnZ(Z,M) // Extn+1
Z (Z/(n),M) // · · · .

Again, Z is a free Z-module, so ExtiZ(Z,M) = 0 for all i > 0. Then ExtiZ(Z/(n),M) = 0 for
all i > 1, and our long exact sequence is actually just

0 // HomZ(Z/(n),M) // HomZ(Z,M) n∗
// HomZ(Z,M) // Ext1Z(Z/(n),M) // 0.

So Ext1Z(Z/(n),M) is the cokernel of n∗. As before, notice that HomZ(Z,M) ∼= M via
the map f 7→ f(1), and n∗ corresponds to multiplication by n on M . We conclude that
Ext1Z(Z/(n),M) ∼= M/nM .

Exercise 75. Let k be a field and R = k[x]/(x3).

a) Compute TorRi (k, k) for all i.

b) Show that ExtiR(k, k) ̸= 0 for all i.

Exercise 76. Let k be a field, R = k[x, y], and m = (x, y).

a) Show that

0 // R

 y
−x


// R2

(
x y

)
// R // 0

is a free resolution for k = R/m.

b) Compute TorRi (k, k) for all i.

c) Show that
Tor1(m, k) ∼= Tor2(k, k).
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6.4 Other derived functors

Here are some other examples of derived functors you may encounter.

Group homology and group cohomology

Definition 6.35. category of G-modules Let G be a group. A (left) G-module is an
abelian group A with an action of G by additive maps on the left, meaning that

g(a+ b) = ga+ gb

for all a, b ∈ A and all g ∈ G, where we write ga for the action of g ∈ G on a ∈ A. Given
two G-modules A and B, a morphism of G-modules f : A → B is a group homomorphism
that is also G-equivariant, meaning f(ga) = gf(a) for all g ∈ G and a ∈ A.

The category of G-modules, which we write as G-mod, has objects all G-modules
and arrows all G-module morphisms. We write HomG(A,B) instead of HomG-mod(A,B).

This category G-mod can be identified with the category of Z[G]-modules, of modules
over the (noncommutative) ring ZG, the group ring of G. It can also be identified with the
functor category AbG of functors from the category G to the category Ab of abelian groups.
As a reminder, G gives a category with one object G and arrows the elements of G.

Definition 6.36. The invariant subgroup AG of a G-module A is

AG := {a ∈ A | ga = a for all g ∈ G}.

The coinvariant subgroup AG of a G-module A is

AG := A/G-submodule generated by {ga− a ∈ A | g ∈ G, a ∈ A}.

Exercise 77. Given any G-module A, AG ∼= Z ⊗ZG A and AG ∼= HomG(Z, A), where Z
denotes the trivial G-module. In fact, there are natural isomorphisms (−)G ∼= Z⊗ZG − and
(−)G ∼= HomG(Z,−).

Thus taking coinvariants is right exact, and taking invariants is left exact.

Definition 6.37. Let G be a group and A a G-module. Group homology is the derived
functor Hi(G;−) := Li(−G); the homology groups of G with coefficients in A are

Hi(G;A) := Li(−G)(A).

Group cohomology is the derived functor Hi(G;−) := Ri(−G); the cohomology groups of
G with coefficients in A are the G-modules:

Hi(G;A) := Ri(−G)(A).

By Exercise 77,

Hi(G;A) ∼= Tor
Z[G]
i (Z, A) and Hi(G;A) ∼= ExtiZ[G](Z, A).

Thus to compute group (co)homology we need a projective resolution for the trivial
Z[G]-module Z. Note also that by Proposition 6.4, H0(G;A) = AG and H0(G;A) = AG.

Group (co)homology is a rich subject. For a detailed treatment of group (co)homology,
see Weibel’s Homological Algebra [?].
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Local Cohomology

Let I be an ideal in a ring R. The I-torsion functor ΓI : R-Mod −→ R-Mod is defined by

ΓI(M) := {m ∈M | Inm = 0 for some n}

which acts on maps by restriction.

Exercise 78. The I-torsion functor is a left exact covariant additive functor.

The I-torsion functor gives rise to local cohomology, the right derived functors Hi
I of ΓI .

The ith local cohomology of M with support on I is then given by

Hi
I(M) := RiΓI(M).

Local cohomology was introduced by Grothendieck in a series of seminars at Harvard in
1961, which are now of course very famous. Grothendieck himself never published any notes
on the subject, but Robin Hartshorne’s notes of those lectures have been published.

Local cohomology is a rich subject, and we could easily spend an entire semester on it.
For a modern treatment of the local cohomology and its connections, the book 24 hours
of local cohomology [?] and the very nice notes by Craig Huneke, Mel Hochster, and Jack
Jeffries are all excellent resources.

It turns out that local cohomology modules can be defined in a few different ways, which
are in no way obviously equivalent, and those different points of view are quite helpful. For
example, we can define local cohomology via the Čech complex.

Definition 6.38 (Čech complex). Let M be an R-module and x ∈ R. The Čech complex
of x on R is given by

Č•(x) :=

 0 // R // Rx
// 0

0 1


The Čech complex of f1, . . . , ft ∈ R on M is given by

Č•(fn1 , . . . , f
n
t ;M) := Č•(f1)⊗ · · · ⊗ Č•(ft)⊗M.

Example 6.39. Let’s compute the Čech complex on f and g and an R-module M .

0 0

0 //Mg −1
//

OO

Mfg

OO

// 0

Č•(f, g;M) = = 0 //M
(11)

//Mf ⊕Mg
(1 −1)

//Mfg
// 0

0 //M

1

OO

1
//Mf

//

1

OO

0

0

OO

0

OO

2

1

0

http://homepages.math.uic.edu/~bshipley/huneke.pdf
http://www.math.lsa.umich.edu/~hochster/615W11/loc.pdf
http://www-personal.umich.edu/~jackjeff/LCnotes.pdf
http://www-personal.umich.edu/~jackjeff/LCnotes.pdf
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Exercise 79.

a) Č•(f1, . . . , ft;M) ∼=
⊕

{j1,...,ji}⊆[t]

Mfj1 ···fji

b) The maps between components corresponding to subsets I, J are zero if I ̸⊆ J , and
±1 if J = I ∪ {k}.

It turns out that the cohomology of the Čech complex gives us local cohomology. For an
ideal I = (f1, . . . , fn),

Hi
I(M) = Hi(Č•(f1, . . . , fn;M))

= Hi

(
0→M → · · · →

⊕
i

Mfi → · · ·
n⊕
i=1

Mf1···f̂i···fn →Mf1···fn → 0

)
so elements in the ith local cohomology can be realized as equivalence classes of fractions.

Local cohomology modules also arise as a direct limit of Ext modules:

lim−→
n

ExtiR(R/I
n,M)

The equivalence between all these different definitions is a fundamental result in the theory
of local cohomology.

Local cohomology modules play a crucial, ubiquitous role in commutative algebra. They
measure many important invariants, such as dimension and depth, and are extremely useful
tools for studying all sorts of topics; for example, they can be used to detect if a ring is
Gorenstein (if it has finite injective dimension as a module over itself) or Cohen-Macaulay
(a nice class of rings that is both very large but also very well behaved). However, local
cohomology modules are typically not finitely generated. One reason for this is that injective
modules are also often not finitely generated. Local cohomology is also a major reason why
commutative algebraists are interested in studying injective modules.

In fact, local cohomology is almost never finitely generated. Here’s a very simple example.

Example 6.40. Let R = k[x1, . . . , xn], k be a field, and m = (x1, . . . , xn). Then Hn
m(R) has

the k-vector space structure ⊕
all ai>0

k · 1

xa11 · · ·xann
,

with R-module structure given by

xb11 · · ·xbnn ·
z

xa11 · · ·xann
=

{
z

x
a1−b1
1 ···xan−bn

n

if all bi < ai

0 otherwise.

This is not a finitely generated module! Note also that every finitely generated submodule
only has terms with bounded negative degree. But this is still a very nice module: it looks
like R upside down.
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Despite being infinitely generated, local cohomology modules enjoy many finiteness prop-
erties we have gotten used to expecting from finitely generated modules. For example, over
a local ring (R,m), the local cohomology modules Hi

m(M) of a finitely generated module M
are Artinian — but not Noetherian!

Huneke raised the question of whether local cohomology modules of noetherian rings
always have finitely many associated primes, a problem which has been a very active research
are in commutative algebra in the last few decades. While the answer to Huneke’s question
is no — as famous examples by Katzmann, Singh, and Singh and Swanson show — the local
cohomology modules of finitely generated R-modules over a regular ring do have finitely
many associated primes.

One very important invariant we can study with local cohomology is the arithmetic rank.

Definition 6.41. Let I be an ideal in a Noetherian ring R. The arithmetic rank of I is
defined by

ara(I) := min{s | there exist some x1, . . . , xs such that
√

(x1, . . . , xs) =
√
I}.

Given a variety X = V (I) ⊆ An
k , the arithmetic rank of its defining ideal I(X) is

the minimum number of equations needed to define X. It turns out that this number is
difficult to study, and it is best understood via local cohomology, a thought best described
by Lyubeznik:

Part of what makes the problem about the number of defining equations so
interesting is that it can be very easily stated, yet a solution, in those rare cases
when it is known, usually is highly nontrivial and involves a fascinating interplay
of Algebra and Geometry.

(Lyubeznik, in [?])
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The connection to local cohomology begins with the following two elementary facts about
local cohomology:

• If
√
I =
√
J , then Hi

I(−) = Hi
J(−).

• Given any ideal I, ara(I) ⩾ min{i | Hi
I(M) ̸= 0 for some R-module M}.

So computing local cohomology modules, or deciding when they vanish, can help us find
bounds on the arithmetic rank of a variety.

We close this chapter with yet another example of a derived functor of an interesting
functor.

Exercise 80. Let R be a domain and Q be its fraction field. Let T denote the torsion
functor.

a) Show that T (M) = TorR1 (M,Q/R).

b) Show that for every short exact sequence

0 // A // B // C // 0

of R-modules gives rise to an exact sequence

0 // T (A) // T (B) // T (C) // (Q/R)⊗R A // (Q/R)⊗R B // (Q/R)⊗R C // 0.

c) Show that the right derived functors of T are R1T = (Q/R)⊗R − and RiT = 0 for all
i ⩾ 2.



Chapter 7

Abelian categories

An abelian category is a category that has just enough extra structure to behave like R-Mod:
we have complexes and exact sequences, homology, the Snake Lemma, the long exact se-
quence in homology, and many other nice features. On the one hand, every abelian category
embeds nicely in some R-Mod, so it is in some ways sufficient to study R-Mod. In other
ways, the general nonsense definitions in an abelian category can sometimes give us a uni-
form, simple way to prove many results about R-Mod (and Ch(R-Mod), and other related
categories) all at once.

7.1 What’s an abelian category?

Definition 7.1. A category A is a preadditive category if:

• For all objects x and y in A, HomA(x, y) is an abelian group.

• For all objects x, y, and z in A, the composition

HomA(x, y)× HomA(z, x)
◦−→ HomA(z, y)

is bilinear, meaning

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 and (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f.

In the literature, preadditive categories are sometimes called Ab-enriched categories.

Example 7.2. Our favorite category R-Mod is a preadditive category; so is Ch(R).

We can talk about additive functors between any two preadditive categories.

Definition 7.3. Let A and B be preadditive categories. An additive functor A → B is
a functor such that the map

HomA(x, y) // HomB(F (x), F (y))

f � // F (f)

is a homomorphism of abelian groups.
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Recall the notions of initial, terminal, and zero objects, which we discussed in Chapter 1.

Definition 7.4. Let C be a category with a zero object 0. Given two objects x and y in C ,
the zero arrow from x to y is the unique arrow x −→ y that factors through 0, meaning
the arrow given by composition of the unique arrows x −→ 0 −→ y. We will often denote
both the zero object and the zero arrow by 0, whenever it does not lead to confusion.

Remark 7.5. If a category A has a zero object, then HomA(x, y) is always nonempty, since
it contains at least the 0 arrow.

Remark 7.6. Composing the zero arrow with any other arrow always yields the zero arrow.

Remark 7.7. In any preadditive category A with a zero object 0, the 0 arrow x −→ y
coincides with the 0 of the abelian group HomA(x, y).

Remark 7.8. We can characterize the zero object 0 by the property that the zero arrow

and the identity arrows on 0 coincide. To see this, notice that if 1x = x
0−→ x, then given

any arrow x
f−→ y, we must have

f = f ◦ 1x = f ◦ 0 = 0,

and similarly any arrow y
f−→ x must be 0. Then x is terminal and initial, and it must be

the zero object.

Definition 7.9. An additive category is a preadditive category A such that:

• A has a zero object.

• A has all finite products: given any two objects x and y in A, there exists a product
of x and y in A.

Lemma 7.10. In an additive category, finite coproducts exist and they agree with products.

Proof. Let x and y be objects in our additive category, and consider their product, which
exists by assumption:

z
π2

��

π1

��
x y

The universal property of the product give arrows ι1 and ι2 such that

x

1x

��

0

��

ι1
��
z

π2
!!

π1
}}

x y

and

y

0

��

1y

��

ι2
��
z

π2
!!

π1
}}

x y

commute.
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We claim that z together with ι1 and ι2 form a coproduct for x and y. Given an object

w and arrows x
f−→ w and y

g−→ w, we need to show that there exists a unique arrow h such
that

z

h

��

x

ι1
>>

f
  

y

ι2
__

g
��

w

commutes.
To see such an h exists, consider h := fπ1 + gπ2. Then

hι1 = f π1ι1︸︷︷︸
1x

+ gπ2ι1︸︷︷︸
0

= f and hι2 = f π1ι2︸︷︷︸
0

+ gπ2ι2︸︷︷︸
1y

= f,

so indeed our proposed h does the job.
To show the uniqueness of such an h, we will use the fact that z together with π1 and

π2 is a product for x and y. So suppose that h′ is another arrow such that h′ι1 = f and
h′ι2 = g. Then h − h′ satisfies (h − h′)ι1 = f − f = 0 and (h − h′)ι2 = g − g = 0, so it’s
sufficient to show that the 0 arrow is the unique arrow ψ such that

z

ψ

��

x

ι1
>>

0
  

y

ι2
__

0
��

w

commutes. First, we claim that ι1π1 + ι2π2 is the identity arrow on z. And indeed, this map
satisfies

π1(ι1π1 + ι2π2) = π1ι1︸︷︷︸
1x

π1 + π2ι1︸︷︷︸
0

π2 = π1 and π2(ι1π1 + ι2π2) = π2ι1︸︷︷︸
0

π1 + π2ι1︸︷︷︸
1y

π2 = π2,

and so does the identity arrow 1z, so the universal property of the product guarantees that
ι1π1 + ι2π2 = 1z. Now if ψι1 = 0 and ψι2 = 0, then

ψ = ψ1z = ψ(ι1π1 + ι2π2) = ψι1π + ψι2π2 = 0 + 0 = 0.

Notation 7.11. In an additive category A, given objects A and B, the notation A ⊕ B
denotes the product ≡ coproduct of A and B.

Remark 7.12. IfA is an additive category, the object A⊕B is characterized by the existence
of arrows

A
iA
// A⊕B

πA

��

πB

��

B
iB
oo

such that
πAiA = idA, πBiB = idB, and iAπA + iBπB = idA⊕B .
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Lemma 7.13. Let F : A −→ B an additive functor between additive categories, and let 0
denote the zero object on both categories.

a) We have F (0) = 0. For any two objects x and y, F (x
0−→ y) = F (x)

0−→ F (y).

b) F preserves finite products and coproducts.

Proof. We show the statement assuming F is covariant, and note that the argument in the
contravariant case is essentially the same.

a) Since Fxy : HomA(x, y) → HomB(F (x), F (y)) is a group homomorphism and that
the zero elements in the abelian groups HomA(x, y) and HomB(F (x), F (y)) are the
corresponding zero arrows, then

F (x
0−→ y) = F (x)

0−→ F (y).

Now the zero arrow and the identity arrows of the zero object coincide, and so do their
images by F . On the one hand, F (10) = 1F (0). On the other hand, by what we have
shown at the arrow level we have

F (10) = F (0)
0−→ F (0).

Then the identity and the zero arrows on F (0) coincide, so by Remark 7.8 we must
have F (0) = 0.

b) Fix objects A and B and the canonical arrows

A
iA−→ A⊕B, B

iB−−→ A⊕B, A⊕B πA−−→ A, and A⊕B πA−−→ B.

Any functor preserves identity arrows, so any additive functor F must satisfy

F (πA)F (iA) = F (πAiA) = idF (A) F (πB)F (iB) = F (πBiB) = idF (B)

and

F (iA)F (πA) + F (iB)F (πB) = idF (A⊕B),

which satisfy

πAiA = idA, πBiB = idB, and iAπA + iBπB = idA⊕B .

By Remark 7.12, this implies that F (A⊕B) is the product ≡ coproduct of F (A) and
F (B).

Exercise 81. Let A be an additive category.

a) Show that an arrow f is a mono if and only if fg = 0 implies g = 0.

b) Show that an arrow f is an epi if and only if gf = 0 implies g = 0.

We can now define kernels and cokernels.
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Definition 7.14. Let A be an additive category and f an arrow x −→ y. The kernel of f

is an arrow k
i−→ x satisfying the following properties:

• k
i // x

f
// y is 0.

• Given any g ∈ HomA(z, x) such that z
g
// x

f
// y is the zero arrow, there exists a

unique arrow φ such that iφ = g, meaning that

k
i // x

f
// y

z

g

OO

∃!φ

^^

0

@@

commutes. We denote the kernel of f by ker f .

Remark 7.15. We claim that a kernel, if it exists, is always a mono. Indeed, suppose that

z
g1
//

g2
// k

i // x
f
// y

are such that ig1 = ig2. Then i(g1 − g2) = 0, so it’s sufficient to show that ig = 0 implies
g = 0. But then

k i // x
f
// y

z

g

OO

0

@@

commutes, and f ◦ 0 = 0, so 0 factors uniquely through the kernel. But both g and z
0−→ k

are such factorizations, so g = 0.

We are used to thinking about the kernel of a map f as an object; but in this general
context, the kernel is really an arrow, or more precisely, an object (the source of the kernel)
and an arrow from that object to the source of f . We sometimes refer to the kernel as the
pair (object, arrow). Also, we might use the notation ker f −→ x for the kernel of f : x→ y.
We might also abuse notation and refer to the object that is the source of ker f as the kernel
of f , motivated by the familiar case of R-Mod. Nevertheless, the kernel of f is technically
an arrow, not an object. A good reason for identifying the arrow ker f with its source object
is the following rewriting of the definition:

Remark 7.16. If k1
i1 // x and k2

i2 // x are both kernels of f , then there exist unique
arrows g and h such that

k1
h

��

i1 // x
f
// y

k2

i2

OO

g

__

commutes. By Remark 7.15, kernels are always monic. But then i1gh = i2h = i1, and since
i1 is a mono, we must have gh = 1. Similarly, hg = 1, and g and h are isomorphisms.
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This shows that if k i // x is the kernel of f ∈ HomA(x, y), the object k is, up to
isomorphism, the unique object that satisfies the following universal property: for every
object z and every arrow g : z → x such that fg = 0, there exists a unique arrow h : z → k
such that ih = g.

Definition 7.17. Let A be an additive category and f ∈ HomA(x, y). The cokernel of f

is an arrow y
p−→ c, denoted coker f , satisfying the following properties:

• x
f
// y

p
// c is 0.

• Given any g ∈ HomA(y, z) such that x
f
// y

g
// z is 0, there exists a unique arrow

φ such that φp = g, meaning that

x

0
��

f
// y

g

��

p
// c

∃!φ
��

z

commutes.

We will sometimes use the notation y → coker f for the cokernel of x
f
// y , although

once again the cokernel of f is an arrow rather than an object.

Example 7.18.

a) The kernels and cokernels in R-Mod are what we think they are: the inclusion of the
usual kernel, and the projection onto the usual cokernel.

b) It’s not always true that all arrows have kernels or cokernels. For example, the category
of finitely generated R-modules over some nonnoetherian ring R is additive, but it
does not have all kernels. If I is some infinitely generated ideal in R, the kernel of the
canonical projection R −→ R/I does not exist in our category. In fact, this is an epi
but not a cokernel: it should be the cokernel of the inclusion map I −→ R, but that
is not an arrow in our category.

While not all epis are cokernels and not all monos are kernels, the converse is true. Just
like we saw for kernels, cokernels, if they exist, are always epi, and they are unique in the
sense we described in Remark 7.16.

Exercise 82. Let A be an additive category.

a) Show if y π // c is the cokernel of f ∈ HomA(x, y), the object c is, up to isomorphism,
the unique object that satisfies the following universal property: for every object z and
every arrow g : y → z such that gf = 0, there exists a unique arrow h : c → z such
that hπ = g.

b) Show that every cokernel in A is epi.
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Remark 7.19. Let A be an additive category, and let f be any arrow such that ker coker f
and coker ker f exist. Since f ◦ ker f = 0, then by the universal property of the cokernel f
factors uniquely through coker(ker f), say by coker ker f

g−→ y. Now

coker f ◦ g ◦ (coker ker f) = coker f ◦ f = 0.

By Exercise 85, coker ker f is an epi, and thus we must have coker f ◦ g = 0. Then g factors
uniquely through ker coker f , so we get a unique arrow such that

ker f // x

��

f
// y // coker f

coker ker f
∃!
// ker coker f

OO

commutes.

Example 7.20. Let’s see what this factoring looks like in the more familiar example of
R-Mod. Given an R-module homomorphism f :M → N , we get a commutative diagram

ker f //M

��

f
// N // coker f ∼= N/ im f

M/ ker f
ψ
// im f

OO

The map ψ is the isomorphism given by the First Isomorphism Theorem.

Definition 7.21. An abelian category is an additive category A such that

• The category A contains all kernels and cokernels of arrows in A.

• Every mono is a kernel of its cokernel.

• Every epi is the cokernel of its kernel.

• For every f , the canonical arrow coker ker f −→ ker coker f is an isomorphism.

Ultimately, an abelian category is one that has just enough structure so that we can
extend many of the desired properties of R-Mod. In particular, we will see that we can
define complexes and their homology in any abelian category, and that the Snake Lemma
and the long exact sequence in homology hold.

Remark 7.22. LetA be an abelian category, and f any arrow. As described in Remark 7.19,
we have a commutative diagram

ker f // x

p

��

f
// y // coker f

coker ker f
ψ
// ker coker f

i

OO

where ψ is now assumed to be an iso. Now kernels are mono and cokernels are epi, by Exer-
cise 85, and composing an epi (respectively, mono) with an iso gives us an epi (respectively,
mono). Therefore, we can factor f as a composition mono ◦ epi.
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Example 7.23. In R-Mod, this factorization is just the factoring through the image of the
homomorphism: any R-module homomorphism f :M → N factors as

M ↠ im f ↪→ N.

Definition 7.24. Let A be an abelian category, and consider an arrow x
f−→ y. The image

of f is im f := ker(coker f).

Following Remark 7.22, the source of im f = ker coker f is the unique (up to unique
isomorphism) object such that f factors as

x
epi

// im f
mono // y .

Exercise 83. Let A be an abelian category.

a) Show that f is a mono if and only if ker f = 0.

b) Show that f is an epi if and only if coker f = 0.

Remark 7.25. If A is an abelian category, its opposite category Aop is also abelian. This
is just a consequence of the fact that all the requirements to be an abelian category come
together with the dual requirements, so everything automatically dualizes well.

Example 7.26. Here are some examples and nonexamples of abelian categories.

a) The category R-Mod is an abelian category.

b) The category of free R-modules is additive but not abelian, as kernels and cokernels
do not exist in general.

c) The category of finitely generated R-modules is abelian if and only if R is noetherian,
which is exactly the condition we need to guarantee the existence of kernels and cok-
ernels. For a general (nonoetherian) ring R, the category of noetherian R-modules is
abelian.

d) The category of Hilbert spaces with continuous linear functions is an additive category.
The monos are injective linear maps, and the epis are maps with dense image. The
kernels are the usual kernels, while the cokernel of f : X −→ Y is given by the

orthogonal projection Y −→ f(X)
⊥
.

However, we claim that this is not an abelian category, since a mono might not be the
kernel of its cokernel. Indeed, if X ↪→ Y is a dense inclusion that is not surjective,
then this mono is not the kernel of its cokernel: its cokernel is

Y −→ f(X)
⊥
,

but f(X) = Y and thus f(X)
⊥
= {0}, so ker coker(f) = Y , while f(X) ̸= Y .
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Remark 7.27. Suppose that g factors through f , meaning that there exists h such that

x
f
// y

z

g

OO

h

__

commutes. Then (coker f)◦g = (coker f)◦f ◦h = 0, so g factors through ker(coker f) = im f ,
meaning we have another commutative diagram

x
f
// y

im f

==

z.

g

OO

oo

Exercise 84. Show that the kernel of x
0−→ y is the identity arrow 1x, its cokernel is the

identity arrow 1y, and im(x
0−→ y) = 0.

Exercise 85. Let A be an abelian category, g an epi, and f a mono. Then ker(fg) = ker g,
coker(fg) = coker f , and im(fg) = im f = f .

7.2 Complexes and homology in an abelian category

Definition 7.28. Let A be an abelian category. A chain complex or simply complex
(C, ∂), which we sometimes write just a C, is a sequence of objects and arrows

· · · // Cn
∂n // Cn−1

// · · ·

such that ∂n−1∂n = 0 for all n. A map of complexes f : C −→ D between two chain
complexes is a sequence of arrows fn such that the diagram

· · · // Cn
∂n //

fn
��

Cn−1

fn−1

��

// · · ·

· · · // Dn ∂n
// Dn−1

// · · ·

commutes. The category of (chain) complexes over A, denoted Ch(A), is the category
that has objects all chain complexes in A and arrows all the chain complex maps.

Lemma 7.29. If A is an abelian category, then Ch(A) is also an abelian category.

Proof sketch. First, note that Ch(A) is a preadditive category: given two maps of complexes
f and g, f + g is obtained degreewise, by taking

(f + g)n := fn + gn.
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The facts that HomCh(A)(C,D) is an abelian group and that composition is bilinear follow
from the analogous facts in A (exercise). The zero object is the zero complex, which has
the zero object in A in each degree. Given two complexes C and D, their product is taken
degreewise:

C ×D = · · · // Cn ×Dn
∂Cn ×∂Dn // Cn−1 ×Dn−1

// · · ·
and each of the projection maps in each degree assemble to make a map of complexes. So
Ch(A) is an additive category.

Let f : C → D be a map of complexes. We need to show that both the both the kernel
and cokernel of f exist. The universal property of ker ∂n gives us a unique arrow δn+1 such
that

ker fn+1

δn+1

��

// Cn+1

∂n+1

��

fn+1
// Dn+1

∂n+1

��

ker fn // Cn fn
// Dn−1

commutes. The commutativity of ker fn+1

δn+1

��

// Cn+1

∂n+1

��

ker fn

δn
��

// Cn

∂n
��

ker fn−1
// Cn−1

together with ∂n∂n+1 = 0 and the

fact that ker fn−1 is a mono imply that δnδn+1 = 0. Finally, we conclude that

· · · // ker fn
δn // ker fn−1

// · · ·

is a complex in Ch(A), and the canonical maps ker fn → Cn assemble into a map of com-
plexes. One can check that the universal property of the kernels ker fn forces this complex
we just constructed to be ker f . In particular, Ch(A) has all kernels. Similarly, we construct
cokernels in Ch(A), building on the fact that A has all cokernels.

Finally, it remains to show that every mono is the kernel of its cokernel and every epi is
the cokernel of its kernel. This boils down to the fact that f is a mono if and only if all the
fn are monos, and dually that f is an epi if and only if all the fn are epis. The conclusion
will then follow from our construction of kernels and cokernels and the fact that A is abelian.
Our claim follows from Exercise 83 and the fact that f = 0 if and only if all fn = 0.

Definition 7.30. Let A be an abelian category. For each C in Ch(A), we define its cycles
Zn(C) and boundaries Bn(C) by

Zn(C) := source ker ∂n and Bn(C) := source im ∂n+1.

Remark 7.31. Let A be an abelian category, and C
f−→ D

g−→ E be arrows in A such that
gf = 0. By Remark 7.22, we can factor f as an epi followed by im f .

C
f

//

epi
!!

D
g

// E

im f

==
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Since g ◦ im f ◦ epi = gf = 0, we must have g ◦ im f = 0, so im f factors uniquely through
ker g. Most importantly, there is a canonical arrow im f −→ ker g.

C
f

//

epi
!!

D
g

// E

im f

==

// ker g

bb

Definition 7.32. Let A be an abelian category. A sequence of arrows C
f−→ D

g−→ E in A
is exact if gf = 0 and ker g = im f .

Remark 7.33. In our definition of exact sequence, we really mean that the canonical arrow
im f −→ ker g we described in Remark 7.31 is an isomorphism. But notice that is equivalent
to saying that the arrow im f is a kernel for g, and ker g is an image for f , hence the equality
we wrote above, which is a more compact way of saying this.

This immediately generalizes to define an exact sequence, and once again a short exact
sequence is one of the form

0 // A // B // C // 0.

Exercise 86. Show that 0 −→ A
f−→ B is exact if and only if f is a mono, and B

g−→ C −→ 0
is exact if and only if g is an epi. Moreover,

0 // A
f
// B

g
// C // 0

is a short exact sequence if and only if

• f is a mono. • g is an epi. • f = im f = ker g. • coker f = g.

Remark 7.34. Let A be an abelian category and (C, ∂) be a complex in Ch(R). Since
∂n∂n+1 = 0 for all n, we get a canonical arrow Bn(C) −→ Zn(C) for each n.

Exercise 87. Given an additive category A, Bn and Zn are additive functors Ch(A) −→ A.
In particular, an arrow C

f−→ D induces arrows Zn(C)
Zn(f)−−−→ Zn(D) and Bn(C)

Bn(f)−−−−→
Bn(D).

Definition 7.35. Let A be an abelian category and (C, ∂) a complex in Ch(R). The nth
homology of C is the object

Hn(C) := target of coker(Bn(C) −→ Zn(C)),

where Bn(C) −→ Zn(C) is the canonical arrow we described in Remark 7.31.

In fact, the nth homology is an additive functor Hn : Ch(A) −→ A. But to see that, we
first need to make sense of what homology does to maps of complexes.
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Let A be an abelian category and C
f−→ D a map of complexes in Ch(A). Fix an integer

n. We get induced arrows Bn(f) and Zn(f), since Bn and Zn are additive functors. This
gives us a commutative diagram

Bn(C)
α //

Bn(f)

��

Zn(C) //

Zn(f)

��

cokerα

Bn(C) β
// Zn(C) // coker β

where α and β are the canonical arrows. To construct Hn(f), we claim that there is a
unique arrow cokerα −→ coker β making the diagram commute. This is all explained in the
commutative diagram

Zn(C)

cokerα
��

cokerβ◦(Zn(f))

��

Bn(C)

α
::

0 ..

0 // Hn(C)
Hn(f)

$$

Hn(D)

where coker β ◦ (Zn(f)) ◦ α = coker β ◦ β ◦Bn(f) = 0, which gives us a unique factorization
Hn(f) through cokerα.

Exercise 88. Given any abelian category A, Hn is an additive functor Ch(A) −→ A.

Similarly, we can define homotopies.

Definition 7.36. Let A be an abelian category and f, g : F −→ G be maps of complexes in
Ch(A). A homotopy, sometimes referred to as a chain homotopy, between f and g is a
sequence of arrows hn : Fn −→ Gn+1

· · · δn+2
// Fn+1

fn+1

��

gn+1

��

δn+1
// Fn

fn

��

gn

��

hn

}}

δn // Fn−1

fn−1

��

gn−1

��

δn−1
//

hn−1

}}

· · ·

· · ·
δn+2

// Gn+1 δn+1

// Gn δn
// Gn−1 δn−1

// · · ·

such that
δn+1hn + hn−1δn = fn − gn

for all n. If there exists a homotopy between f and g, we say that f and g are homotopic,
and write f ≃ g. If f is homotopic to the zero map, we say f is null-homotopic. If
f : F → G and g : G→ F are maps of complexes such that fg is homotopic to the identity
arrow 1G and gf is homotopic to the identity arrow 1F , we say that f and g are homotopy
equivalences and F and G are homotopy equivalent.
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Exercise 89. Homotopy is an equivalence relation in Ch(A).

Exercise 90. Let A be an abelian category. Homotopic maps of complexes in Ch(A) induce
the same map on homology.

Remark 7.37. Let F be an additive functor between abelian categories. Then F must
send complexes to complexes, and it induces a functor Ch(A) → Ch(A), which we also
call F . Now if h is a homotopy between two maps of complexes, F preserves the identities
δn+1hn + hn−1δn = fn − gn for all n, so F (h) is a homotopy between F (f) and F (g).

Definition 7.38. Let A be an abelian category. A map of complexes f : A → B in Ch(A)
is a quasi-isomorphism if Hn(f) is an isomorphism for all n.

Finally, we set up some notation we will use later.

Definition 7.39. We will denote the full subcategory of Ch(A) of complexes C such that
Cn = 0 for all n < k by Ch⩾k(A).

7.3 Functors

Definition 7.40. Let A be an abelian category. A subcategory B of A is an abelian
subcategory of A if B is abelian and the inclusion B ⊆ A is an exact functor.

Exercise 91. Let B be a full subcategory of the abelian category A. Show that:

a) B is an additive category if and only if B contains 0 and is closed under finite coprod-
ucts.

b) B is an abelian subcategory if and only if B is additive and closed under kernels and
cokernels.

Definition 7.41. Let T : A −→ B be an additive covariant functor between abelian cate-
gories. We say T is left exact if it takes every exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C),

and right exact if it takes every exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

T (A)
T (f)

// T (B)
T (g)

// T (C) // 0 .

Finally, T is an exact functor if it preserves short exact sequences, meaning every short
exact sequence

0 // A
f
// B

g
// C // 0



190

is taken to the short exact sequence

0 // T (A)
T (f)

// T (B)
T (g)

// T (C) // 0 .

A contravariant additive functor T : A −→ B between abelian categories is left exact if it
takes every short exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A),

and right exact if it takes every exact sequence

0 // A
f
// B

g
// C // 0

to the exact sequence

T (C)
T (g)

// T (B)
T (f)

// T (A) // 0 .

Finally, T is an exact functor if it preserves short exact sequences, meaning every short
exact sequence

0 // A
f
// B

g
// C // 0

is taken to the short exact sequence

0 // T (C)
T (g)

// T (B)
T (f)

// T (A) // 0 .

Theorem 7.42. Let A be an abelian category, and fix an object x in A. The functors

A //Ab and A //Ab

y � // HomA(x, y) y � // HomA(y, x)

are left exact.

Proof. We will show that HomA(x,−) is left exact. Notice that the contravariant functor
HomA(−, x) can be viewed as the covariant functor HomAop(x,−). Since Aop is also an
abelian category, it will then follow that HomAop(x,−) is also left exact, or equivalently, that
HomA(−, x) is left exact.

So let

0 // A
f
// B

g
// C // 0

be an exact sequence in Ch(A). We want to show that

0 // HomA(x,A)
f∗
// HomA(x,B)

g∗
// HomA(x,C)

is exact, and notice this last complex lives in the category of abelian groups.
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We have three things to show:

• Exactness at A is equivalent to f being a mono. By assumption, f is a mono, so
f∗(h) = fh is injective.

• Since gf = 0, so is g∗f∗ = (gf)∗.

• We want to show that ker g∗ = im f∗, and these are now maps of abelian groups. So we
need to show that every h ∈ HomA(x,C) such that gh = 0 factors uniquely through
f , meaning h = im f∗. Our assumption that the original sequence is exact implies
that f = im f = ker g. The universal of property of the kernel gives us that whenever
gh = 0, h must factor through ker g = f = im f .

Exercise 92. Let I be any small category. Show that if A is an abelian category, then so is
the category AI of functors I −→ A.

We are now ready for the abelian category version of the Yoneda Lemma; this turns out
to be a very useful result.

Theorem 7.43 (Yoneda Embedding for abelian categories). Let A be an abelian category.

Recall that AbA
op

denotes the category of contravariant functors A → Ab. The covariant
functor

A //AbA
op

x // HomA(−, x)

is an embedding into a full subcategory. Moreover, this functor reflects exactness, meaning
that if

HomA(−, x) // HomA(−, y) // HomA(−, z)

is exact, then
x // y // z

must also be exact.

Proof. First, our functor is injective on objects because our axioms for a category include
the assumption that the Hom-sets are all disjoint. Moreover, by the usual version of the
Yoneda Lemma the assignment

Nat(HomA(−, x),HomA(−, y)) // HomA(x, y)

η � // ηx(1x)

is a natural bijection. In particular, our functor is indeed full and faithful.
To show that the functor reflects exactness, suppose that

HomA(−, x)
f∗
// HomA(−, y)

g∗
// HomA(−, z)

is exact. Then g∗f∗ = 0, so gf = g∗f∗(1x) = 0.
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It remains to show that ker g = im f . Let ψ be the canonical arrow im f −→ ker g. The
exactness of

HomA(−, x)
f∗
// HomA(−, y)

g∗
// HomA(−, z)

together with the fact that g∗(ker g) = 0 imply that ker g factors through f . By Remark 7.27,
ker g must also factor through im f , say by φ. The universal property of the kernels ker g
and im f will give us that ψ and φ are inverse isos.

When A = R-Mod, the proof can be simplified: the exactness of

HomR(R,A)
f∗
// HomA(R,B)

g∗
// HomA(R,C)

together with the natural isomorphism between HomR(R,−) and the identity functor give
us that

A
f
// B

g
// C

is exact.
Here is a fun and very useful application of Theorem 7.43.

Corollary 7.44. Let (L,R) be an adjoint pair of additive functors A
L // B
R
oo between abelian

categories. Then L is right exact, and R is left exact.

Proof. Consider a short exact sequence

0 // x // y // z // 0

in B, and let w be an object in A. The adjointness of the pair (L,R) gives us a commutative
diagram

0 // HomA(w,Rx)

��

// HomA(w,Ry)

��

// HomA(w,Rz)

��

0 // HomB(Lw, x) // HomB(Lw, y) // HomB(Lw, z)

where the vertical maps are bijections of sets. For every w in A, HomB(Lw,−) is left exact,
by Theorem 7.42, so the bottom row of the diagram above is exact. We claim this implies
that the top row must also be exact. Our vertical maps are a priori only bijection on sets,
but it is easy to see that these natural bijections restrict to a bijection between the images of
each pair of corresponding maps. Moreover, for any objects A and B, the natural bijection
HomA(A,RB) ∼= HomA(LA,B) must always send 0 to 0, since

0 = HomA(A,R(0)) //

��

HomA(A,R(B))

��

0 = HomA(L(A), 0) // HomA(LA,B)

commutes. It is then routine to check that our bijections also restrict to bijections between
the kernels of each pair of corresponding maps. The exactness of the bottom row then induces
exactness of the top row. By Theorem 7.43, Hom reflects exactness, and we conclude that

0 // Rx // Ry // Rz

must also be exact. Thus R is a left exact functor.
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Finally, by Remark 7.25, Aop and Bop are both abelian categories. Consider the opposite
functors Lop and Rop. Notice that Lop is the right adjoint to Rop, so Lop must be left exact.
Therefore, L must be right exact.

This is possibly the first time we have encountered a proof that truly used duality in
an essential and interesting way. In the case where A = B = R-Mod, the fact that R is
left exact can be obtained using only methods from R-Mod; but the statement about L
used the fact that Aop is an abelian category, while the opposite category of R-Mod is not
another category of modules.

The Yoneda embedding from Theorem 7.43 is the first piece of the proof of a very im-
portant result.

Theorem 7.45 (Freyd-Mitchell embedding theorem). Let A be a small abelian category.
There exists a ring R, possibly not commutative, and an exact, fully faithful embedding
A −→ R-Mod.

The full details of the proof are rather complicated, and can be found in [?]. Here is a
very rough map of the proof. By Theorem 7.43, we already have a fully faithful embedding
of A in AbAop

, so it is sufficient to show that there is a fully faithful embedding of AbAop

into some R-Mod. The idea is to quotient AbAop

by an abelian subcategory L that contains
all the kernels and cokernels of the arrows HomA(−, y)→ HomA(−, z) for all epis y −→ z, in
such a way that the composite of the embedding in Theorem 7.43 with this quotient remains
an embedding. Then one shows that this quotient category has all coproducts and also what
is called a projective generator. Roughly speaking, this is a projective object P such that
for every object M there exists an arrow P → M . Then one shows that this implies that
this category is equivalent to a full abelian subcategory of R-Mod for some R.

Most of the theorems we have proved aboutR-Mod extend to any abelian category. Some
of those theorems can in fact be deduced from the fact that they are true over R-Mod.

Theorem 7.46 (Snake Lemma). Consider an abelian category A and a commutative diagram

A′ i′ //

f

��

B′ p′
//

g

��

C ′

h
��

// 0

0 // A
i
// B p

// C .

If the rows of the diagram are exact, then there exists an exact sequence

ker f // ker g // kerh ∂ // coker f // coker g // cokerh.

Theorem 7.47 (Long exact sequence in homology). Given a short exact sequence in Ch(R)

0 // A
f
// B

g
// C // 0,

there are connecting arrows ∂ : Hn(C) −→ Hn−1(A) such that

· · · // Hn+1(C)
∂ // Hn(A)

Hn(f)
// Hn(B)

Hn(g)
// Hn(C)

∂ // Hn−1(A) // · · ·

is an exact sequence.
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Theorem 7.48 (The Five Lemma). Given an abelian category A, consider the following
commutative diagram in A with exact rows:

A′

a

��

// B′ //

b
��

C ′ //

c

��

D′

d
��

// E ′

e

��

A // B // C // D // E

If b and d are epi and e is a mono, then c is an epi. If b and d are mono and a is epi, then
c is mono.

One can prove these by invoking the Freyd-Mitchell theorem and checking that one can
go back and forth with our statements between some small subcategory of A containing our
diagram and all the necessary kernels, cokernels, etc, and some R-Mod where that category
embeds. Alternatively, one can use what are called members, as in [?, VIII.4.5]. The theory
of members is an attempt to fix the main difficulty when dealing with abelian categories:
that the objects and arrows are not just sets and functions, so we can’t just talk about
members of the objects and their images by each arrow.

7.4 Projectives and injectives

A lot of the notions we have studied this semester can be extended to the setting of a general
abelian category.

Definition 7.49. Let A be an abelian category. An object P in A is projective if
HomA(P,−) is an exact functor. An object E in A is injective if HomA(−, E) is exact.

This generalizes the notion of projective and injective modules.

Remark 7.50. Let A be an abelian category. An object P is projective if and only if every
arrow P −→ Y factors through every epi X −→ Y :

P

��~~

X // Y // 0

and an object E is injective if and only if every arrow X −→ E factors through every mono
X −→ Y :

E

0 // X

OO

// Y

``

Exercise 93. Let A be an abelian category.

a) Show that HomA(x⊕ y, z) = HomA(x, z)⊕ HomA(y, z).

b) Show that if P and Q are projective, then so is P ⊕Q.
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Definition 7.51. An abelian category A has enough projectives if for every object M
there exists a projective object P and an epi P −→ M . We say that A has enough
injectives if for every object M there exists an injective object E and a mono M −→ E.

Lemma 4.13 and Theorem 4.31 say that R-Mod has enough injectives and enough pro-
jectives.

Example 7.52. The category of finite abelian groups has no projectives beside 0. In par-
ticular, Ab does not have enough projectives.

Definition 7.53. Let M be an object in the abelian category A. A projective resolution
of M is a complex P

· · · // P2
// P1

// P0
// 0

where all the Pn are projective, H0(P ) = M , and Hn(P ) = 0 for all n ̸= 0. An injective
resolution of M is a cochain complex E

0 // E0 // E1 // · · ·

such that every En is injective, Hn(E) = 0 for all n ̸= 0, and H0(E) =M .

Theorem 7.54. If A has enough projectives, every object in A has a projective resolution.
Similarly, if A has enough injectives, every object in A has an injective resolution.

This generalizes Theorem 5.2 in a natural way, and the proof is essentially the same.

Proof. Given be an objectM in A, let’s construct a projective resolution explicitly. We start
by picking an epi P0

ε−→ M from a projective P0. Since ϵ is an epi, it is the cokernel of its
kernel, so

0 // ker ε // P0
ε //M // 0

is a short exact sequence. Now we find an epi P1
ε1−→ K0 := ker ε, and set P1

∂1−→ P0 to be
the composition

P1
∂1 //

ε1
""

P0
ε //M // 0

ker ε
i0

<<

""
0

<<

0 .

We proceed the same way, at each step taking a projective Pn and an epi εn : Pn −→ ker ∂n−1,
and setting ∂n+1 to be the composition (ker ∂n−1) ◦ εn. By construction, ∂n = in−1εn, where
εn is an epi and ker ∂n−1 is mono. By Exercise 85, im ∂n = in−1 = ker ∂n−1.

We can also characterize injectives in term of split short exact sequences, as we did for
modules. In particular, the Splitting Lemma extends to any abelian category.
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Definition 7.55. Let A be an abelian category. A short exact sequence

0 // A
f
// B

g
// C // 0

splits if one of the following equivalent conditions hold:

1) There exists an arrow C
r−→ B such that gr = idC .

2) There exists an arrow B
s−→ A such that sf = idA.

3) There exists an isomorphism of complexes between our sequence and

0 // A // A⊕ C // C // 0

where the arrows are the canonical arrows that come with the (co)product A⊕ C.

Theorem 7.56. Let A be an abelian category. Every short exact sequence

0 // A
f
// B

f
// C // 0

where A is injective or C is projective splits.

The proofs are exactly the same as in the case of R-Mod, Theorem 4.6 and Theorem 4.32.

Proof. If C is projective, there exists h such that

C
h

��

B g
// C // 0

commutes, so gh = idC and g is a splitting. If A is injective, there exists h such that

A

0 // A
f
// B.

h
``

commutes, so hf = idA, and h is a splitting.

More generally, we can talk about split exact complexes.

Definition 7.57. A complex C in Ch(A) is split if there are arrows sn : Cn −→ Cn+1 such
that the differential ∂ satisfies ∂ = ∂s∂. A complex is split exact if it is both exact and
split.

Remark 7.58. A split short exact sequence is precisely a short exact sequence that is a
split complex.
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Exercise 94. Additive functors preserve split complexes, meaning that if C is a split com-
plex, then so is F (C) for any additive functor F . In particular, additive functors preserve
split short exact sequences.

Lemma 7.59. Let A be an abelian category, (P, ∂) in Ch⩾0(A) with each Pi projective,

P0
∂0−→ M an arrow in A such that ∂0∂1 = 0 and (Q, δ) a projective resolution of N . Given

any M
f−→ N in A, there exists a map of complexes P

φ−→ Q such that

P0

φ0

��

∂0 //M

f

��

Q0 δ0
// N

commutes, which is unique up to homotopy.

Proof. Since P0 is projective and δ0 is an epi, there exists φ0 such that

P0

φ0

��

∂0 //M //

f

��

0

Q0 δ0
// N // 0

commutes.
We proceed inductively, assuming we have φ0, . . . , φn−1 with φn−2∂n−1 = δn−2 φn−1.

Since Pn is projective, there exists φn such that

Pn
∂n //

φn

��

Pn−1

φn−1

��

∂n−1
// Pn−2

φn−2

��

Qn δn
// Qn δn−1

// Qn−1

commutes. Commutativity gives δn−1φn−1∂n = φn−2∂n−1∂n = 0, so φn−1∂n factors through
the kernel of δn−1.

Pn

∂n

��

**

Qn

δn

��

$$ $$

Zn−1(Q)

zz

Pn−1 φn−1

// Qn

Since Q is a projective resolution of N , the arrow Qn −→ Zn−1(Q) above is an epi, so the
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arrow Pn −→ Zn−1(Q) we just constructed factors through Qn, giving us φn such that

Pn
φn

//

∂n

��

**

Qn

δn

��

$$ $$

Zn−1(Q)

zz

Pn−1 φn−1

// Qn

commutes.
Now suppose we are given two such maps of complexes φ and ψ lifting f , say φ and ψ.

Note that φ − ψ and 0 are two liftings of the 0 map. We are going to show that any map
lifting the 0 map M −→ N must be nullhomotopic, which will then imply that φ and ψ are
homotopic as well (essentially via the same homotopy!).

So let φ : P −→ C be a map of complexes lifting the 0 map M −→ N .

· · ·P1
//

φ1

��

∂1 // P0

φ0

��

∂0 //M //

0

��

0

· · ·C1
//

δ1
// C0 δ0

// N // 0

We will construct a nullhomotopy for φ inductively. Set hn = 0 for all n < 0. The
commutativity of the rightmost square says that δ0φ0 = 0, so imφ0 ⊆ ker δ0 = im δ1. Since
∂0ϖ0 = 0, φ0 factors through Z0(Q). But Q1 ↠ Z0(Q) is an epi and P0 is projective, there
exists H0 such that

Q1

&& &&

δ1

��

Z0(Q)

xx

P0 φ0

//

∂0

��

33

H0

==

Q0

δ0

��

M
f

// N

commutes. So H0 satisfies δ0H0 = φ0. Set H−1 = 0.
Now suppose we have constructed H0, . . . , Hn−1 such that δnHn−1 + Hn−2∂n−1 = φn−1.

Then

δnφn = φn−1∂n since φ is a map of complexes

= (δnHn−1 +Hn−2∂n−1)∂n by assumption

= δnHn−1∂n +Hn−2∂n−1∂n

= δnHn−1∂n since ∂n−1∂n = 0

so δn(φn −Hn−1∂n) = 0. Therefore, φn factors through Zn(Q), and since Q is a projective
resolution of N , Qn+1 −→ Zn(Q) is an epi. Therefore, the factorization of φn − Hn−1∂n
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through Zn(Q) also factors through Qn, and we end up with an arrow Hn such that

Qn+1

'' ''

δn+1

��

Zn(Q)

ww
Pn φn

//

∂n

��

22
Hn

;;

Qn

δn

��

Pn−1

Hn−1

88

φn−1

// Qn−1

commutes. This Hn must then satisfy δn−1Hn + Hn−1∂n = φn, and ultimately H is a
homotopy between φ and 0.

Theorem 7.60 (Horseshoe Lemma). Let A be an abelian category, P be a projective reso-
lution of A, and R be a projective resolution of C. If

0 // A
f
// B

g
// C // 0

is an exact sequence, there exists a projective resolution Q of B and maps of complexes F
and G lifting f and g such that

0 // P
F // Q

G // R // 0

is an exact sequence in Ch(A).

Proof. First, a word on notation: ⊕ denotes the coproduct in A, and given arrows x
f−→ z

and y
g−→ z, we will write f ⊕ g for the unique arrow x ⊕ y −→ z induced by f and g.

Moreover, we will denote the differential of P by ∂P , and the differential of R by ∂R.
Set Qn = Pn⊕Rn. Recall that the product and coproduct in A coincide, by Lemma 7.10,

so let Fn : Pn −→ Qn and Gn : Qn −→ Rn be the canonical arrows. One can show that in
fact we get short exact sequences

0 // Pn
Fn // Qn

Gn // Rn
// 0

for all n. Moreover, Qn is projective for all n, by Exercise 93. We will construct the missing
differentials ∂Q inductively.

Since R0 is projective and g is an epi, there exists γ such that

0 // P0
F0 //

∂0
��

Q0
G0 // R0

γ
}} ��

∂0
��

// 0

0 // A
f
// B

g
// C // 0

commutes. Set ∂Q0 := (f∂P0 )⊕ γ. The universal property of the coproduct guarantees that

0 // P0
F0 //

∂0
��

Q0

∂Q0
��

G0 // R0

γ
}} ��

∂0
��

// 0

0 // A
f
// B g

// C // 0
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commutes. By the Five Lemma, ∂Q0 is epi. By the Snake Lemma,

ker ∂P0 // ker ∂Q0 // ker ∂R0

is exact. We then proceed by induction, and at each step we apply the base case to

0 // Pn+1
Fn+1

//

∂Pn+1
��

Qn+1
Gn+1

// Rn

∂Rn+1

��

// 0

0 // ker ∂Pn // ker ∂Qn // ker ∂Rn // 0

where the vertical arrows are epi because P and R are projective resolutions and thus exact.

Remark 7.61. By duality, if A has enough injectives,

0 // A // B // C // 0

is exact, and EA and EC are injective resolutions for A and C, then there exist an injective
resolution EB of B and a short exact sequence of complexes

0 // EA // EB // EC // 0

extending the given one.

7.5 Derived functors

We are now ready to define derived functors in full generality. The definitions will match
the definitions over R-modules; the one notable addition from R-Mod to the general case is
the new need to worry about whether the abelian category in question has enough injectives
or enough projectives.

Definition 7.62 (Derived functors). Let A and B be abelian categories.

Let F : A −→ B be a covariant right exact functor. If A has enough projectives, the left
derived functors of F are a sequence of functors LiF : A −→ B, i ⩾ 0, defined as follows:

• For each object A in A, fix a projective resolution P of A, and set

LiF (A) := Hi(F (P )).

• Given an arrow f : A → B, fix projective resolutions P −→ A and Q −→ B, and a
map of complexes φ : P → Q lifting f . Then

LiF (f) := Hi(F (φ)).

Let F : A −→ B be a covariant left exact functor. If A has enough injectives, the right
derived functors of F are a sequence of functors RiF : A −→ B, i ⩾ 0, defined as follows:
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• For each object A in A, fix an injective resolution E of A, and set

RiF (A) := Hi(F (E)).

• Given an arrow f : A→ B, fix injective resolutions A −→ E and B −→ I, and a map
of complexes φ : P → Q extending f . Then

RiF (f) := Hi(F (φ)).

Let F : A −→ B be a contravariant left exact functor. If A has enough projectives, the
right derived functors of F are a sequence of functors RiF : A −→ B, i ⩾ 0, defined as
follows:

• For each object A in A, fix a projective resolution P of A, and set

RiF (A) := Hi(F (P )).

• Given an arrow f : A → B, fix projective resolutions P −→ A and Q −→ B, and a
map of complexes φ : P → Q extending f . Then

RiF (f) := Hi(F (φ)).

Finally, let F : A −→ B be a contravariant right exact functor. If A has enough injectives,
the left derived functors of F are a sequence of functors LiF : A −→ B, i ⩾ 0, defined as
follows:

• For each object A in A, fix an injective resolution E of A, and set

LiF (A) := Hi(F (E)).

• Given an arrow f : A→ B, fix injective resolutions A −→ E and B −→ I, and a map
of complexes φ : E → I extending f . Then

LiF (f) := Hi(F (φ)).

Remark 7.63. If F is exact, then Hi(F (C)) = F (Hi(C)), so LiF = 0 for all i > 0.

Remark 7.64. If P is projective, then 0 −→ P −→ 0 is a projective resolution of P , and
thus LiF (P ) = 0 for all i > 0. Similarly, if E is injective then RiF (E) = 0.

Proposition 7.65. Let A be an abelian category with enough projectives, and F a covariant
right exact functor.

a) LiF (A) is well-defined up to isomorphism for every object A.

b) LiF (f) is well-defined for every arrow f .

c) LiF is an additive functor for each i.
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d) L0F = F .

Proof.

a) Let P and Q be projective resolutions of A. Theorem 5.18 gives us maps of complexes
φ : P → Q and ψ : Q→ P such that φψ is homotopic to 1Q and ψφ is homotopic to 1P .
Additive functors preserve homotopies, by Remark 7.37, so F (φ)F (ψ) and F (ψ)F (φ)
are homotopic to the corresponding identity arrows. Homotopic maps induce the same
map in homology, by Exercise 90. Therefore, F (φ) and F (ψ) induce isomorphisms in
homology.

b) Fix projective resolutions P and Q ofM and N . Any two lifts φ and ψ of f :M −→ N
to P −→ Q are homotopic, by Lemma 7.59. Additive functors preserve homotopies,
by Remark 7.37, so F (φ) and F (ψ) are homotopic. Homotopic maps induce the same
map in homology, by Exercise 90, so LiF (φ) = LiF (ψ) for each i.

c) Given an arrow f , fix a lift φ of f to projective resolutions of the source and target.
Since F is an additive functor, Hi(F (φ)) is a homomorphism for each i, and thus
LiF (f) is a homomorphism between the corresponding Hom-groups, which as we’ve
seen is independent of our choice of φ.

d) Let A be any object and P be a projective resolution of A. Since P is right exact, and

P1
// P0

// A // 0

is exact, then so is
F (P1) // F (P0) // F (A) // 0.

We claim that H0(F (P )) = F (A). By Exercise 84, ker(F (P0) −→ 0) = 1F (P0), so the
canonical arrow imF (∂1) −→ F (P0) is precisely the image of F (∂1). By exactness of the
last sequence we wrote above, imF (∂1) = ker(F (P0) −→ F (A)). On the other hand,
exactness at F (A) says that F (P0) −→ F (A) is an epi, by Exercise 86. Every epi is the
cokernel of its kernel, so F (P0) −→ F (A) is the cokernel of imF (∂1), which we saw was
exactly the canonical arrow B1(F (P )) −→ Z0(F (P )). Therefore, H0(F (P )) = F (A),
the target of the cokernel of B1(F (P )) −→ Z0(F (P )).

Exercise 95. Let A be an abelian category with enough injectives, and F a covariant left
exact functor.

a) RiF (A) is well-defined up to isomorphism.

b) RiF (f) is well-defined for every arrow f .

c) RiF (f) is an additive functor for every i.

d) R0F = F .

Remark 7.66. If A is an abelian category with enough injectives, then Aop is an abelian
category with enough projectives. This gives us a relationship between left derived and right
derived functors: RiF = (LiF

op)op.
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Theorem 7.67. Let Ti : A −→ B be a sequence of additive covariant functors between
abelian categories, where A has enough projectives, and F : A −→ B a right exact functor.
Suppose the following hold:

(1) For every short exact sequence 0 // A // B // C // 0 in A, we get a natural
long exact sequence

· · · // T2(C) // T1(A) // T1(B) // T1(C) // T0(A) // T0(B) // T0(C) // 0.

(2) T0 is naturally isomorphic to F .

(3) Tn(P ) = 0 for every projective object P in A, and all n ⩾ 1.

Then Tn is naturally isomorphic to LnF for all n.
Similarly, suppose Ti : A −→ B is a sequence of additive covariant functors, where A has

enough injectives, and F : A −→ B a left exact functor such that

a) For every short exact sequence 0 // A // B // C // 0 in A, we get a long
exact sequence

0 // T0(A) // T0(B) // T0(C) // T1(A) // T1(B) // T1(C) // · · · .

b) T0 is naturally isomorphic to F .

c) Tn(E) = 0 for every injective object E in A, and all n ⩾ 1.

Then Tn is naturally isomorphic to RnF for all n.



Chapter 8

Spectral Sequences

It has been suggested that the name “spectral” was given because, like spectres,
spectral sequences are terrifying, evil, and dangerous. I have heard no one dis-
agree with this interpretation, which is perhaps not surprising since I just made
it up.

(Ravi Vakil, in Spectral Sequences: friend or foe? )

Spectral sequences are useful bookkeeping tools for computing, among other things, the
homology and cohomology of complicated complexes. Unfortunately, spectral sequences have
a bad reputation for being difficult and scary; but continuing Vakil’s quote above, “you can
use spectral sequences without hesitation or fear, and [...] you shouldn’t be frightened when
they come up in a seminar”. Rotman wisely says that “Of course, the reader must digest
these new ideas in order to apply them, but it is worth the effort” [?, page 608].

Spectral sequences were introduced independently by Leray and Lyndon in the 1940s.
Leray came up with the idea while he was a prisoner of the nazis during WWII. The primary
usages of spectral sequences are in homotopy theory and topology more generally, but there
are also applications in commutative algebra and other fields. Due to its topological roots,
the subject is best learned with a topological backdrop – which provides many motivating
examples – but since we are not assuming any particular topological background, we will
give only a very brief introduction to the subject, and from a more algebraic perspective.

Here are some recommended sources to learn more about spectral sequences:

• Rotman’s book An introduction to Homological Algebra (second edition) [?].

• John McCleary’s A user’s guide to spectral sequences [?].

• Ravi Vakil’s notes Spectral Sequences: friend or foe? .

• Hatcher’s additional chapter on spectral sequences, an addition to his Algebraic Topol-
ogy book [?].

• Weibel’s book An introduction to homological algebra [?].

• Eisenbud’s Appendix A3.13 to his book Commutative algebra with a view towards
algebraic geometry [?].

• Mel Hochster’s notes.

• Michael Hutchings notes.
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https://math.stanford.edu/~vakil/0708-216/216ss.pdf
https://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf
https://dept.math.lsa.umich.edu/~hochster/615W15/615W15.pdf
https://math.berkeley.edu/~hutching/teach/215b-2011/ss.pdf
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8.1 What is a spectral sequence?

Roughly speaking, a spectral sequence is a book where each page is a plane with a module (or
more general, an object in an abelian category) sitting in each point with integer coordinates.
To pass the pages, we take the (co)homology of a differential, and attach to the next page a
new differential with a different shape.

Definition 8.1. A cohomological spectral sequence E consists of the following data:

• A family E = (Ep,q
r ) of R-modules ranging over all integers p, q, r with r ⩾ 0. For a

fixed r, the collection of modules Er = Ep,q
r is called the rth page or sheet of the

spectral sequence. We think of each page as living in Z2, and depict the rth page by
putting Ep,q

r in the point with coordinates (p, q):

E0,0
r

E0,1
r

E0,2
r

E1,0
r

E1,1
r

E1,2
r

E2,0
r

E2,1
r

E2,2
r

q

p

• Differentials
dr : E

p,q
r −→ Ep+r,q−r+1

r ,

so R-module homomorphisms such that drdr = 0, or more precisely,

dp+r,p−r+1
r dp,qr = 0.

• Isomorphisms
Ep,q
r+1
∼= Hp,q(Er),

meaning

Ep,q
r+1 =

ker

(
Ep,q
r

dr // Er
p+r,q−r+1

)
im

(
Er
p−r,q+r−1

dr // Er
p,q

)
for every p, q.

Remark 8.2. The differential in the rth page is a map of degree (r,−r+1). Here are some
examples:

0th page 1st page 2nd page
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We can define spectral sequences more generally over any abelian category. However,
most spectral sequences the typical mathematician ever computes are over R-modules (or
even just vector spaces!), so we will keep things friendly by sticking to R-modules.

Definition 8.3. A homological spectral sequence E is a sequence consists of the fol-
lowing data:

• A family E = (Er
p,q) of R-modules ranging over all integers p, q, r with r ⩾ 0. For

a fixed r, the collection of objects Er = Ep,q
r is called the rth page or sheet of the

spectral sequence. We think of each page as living in Z2, and depict the rth page by
putting Ep,q

r in the point with coordinates (p, q):

Er
0,0

Er
0,1

Er
0,2

Er
1,0

Er
1,1

Er
1,2

Er
2,0

Er
2,1

Er
2,2

q

p

• Differentials
dr : E

r
p,q −→ Er

p−r,q+r−1

and

• for each r, isomorphisms Er+1 ∼= H(Er, dr), meaning

Er+1
p,q
∼=

ker

(
Er
p,q

dr // Er
p−r,q+r−1

)
im

(
Er
p+r,q−r+1

dr // Er
p,q

)
for every p, q.

Remark 8.4. The differential in the rth page is a map of degree (−r, r − 1).

0th page 1st page 2nd page



207

8.2 Graded and bigraded modules and their filtrations

We can be a bit more formal and say that a page in a spectral sequence is a differential
bigraded module. The goal of this section is to set up some background on the topic of
differential bigraded modules.

Definition 8.5. Let R be a ring. A graded module over R is a family M = (Mn)n∈Z of
R-modules indexed by Z. We sometimes denote M by M•.

More precisely, these are Z-graded modules. More generally, we have discussed Z-graded
modules over any graded ring; in that case, the action of R on M must respect the grading.
But here we are not assuming any grading on R, so we have no such conditions. One may
reinterpret our definition of graded module as assuming that R is given the trivial grading
concentrated in degree 0, so that R0 = R and Ri = 0 otherwise, and thus the condition on
the action of R becomes trivial.

Example 8.6. If C is a complex of R-modules, then (Cn)n∈Z is a graded module. Moreover,
its homology H = (Hn(C)) also forms a graded module.

Definition 8.7. Given graded modules M and N , a graded map of degree d is a family

f = (fn :Mn → Nn+d)n∈Z

of homomorphisms of R-modules, which we denote by f : M → N . We write deg(f) = d to
denote that the degree f is d.

Example 8.8.

1) If C is a complex of R-modules, the differential d is a graded map d : C → C of degree
−1. If C is a cochain complex, the differential is a graded map of degree 1.

2) Any map of complexes f : C → D is a graded map of degree 0.

3) A homotopy is a map of degree 1.

Definition 8.9. Let R be a ring. The category of graded modules over R has objects
all graded modules and arrows all graded maps of graded modules over R.

Definition 8.10. LetM and N be graded modules over a ring R. We say N is a submodule
of M , and write N ⊆ M , if Nn ⊆ Mn for all n. The quotient of M by N is the graded
module

M/N := (Mn/Nn)n.

Definition 8.11. Let f : M → N be a graded map of degree d between graded modules.
The kernel of f is the graded module

ker f := (ker fn)n∈Z

and the image of f is the graded module

im f := (im fn−d)n∈Z.
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Definition 8.12. Consider graded maps of graded modules

A
f
// B

g
// C.

We say this is an exact sequence if im f = ker g.

Remark 8.13. By our definition of kernel and image, im f = ker g says that im fn−d = ker gn
for all n.

Definition 8.14. Let R be a ring. A bigraded module over R is a familyM = (Mp,q)p,q∈Z
of R-modules indexed by Z× Z. We sometimes denote M by M•,•.

Definition 8.15. Let M and N be bigraded modules over a ring R. A bigraded map
f :M → N of degree (a, b) is a family of homomorphisms of R-modules

f = (fp,q :Mp,q → Np+a,q+b)p,q∈Z.

We denote the degree of f by deg(f) = (a, b).
The kernel of f is the bigraded module

ker f := (ker fp,q)p,q∈Z

and the image of f is the bigraded module

im f := (im fp−a,q−b)p,q∈Z.

We say a sequence of graded maps

A
f
// B

g
// C

is exact if im f = ker g.

Definition 8.16. A differential (bi)graded module (M,d) over a ring R consists of a
(bi)graded module M and a graded map d : M → M , which we call the differential, such
that dd = 0.

We can think of (bi)graded modules as differential (bi)graded modules with zero differential.

Example 8.17. A double complex C with differentials dh and dv gives rise to two differential
bigraded complexes: (C, dh) and (C, dv).

Definition 8.18. Let (M,d) be a differential (bi)graded module. The homology of M is
the (bi)graded module

H(M,d) = ker d/ im d.

We sometimes shorten this to H(M).

A spectral sequence can now be recast as a sequence (Er, dr) of differential bigraded
modules such that Er+1 = H(Er, dr).
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8.3 Filtrations

Definition 8.19. Let M be an R-module. A filtration F •M on M is a family (F pM)p∈Z
of submodules of M such that either

F pM ⊆ F p+1M

for all p, in which case we say the filtration is increasing or ascending, or

F pM ⊆ F p−1M

for all p, in which case we say the filtration is decreasing or descending. When we do
not specify if a filtration is ascending or descending, we will assume by default that it is
ascending, though we accept both kinds as filtrations in their own right. The factors of F •

are the quotient modules
F pM/F p−1M.

One can in fact define filtrations on any abelian category; that requires the notion of a
subobject, which we have not yet defined, but it is easy to guess: a suboject of an object
x in an abelian category A is a mono with target x. In particular, we can define a filtration
on a complex, or more generally on a (differential) (bi)graded module:

Definition 8.20. An ascending filtration on a (bi)graded module M is a sequence F pM
of submodules of M such that F pM ⊆ F p+1M . If M is a differential (bi)graded module, we
require additionally that the filtration respects the differential, that is, that d(F pM) ⊆ F pM .

So in particular when C is a complex, we get the following definition:

Definition 8.21. Let C be a complex. An ascending filtration F •C of C is an ascending
chain of subcomplexes F pC of C

· · · ⊆ F p−1C ⊆ F pC ⊆ F p+1C ⊆ · · · .

We call a complex (C, ∂) with a filtration F a filtered complex, and denote it by (C, ∂, F ).

As above, one can define a descending filtration; if we do not indicate whether a filtration
is ascending or descending, we will always by default assume it is ascending.

Remark 8.22. Let C be a complex and consider an ascending filtration F•C of C. For each
fixed homological degree n, we get an ascending filtration

· · · ⊆ F p−1Cn ⊆ F pCn ⊆ F p+1Cn ⊆ · · ·

of submodules of Cn. A filtration of C gives us commutative diagrams

// Cn+1
// Cn // Cn−1

//

// F pCn+1
//

OO

F pCn //

OO

F pCn−1

OO

//

// F p−1Cn+1
//

OO

F p−1Cn //

OO

F p−1Cn−1

OO

//

where the rows are given by the differential on C and its restrictions to the appropriate
modules.
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Definition 8.23. Let C be a complex with a filtration F •C, and consider the inclusions
ip : F

pC → C. We get an induced filtration in homology, as follows: for each n,

F pHn(C) := im(Hn(F
pC)→ Hn(C)),

giving us a filtration F •H(C) on the graded module H(C).

Definition 8.24. A filtration F •M of a graded module M is bounded if for each n there
exists integers s = s(n) and t = t(n) such that

F sMn = 0 and F tMn =Mn,

so that the filtration on Mn can be described by finitely many terms

F sMn = 0 ⊆ F s+1Mn ⊆ · · ·F t−1Mn ⊆ F tMn =Mn.

In particular, F iMn = 0 for all i < s and F iMn =Mn for all i > t.

Notice, however, that the bounds s and t may depend on n, and in particular there is
not necessarily global integers s and t such that

F sMn = 0 and F tMn =Mn

for all n.

Remark 8.25. Suppose that F •M is a bounded filtration on a complex C. Then the induced
filtration in homology is also bounded, with the same bounds (or better), so that for all n
there exist s and t such that

0 = F sHn(C) = 0 and F tHn(C) = Hn(C).

Definition 8.26. Let M be a module or a graded module. Given an increasing filtration F
of M , its associated graded module is the graded module grF (M) given by

grF (M) := (F nM/F n−1M)n∈Z.

Given a decreasing filtration F of an R-module M , its associated graded module is the
graded module grF (M) given by

grF (M) := (F nM/F n+1M)n∈Z.

Note that the associated graded module depends on the choice of filtration.

Remark 8.27. Let (C, d, F ) be a filtered complex. The differential d induces a differential
on the associated graded:

F pCn/F
p−1Cn // F pCn−1/F

p−1Cn−1

a+ F p−1Cn
� // d(a) + F p−1Cn−1.

This is well-defined, since our definition of filtered complex requires that the filtration re-
spects the differential: if a ∈ Fp−1Cn, then d(a) ∈ F p−1Cn−1.
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Definition 8.28. We can filter the integers Z as a Z-module as follows: we set

F nZ = Z whenever n ⩽ 0,

and
F nZ = (2n) whenever n ⩾ 0.

This give us the decreasing filtration

· · · ⊇ Z ⊇ Z ⊇ (2) ⊇ (4) ⊇ (8) ⊇ · · · .

The corresponding associated graded module has

grF (Z)n = 0 whenever n ⩽ 0

and
grF (Z)n = (2n)/(2n+1) ∼= Z/2 whenever n ⩾ 0.

Remark 8.29 (The associated graded versus the actual module). Suppose someone has
filtered the R-module M by F •M , but that we only have access to the associated graded
module of this filtration. While the pieces of the associated graded give us information
about M , they may not be sufficient to fully compute M . For a simple example, consider
an R-module B and a submodule A ⊆ B, and the filtration

F pM =


0 if p < 0

A if p = 0

B if p ⩾ 1.

The associated graded is given by

grn =


0 if p < 0

A if p = 0

B/A if p = 1

0 if p > 1.

So if we are only given the associated graded, meaning, if all we have access to is A and
B/A, then all we know about B is that fits into a short exact sequence

0 // A // B // B/A // 0.

However, if Ext1R(B/A,A) ̸= 0, then this does not uniquely determine B. Indeed, it turns
out that the isomorphism classes of extensions of A by B/A, meaning modules M that fit
into short exact sequences of the form

0 // A //M // B/A // 0

are in bijection with the elements of Ext1R(B/A,A); this is a topic we previously skipped.
For a concrete example, take the case where A = Z/2 and B/A = Z/2. Then B is not

uniquely determined: Ext1R(Z/2,Z/2) ∼= Z/2, and B can be either Z/4 or Z/2⊕Z/2, which
are not isomorphic.
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8.4 Convergence of spectral sequences

But back to spectral sequences. Note that any general statement we make about cohomolog-
ical spectral sequences can easily be translated into a statement about homological spectral
sequences, so we will alternate between the two.

Definition 8.30. We say that a spectral sequence E = (Er) is bounded if for every n there
are only finitely many nonzero terms of total degree n, meaning that there are only finitely
many pairs (p, q) with n = p+ q such that Er

p,q ̸= 0 for all r.

Remark 8.31. Notice that if a spectral sequence is bounded, then for every (p, q) there
exists an r such that all the differentials in and out of Er

p,q are zero, and thus Er
p,q = Er+1

p,q .

Most spectral sequences one deals with end up being bounded, so we will focus only on
the case of bounded spectral sequences. This guarantees that what we are about to do makes
sense.

From the data in a spectral sequence E we define a limiting page E∞, which can often
be identified with some interesting object (for example, the homology of a complex we care
about). These E∞ pages are sort of the whole point of the spectral sequence business, as
they contain (pieces of) the information we want to compute.

Construction 8.32 (E∞ page). Consider a spectral sequence (Er). Set

B0 := 0 and Z0 = E0,

so that E0 = Z0/B0. At each stage r, given Br ⊆ Zr such that Er ∼= Zr/Br, we define

Zr+1 := ker

(
Zr // Zr/Br = Er

dr // Er = Zr/Br

)
and Br+1 such that Br ⊆ Br+1 ⊆ Zr and

Br+1/Br := im

(
Zr // Zr/Br = Er

dr // Er = Zr/Br

)
.

At each stage,
Br ⊆ Br+1 ⊆ Zr+1 ⊆ Zr,

and
Er+1 = H(Er) = Zr+1/Br+1.

Thus we get chains

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Zr ⊆ Zr−1 ⊆ · · · ⊆ Z1 ⊆ Z0 = E0.

We say that Zr consists of the elements that survive until stage r, while Br consists of
the elements that are in the image of the differentials by stage r. We define

B∞ :=
⋃
i

Bi and Z∞ :=
⋂
i

Zi.

The elements in Bp,q
∞ are the (classes of) those elements in Ep,q

0 that are in the image of the
differential at some stage; we say these are the elements that are eventually bound. The
elements in Zp,q

∞ are the (classes of) those elements in Ep,q
0 that are in the kernel of all the

differentials at all stages, so they survive forever or live forever.
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Definition 8.33. Given a homological spectral sequence E = (Er), the E∞ page is the
bigraded module given by

Ep,q
∞ := Zp,q

∞ /Bp,q
∞ .

Similarly, given a cohomological spectral sequence (Er) one can define Zr and Br, Z∞

and B∞, and the E∞ page
E∞
p,q := Z∞

p,q/B
∞
p,q.

Lemma 8.34. Let E = (Er) be a spectral sequence. We have

Er+1 = Er ⇐⇒ Zr+1 = Zr and Br+1 = Br.

Proof. In general, if X/Y is a subquotient of Z, we have Y ⊆ X ⊆ Z, so X/Y = Z if and
only if Y = 0 and X = Z. If Er+1 = Er, then

Zr+1/Br+1 = Er+1 = Er = Zr/Br,

so Br+1 = 0 in Zr/Br, so we must have Br+1 = Br. But then

Zr+1/Br = Zr/Br,

so Zr+1 = Zr.
Conversely, if Zr+1 = Zr and Br+1 = Br, then

Er+1 = Zr+1/Br+1 = Zr/Br = Er.

This E∞ is easier to compute in the following special cases.

Definition 8.35. We say that a spectral sequence E = (Er) degenerates at the nth page
if dr = 0 for all r ⩾ n.

Remark 8.36. If a spectral sequence degenerates at the rth page, then Er is a limit term
for the spectral sequence, in the sense that Es = Er for all s ⩾ r, and E∞ = Er.

Example 8.37. Let E be a spectral sequence. If the rth page is concentrated in one row
or one columnn, we say that the spectral sequence collapses at the rth page. Notice that
in such situations the spectral sequence will automatically degenerate at the rth page.

Definition 8.38. Le H be a graded R-module. We say that a spectral sequence E = (Er)
converges to the graded R-module H = (Hn), and denote it by

E2
p,q =⇒ Hp+q,

if there exists a bounded filtration F • for H such that

E∞
p,q
∼= F pHp+q/F

p−1Hp+q for all p, q.

Alternatively, we may write Er
p,q =⇒ Hp+q for some other fixed choice of r besides r = 2.
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The idea is that the spectral sequence E approximates the graded module H. The E∞

page does not quite compute H exactly, but it gives us an approximation: the factors of a
filtration. As we noted in Remark 8.29, a filtration of a module does not always compute
the module exactly, but it gives us some information.

Remark 8.39. Given a spectral sequence E converging to a graded module H, if the E∞

page has only one nonzero term on the p + q = n diagonal, say E∞
p,q = A, then Hn = A.

Indeed, our filtration must be of the form F pH = 0 for p < 0 and F pH = A for p ⩾ 0, and
since we assumed that the filtration is bounded, the only option is for Hn = A.

For the same reason, if there are no nonzero terms on the p + q = n diagonal, then we
must have Hn = 0.

More generally, suppose that the nonzero terms on the p+q = n diagonal are A1, . . . , As,
with Ai = E∞

pi,n−pi and p1 < p2 < · · · < ps. The first term is the first nonzero factor in the
filtration, which means that Hn must have a submodule isomorphic to A1. The second term
A2 corresponds to a factor B2/A1, where B2 is a submodule of Hn. So B2 fits into a short
exact sequence

0 // A1
// B2

// A2
// 0.

If Ext1R(A2, A1) = 0, then there are no choices, and B2 must be A1⊕A2. But in general, we
might get multiple possibilities for B2. Next we get a submodule B3 such that B3/B2

∼= A3,
so we have a short exact sequence

0 // B2
// B3

// A2
// 0.

And so on. Finally, Hn fits into a short exact sequence

0 // Bs−1
// Hn

// As // 0.

Example 8.40. Suppose that E is a spectral sequence such that E2
p,q ⇒ Hp+1, with E∞

page

Z
42

0

Z
2

0

0

0

Z

0

0

q

p

The diagonal p+ q = 0 tells us that H has a filtration F •H with

F 0H0/F
−1H0 = Z/42 and F nH0/F

n−1H0 = 0 for all n ̸= 0.

Since we assume that the filtration is bounded, this means that we our filtration is F pH = 0
for p < 0 and F pH = H for p ⩾ 0, so in particular H0 = Z/42. In fact, whenever we have a
unique nonzero term on the p+ q = n diagonal, that term is Hn.
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Moreover, by the same reasoning we conclude that Hn = 0 for n < 0, n > 2 and n = 1,
since there are no nonzero terms on the p+ q = n diagonals for all those values of n.

The diagonal p+ q = 2 is the most interesting. It tells us that H2 has a filtration

F 0H2/F
−1H2 = Z/2 and F 2H2/F

1H2 = Z.

Since the first nonzero factor of the filtration is Z/2, this says that H2 has a submodule
A ∼= Z/2. The next nonzero factor is also the last nonzero factor, so it tells us thatH2/A ∼= Z.
Thus H2 fits into a short exact sequence

0 // Z/2 // H2
// Z // 0.

Luckily, Ext1Z(Z,Z/2) = 0, so the only such short exact sequence is the trivial one. We
conclude that H2

∼= Z⊕ Z/2.
Note, however, that if instead we had E∞ page

Z
42

0

Z

0

0

0

Z
2

0

0

q

p

then we could only say that H2 has a submodule isomorphic to Z, and that it fits into a
short exact sequence of the form

0 // Z // H2
// Z/2 // 0.

In particular, we have two options for H2: we may have

H2
∼= Z⊕ Z/2 or H2

∼= Z,

since
0 // Z 2 // Z // Z/2 // 0.

is also a short exact sequence (and it does not split). We know these are all the possibilities
since Ext1Z(Z/2,Z) ∼= Z/2, which has two elements.

We have the basic definitions but we haven’t yet seen any examples. This is by design;
to give a good example of a spectral sequence we need to do a bit more work than to give
a starting example for a run of the mill definition. In the next few sections we will discuss
some of the ways in which spectral sequences arise. There are, however, many interesting
spectral sequences one would discuss in a first course that we do not have the time to cover.
We strongly encourage the reader to seek out better sources, such as those we listed in the
beginning of the chapter.
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8.5 The spectral sequence of a filtered complex

We will now describe how every filtered complex gives rise to a spectral sequence. We will
be writing a homological spectral sequence, but by setting slightly different conventions one
could also write a cohomological spectral sequence; this part is up to your personal taste.
Given a filtered complex (C, ∂, F ), we first, define

E0
p,q := F pCp+q/F

p−1Cp+q

and let d0 : E
0
p,q −→ E0

p,q−1 be the differential induced on the associated graded grF C. Each
column of the E0 page contains a complex, one of the levels of the filtration.

...

��

...

��

...

��

F p−1Cp+q+1

F p−2Cp+q+1

∂
��

F pCp+q+1

F p−1Cp+q+1

∂
��

F p+1Cp+q+1

F pCp+q+1

∂
��

· · · F p−1Cp+q

F p−2Cp+q

∂
��

F pCp+q

F p−1Cp+q

∂
��

F p+1Cp+q

F pCp+q

∂
��

· · ·

F p−1Cp+q−1

F p−2Cp+q−1

��

F pCp+q−1

F p−1Cp+q−1

��

F p+1Cp+q−1

F pCp+q−1

��

...
...

...
Next, let

E1
p,q = Hp+q

(
F pC/F p−1C

)
and note that

Hp+q

(
F pC/F p−1C

)
=

ker
(
d0 : E0

p,q → E0
p,q−1

)
im
(
E0
p,q+1 → E0

p,q

) = Hp,q(d
0 : E0

•,•).

Thus E0
•,• and E

1
•,• are consistent with being the zeroeth and first pages of a spectral sequence.

Before we move on, note that we can also rewrite the E1 page as follows:

E1
p,q =

{x ∈ F pCp+q | ∂(x) ∈ F p−1Cp+q−1}
F p−1Cp+q + ∂(F pCp+q+1)

.

One way to interpret this is that if we take an element x ∈ F pCp+q representing the class
[x] ∈ GpCp+q such that ∂([x]) = 0, then the element ∂(x) ∈ F pCp+q−1 is really in F p−1Cp+q−1,
so we really should move it to the column on our left (the one indexed by p− 1).

Thus the differential on E1
p,q is the map d1 : E

1
p,q → E1

p−1,q defined as follows: since each
class [x] ∈ E1

p,q corresponds to an element x ∈ F pCp+q such that ∂(x) ∈ F p−1Cp+q−1, we
recast ∂(x) by asking about its class in E1

p−1,q = F p−1Cp+q−1/F
p−2Cp+q−1. If [x] ∈ ker d1,

that means ∂(x) ∈ F p−2Cp+q−1, and so on. Ultimately, we will gather information about
how deep into our filtration we can go to still find ∂(x).
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Inspired by this, we define

Er
p,q :=

{x ∈ F pCp+q | ∂(x) ∈ F p−rCp+q−1}
F p−1Cp+q + ∂(F p+r−1Cp+q+1)

.

Now given x ∈ F pCp+q representing a class [x] ∈ Er
p,q, by definition

∂(x) ∈ F p−rCp+q−1,

so we define

dr([x]) = [∂(x)] ∈ Er
p−r,q+r−1 =

{y ∈ F p−rCp+q−1 | ∂(y) ∈ F p−2rCp+q−2}
F p−r−1Cp+q−1 + ∂(F p−1Cp+q)

We claim that this is well-defined, and leave the details as an exercise. Moreover, d2r = 0
since ∂2 = 0. Finally, each class in the kernel of dr is represented by some x ∈ F pCp+q such
that ∂(x) ∈ F p−r−1Cp+q−1, while the image of dr : E

r
p+r,q−r+1 → Er

p,q consists of the image of
∂(F p+rCp+q+1). Ultimately, this gives us an isomorphism

Er+1
p,q
∼= Hp,q(E

r).

Theorem 8.41. Let (C, ∂) be a filtered complex with filtration F •C, and let

Er
p,q :=

{x ∈ F pCp+q | ∂(x) ∈ F p−rCp+q−1}
F p−1Cp+q + ∂(F p+r−1Cp+q+1)

.

Then ∂ induces a well-defined map

Er
p,q

dr // Er
p−r,q+r−1

[x] � // [∂(x)]

such that drdr = 0, and
Er+1
p,q
∼= Hp,q(E

r).

Thus this gives us a spectral sequence with

E1
p,q = Hp+q(GpC•) = Hp+1

(
F pC•/F

p−1C•
)
.

Moreover, if the filtration is bounded, then the spectral sequence converges to

E∞
p,q = F pHp+q(C•)/F

p−1Hp+q(C•).

Thus
E∞
p,q ⇒ Hp+q(C).

This provides a comparison between taking the homology of the associated graded mod-
ule, or taking the associated graded module of the homology.



218

Example 8.42. Consider any short exact sequence of complexes, which we can always write
as the inclusion of a subcomplex A into a complex B followed by the quotient map:

0 // A
i // B

π // A/B // 0.

It turns out that we can recover the long exact sequence in homology given by the Snake
Lemma via a spectral sequence.

To do that, we can think of the inclusion A ⊆ B as a filtration on C = B: we set

F nC =


0 if n < 0

A if n = 0

B if n ⩾ 1.

Let us compute the spectral sequence of this filtered complex. First, note that In E0 page,
we have

E0
0,q = F 0Cq/F

−1Cq = Aq and E0
1,q = F 1Cq+1/F

0Cq+1 = Bq+1/Aq+1.

The differential d0 on the E0 page is induced by the differential ∂ on A and B. Note that we
denote the differential on both complexes A and B by the same letter since the differential
on A is just the restriction of the differential on B. So the E0 page looks like

...

��

...

��

Aq+1

∂
��

Bq+2/Bq+2

∂
��

E0 Aq

∂
��

Bq+1/Aq+1

∂
��

Aq−1

��

Bq/Aq

��

...
...

where only the 0th and first columns are nonzero.
The E1 page is obtained by taking homology, so it looks like

Hq+1(A) Hq+2(B/A)
∂oo

E1 Hq(A) Hq+1(B/A)
∂oo

Hq−1(A) Hq(B/A)
∂oo

and the differentials d1, which are now horizontal, are induced by ∂. More precisely, we can
rewrite the terms on the right column as

E1
1,q = Hq+1(B/A) =

{x ∈ Bq+1 | ∂(x) ∈ Aq}
Aq+1 + ∂(Bq+2)

,



219

and so by definition any class [x] ∈ E1
q,1 is represented by some x ∈ Bq+1 such that ∂(x) ∈ Aq.

Since ∂2 = 0, then ∂(x) ∈ Zq(A), and so we can ask about the class of ∂(x) in Hq(Z). So
the differential d1 on E1 is given by

E1
1,q =

{x∈Bq+1|∂(x)∈Aq}
Aq+1+∂(Bq+2)

// Hq(A)

[x] � // [∂(x)].

Now onto the E2 page, where

E2
1,q = H1,q(E

1) = ker

(
E1

1,q
d1 // E1

0,q

)
and

E2
0,q = H0,q(E

1) = Hq(A)/ im(d1).

Note now that d2 is a map of degree (−2, 1), and thus d2 = 2, since we always have zero as
the source or target (or both) of d2. Thus En

p,q = E2
p,q for all n ⩾ 2, and so by Theorem 8.41

this spectral sequence converges, with

E∞
p,q
∼= F pHp+q(C)/F

p−1Hp+q(C).

Now F 1Hn(C) = Hn(B), while

F 0Hn(C) = im (Hn(A)→ Hn(B)) .

Here the map H(A) → H(B) is the map induced by the original inclusion of A into B.
Moreover, F nH(C) = 0 for all n < 0 and F nH(C) = H(B) for all n ⩾ 1. So for all n we get
isomorphisms

ker

(
E1

1,n−1
d1 // E1

0,n−1

)
∼= Hn(B)/ im (Hn(A)→ Hn(B)) = Hn(B)/ imHn(i)

and
Hn(A)/ im(d1) ∼= im (Hn(A)→ Hn(B)) = im(Hn(i)).

So we now have all the tools we need to construct the long exact sequence in homology
from this spectral sequence. First, we construct a complex. Our map d1 from the spectral
sequence gives us homomorphisms

Hn+1(B/A)
d1 // Hn(A).

By definition, d1([x]) = [∂(x)]; composing this with the map Hn(i) : Hn(A)→ H(B) consists
of viewing ∂(x) ∈ Zn(B/A) and asking for its class in Hn(B). But ∂(x) ∈ An ⊆ Zn(B/A),
so the composition

Hn+1(B/A)
d1 // Hn(A)

Hn(i)
// Hn(B)

is zero.
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Similarly, the map Hn+1(B) → Hn+1(A) takes a class [y] ∈ Hn(B), represented by y ∈
Zn(B), and identifies y with its image in Zn(B) ⊆ Zn(B/A). But ∂(y) = 0 by definition, so
[∂(y)] = 0 and the composition

Hn+1(B) // Hn+1(B/A)
d1 // Hn(A)

[y] � // [y] � // [∂(y)]

is the zero map. Moreover, Hn is an additive functor, and thus it takes A→ B → B/A to a
complex, so putting it all together we get a complex

Hn+1(B/A)
d1 // Hn(A)

Hn(i)
// Hn(B)

Hn(π)
// Hn(B/A)

d1 // Hn−1(A).

All that is left is for us to check that exactness follows from our spectral sequence. On the
one hand, the fact that this is a complex says that

im(d1) ⊆ ker(Hn(i)),

but our spectral sequence gave us the isomorphism

Hn(A)/ im(d1) ∼= im(Hn(i)),

so by the First Isomorphism Theorem we get

Hn(A)/ ker(Hn(i)) ∼= im(Hn(i)) ∼= Hn(A)/ im(d1).

We can now conclude that im(d1) = kerHn(i). This gives us exactness at Hn(A). Similarly,
we claim that the fact that we have a complex gives us a map

coker(Hn(i))
ψ

// ker(d1)

x+ im(Hn(i))
� // Hn(π)(x).

Indeed, for any x ∈ Hn(B) we get Hn(π)(x) ∈ ker d1, and the map is well-defined since if
x ∈ im(Hn(i)) ⊆ ker(Hn(π)) then by definition Hn(π)(x) = 0, so that we get a well-defined
map from coker(Hn(i)). But our spectral sequence gave us an isomorphism

ker(d1) ∼= Hn(B)/ im(Hn(i)) = coker(Hn(i)),

so that the map ψ we defined above is an isomorphism, and thus we must have

ker(Hn(π)) = im(Hn(i)),

proving exactness at Hn(B). Finally, this also says that we can rewrite our previous isomor-
phism as

ker(d1) ∼= Hn(B)/ im(Hn(i)) = Hn(B)/ ker(Hn(π)),

but by the First Isomorphism Theorem we get

ker(d1) ∼= im(Hn(π)).

We already knew that im(Hn(π)) ⊆ ker(d1) from the fact that we had a complex, so we
conclude that we must have exactness at Hn(B/A).

Thus we have recovered the connecting homomorphism from the Snake Lemma and the
long exact sequence in homology, all via this spectral sequence.
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8.6 The spectral sequence of a double complex

One important example of a spectral sequence induced by a filtered complex is the case of
the spectral sequence of a double complex.

Definition 8.43. Let C be a double complex. There are two canonical filtrations on the
total complex of C:

I The First Filtration of Tot⊕(C) is the filtration IF sTot⊕(C) given by

IF sTot⊕(C)n :=
⊕
i⩽s

Ci,n−i.

For each s, IF sTot⊕(C) is the subcomplex of Tot⊕(C) obtained by first truncating C at p = s:

s
n = p+ q

The First Filtration

II The Second Filtration of Tot⊕(C) is the filtration IIF sTot⊕(C) given by

IIF sTot⊕(C)n :=
⊕
j⩽s

Cn−j,j.

For each s, IIF sTot⊕(C) is the subcomplex of Tot⊕(C) obtained by truncating C at q = s:

s

n = p+ q

The Second Filtration

Each of these filtered complexes gives rise to a spectral sequence.
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Discussion 8.44 (First Spectral Sequence). Let us examine the spectral sequence induced
by the First Filtration, which we write as IEs. To make the notation less heavy, we will write

Er
p,q :=

IEr
p,q and F p := IF sTot⊕(C) so F p

n =
⊕
i⩽s

Ci,n−i.

Our spectral sequence starts with

E0
p,q = F p

p+q/F
p−1
p+q =

⊕
i⩽p

Ci,p+q−i

/⊕
i⩽p−1

Ci,p+q−i = Cp,q,

so that
E0
p,• = Cp,• = pth column of C.

Moreover,
d0 : Cp,q = Ep,q

0 −→ Ep,q−1
0 = Cp,q−1

is the map induced by the differential d = dv + dh on this filtration. Since

d : Cp,q
(dh,dv)

// Cp−1,q ⊕ Cp,q−1,

we conclude that d0 is precisely the vertical differential dv of the original double complex C.
Thus the E0 page looks like ...

��

...

��

...

��

Cp−1,q+1

dv

��

Cp,q+1

dv

��

Cp+1,q+1

dv

��

E0 Cp−1,q

dv

��

Cp,q

dv

��

Cp+1,q

dv

��

Cp−1,q−1

��

Cp,q−1

��

Cp−1,q+1

dv
��

...
...

...

Then E1
p,q = Hv

q(Cp,•), and

d1 : H
v
q(Cp,•) = E1

p,q −→ E1
p−1,q = Hv

q(Cp−1,•)

is the map induced by d : Cp,q
(dh,dv)

// Cp−1,q ⊕ Cp,q−1. This is the horizontal differential dh.

We conclude that
IE2

p,q = Hh
p H

v
q(C).

We automatically get a convergence theorem from Theorem 8.41.

Theorem 8.45. If C is a bounded double complex, then

IE2
p,q ⇒ Hp+q(Tot

⊕(C)).
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Discussion 8.46 (Second Spectral Sequence). Let us examine the spectral sequence induced
by the Second Filtration, which we write as IIEs. To make the notation less heavy, we will
write

F p := IIF sTot⊕(C) so F p
n =

⊕
j⩽s

Cn−j,j.

Our spectral sequence starts with

E0
p,q = F p

p+q/F
p−1
p+q =

⊕
j⩽p

Cp+q−j,j

/⊕
j⩽p−1

Cp+q−j,j = Cq,p,

so that
E0
p,• = C•,p = pth column of C.

Moreover,
d0 : Cq,p = E0

p,q −→ E0
p,q−1 = Cq−1,p

is the map induced by the differential d = dv + dh on this filtration. Since

d : Cp,q
(dh,dv)

// Cp−1,q ⊕ Cp,q−1 ,

we conclude that d0 is precisely the horizontal differential d
h of the original double complex C.

Thus the E0 page looks like
...

��

...

��

...

��

Cq+1,p−1

dh

��

Cq+1,p

dh

��

Cq+1,p+1

dv

��

E0 Cq,p−1

dh

��

Cq,p

dh

��

Cq,p+1

dh

��

Cq−1,p−1

��

Cq−1,p

��

Cq−1,p+1

dh
��

...
...

...

Then E1
p,q = Hh

q (C•,p), and

d1 : H
h
q (C•,p) = E1

p,q −→ E1
p−1,q = Hh

q (C•,p−1)

is the map induced by d : Cp,q
(dh,dv)

// Cp−1,q ⊕ Cp,q−1. Thus d1 is the vertical differential

dv. We conclude that
IIE2

p,q = Hv
p H

h
q (C).

We now get a convergence theorem automatically from Theorem 8.41.

Theorem 8.47. If C is a bounded double complex, then

IIE2
p,q ⇒ Hp+q(Tot

⊕(C)).
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Remark 8.48. We know exactly how each spectral sequence converges to Hn(Tot
⊕(C)): via

the filtration on Hn(Tot
⊕(C)) induced by the given filtration on Tot⊕(C). More precisely,

IE∞
p,q =

IF pHp+q(Tot
⊕(C))

IF p−1Hp+q(Tot
⊕(C))

and IIE∞
p,q =

IIF pHp+q(Tot
⊕(C))

IIF p−1Hp+q(Tot
⊕(C))

.

Remark 8.49. If C is a first quadrant double complex, so that Ci,j = 0 whenever i < 0 or
j < 0, then for all p < 0 we have

IF pTot⊕(C) = 0 and IIF pTot⊕(C) = 0.

Thus
IF pH(Tot⊕(C)) = 0 and IIF pH(Tot⊕(C)) = 0.

Moreover, for each fixed n if we take p > n or q > n then

IF pTot⊕(C)n = Tot⊕(C)n and IIF pTot⊕(C)n = Tot⊕(C)n,

so
IF pHn(Tot

⊕(C)) = Hn(Tot
⊕(C)) and IIF pHn(Tot

⊕(C)) = Hn(Tot
⊕(C)).

Thus each fixed diagonal of IEp,q
∞ and IIEp,q

2 contains the factors of a finite filtration on
Hn(Tot

⊕(C)):
0 =M0 ⊆M1 ⊆ · · · ⊆Ms = Hn(Tot

⊕(C)).

In the special case when IE or IIE collapses, meaning that E∞ is concentrated in one row
or column, then the filtration on H(Tot⊕(C)) has a unique term in each degree, so that we
can read H(Tot⊕(C)) exactly from the E∞ page.

Remark 8.50. The fact that IIE0
p,q = Cq,p can lead to a lot of confusion. To make things

easier, one often breaks the rules a little and instead takes the E0 page to be IIE0
p,q = Cp,q

with horizontal differentials, the E1 page to have vertical differentials induced by the vertical
differentials on C, and then the Er page to have a differential of degree (r − 1,−r). This
gives us a gadget that isn’t quite a spectral sequence under our formal definition, but should
be a spectral sequence. In fact, this new convention makes everything much easier to read.

Under this reasonable convention, the differentials look as follows:

0th page 1st page 2nd page

Also, note that now
IIE2

p,q = Hv
q H

h
p(C),

and that while
IIE∞

p,q =⇒ Hp+q(Tot
⊕(C)),

we now should carefully read the filtration backwards:

IIE∞
p,q =

F q Hp+q(Tot
⊕(C))

F q−1Hp+q(Tot
⊕(C))

.
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Example 8.51. Let us give a new proof of the Snake Lemma using spectral sequences. More
precisely, we will show that given any commutative diagram with exact rows

0 // A
i //

f
��

B
π //

g

��

C

h
��

// 0

0 // A′
i′
// B′

π′
// C ′ // 0.

then there exists an exact sequence

0 // ker f // ker g // kerh ∂ // coker f // coker g // cokerh // 0.

To do that, we start by viewing our commutative diagram as a double complexM , as follows:
we set M0,0 = C, M0,1 = C ′, and so on, resulting in

C ′

h
��

B′π′
oo

g

��

C ′i′oo

f

��

C Bπoo C.ioo

Now notice that M is a first quadrant double complex with exact rows, so by the Acyclic
Assembly Lemma, Tot⊕(M) is exact. We can also prove that Tot⊕(M) is exact by computing
the spectral sequence arising from the Second Filtration on M , which under our new and
improved notation from Remark 8.50 has

C B
πoo C

ioo

E0 =

C ′ B′
π′
oo C ′

i′
oo

and since the rows are all exact, we see that in the next step we will end up with E1 = 0,
and thus E∞ = 0. Therefore, H(Tot⊕(M)) = 0.

Now consider the spectral sequence induced by the First Filtration on M , which has

C ′

h

��

B′

g

��

C ′

f

��

kerh ker gπ′
oo ker fi′oo

E0 = E1 =

C B C cokerh coker gπoo coker f.ioo

Now whatever E2 is, since d2 is a (−2, 1) degree map, the only possible nonzero differential
on E2 is d2 : E2

2,0 → E2
0,1. Moreover, all the differentials on all the higher pages vanish,

simply because there are not enough nonzero modules already, so E3 = E∞. But we know
that Tot⊕(M) is exact, so in fact since our filtrations are finite we must necessarily have
E∞ = 0. In particular, the only potentially nonzero objects in E2 are E2

0,1 and E2
2,0, so this

proves the exactness of

kerh ker gπ′
oo ker fi′oo 0oo and 0 cokerhoo coker gπoo coker f.ioo
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Moreover, the fact that E2
0,1 and E

2
2,0 are the only possible nonzero objects in E2 together

with the fact that and E3
0,1 = 0 = E3

2,0 imply that d2 : E2
0,1 → E2

2,10 must be an isomorphism.
More precisely, we get an isomorphism

coker

(
kerh ker gπ′

oo

)
= E2

0,1
∼= E2

2,0 = ker
(
coker g coker fioo

)
.

Thus we get an exact sequence

coker g coker fioo kerh

||||

∂oo ker gπ′
oo

E2
2,0

2 R

cc

E2
0,1∼=

oo

where the map ∂ obtained by composition is the connecting homomorphism we dreamed of.
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Exercises

Exercise 96. Show that if M is a first quadrant double complex with exact rows or exact
columns, then Tot⊕(M) is exact.

Exercise 97. Let M and N be R-modules and fix projective resolutions P for M and Q
for N . Consider the double complex C = P ⊗R Q.

a) Compute the spectral sequence associated to the First Filtration I on C up to the
E2 page.

b) Compute the spectral sequence associated to the Second Filtration II on C up to the
E2 page.

c) Give a new proof that Tor is balanced:

Hn(P ⊗R N) ∼= Hn(M ⊗R Q).

Exercise 98. Consider the following first quadrant double complex C:

...

��

...

��

...

��

...

��

...

��

...

��

Z

��

Z2oo Z0oo

��

Z3oo Z0oo

��

Z4oo · · ·oo

0

��

Zoo

��

0oo

��

Zoo

��

0oo

��

Zoo

��

· · ·oo

Z

��

Z2oo Z0oo

��

Z3oo Z0oo

��

Z4oo · · ·oo

0

��

Zoo

��

0oo

��

Zoo

��

0oo

��

Zoo

��

· · ·oo

Z Z2oo Z0oo Z3oo Z0oo Z4oo · · ·oo

a) Compute the spectral sequence associated to the First Filtration I until it stabilizes.

b) Compute the spectral sequence associated to the Second Filtration II until it stabi-
lizes.

c) How are the two resulting E∞ pages even possible considering they both converge to
the same thing?

d) Compute H3(Tot
⊕(M)) explicitly using only the two spectral sequences you calculated.

e) Check your work by computing H3(Tot
⊕(M)) explicitly from the definition of Tot⊕(M).



Appendix A

Rings and modules

We will study complexes of R-modules; to make sure we are all speaking the same language,
we record here our basic assumptions on rings and modules. You can learn more about the
basic theory of rings and modules in any introductory algebra book, such as [?].

A.1 Rings and why they have 1

In this class, all rings have a multiplicative identity, written as 1 or 1R is we want to emphasize
that we are referring to the ring R. This is what some authors call unital rings ; since for us
all rings are unital, we will omit the adjective. Moreover, we will think of 1 as part of the
structure of the ring, and thus require it be preserved by all natural constructions. As such,
a subring S of R must share the same multiplicative identity with R, meaning 1R = 1S.
Moreover, any ring homomorphism must preserve the multiplicative identity. To clear any
possible confusion, we include below the relevant definitions.

Definition A.1. A ring is a set R equipped with two binary operations, + and ·, satisfying:

1) (R,+) is an abelian group with identity element denoted 0 or 0R.

2) The operation · is associative, so that (R, ·) is a semigroup.

3) For all a, b, c ∈ R, we have

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

4) there is a multiplicative identity, written as 1 or 1R, such that 1 ̸= 0 and 1 ·a = a = a ·1
for all a ∈ R.

To simplify notation, we will often drop the · when writing the multiplication of two
elements, so that ab will mean a · b.

Note that the requirement that 1 ̸= 0 makes it so that the zero ring is not a ring.

Definition A.2. A ring R is a commutative ring if for all a, b ∈ R we have a · b = b · a.

Definition A.3. A ring R is a division ring if 1 ̸= 0 and R \ {0} is a group under ·, so
every nonzero r ∈ R has a multiplicative inverse. A field is a commutative division ring.

228
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Definition A.4. A commutative ring R is a domain, sometimes called an integral do-
main, if it has no zerodivisors: ab = 0⇒ a = 0 or b = 0. Note that in particular we reserve
the word domain for commutative rings.

For some familiar examples, Mn(R) (the set of n × n matrices) is a ring with the usual
addition and multiplication of matrices, Z and Z/n are commutative rings, C and Q are
fields, and the real Hamiltonian quaternion ring H is a division ring.

Definition A.5. A ring homomorphism is a function f : R→ S satisfying the following:

• f(a+ b) = f(a) + f(b) for all a, b ∈ R.

• f(ab) = f(a)f(b) for all a, b ∈ R.

• f(1R) = 1S.

Under this definition, the map f : R→ M2(R) sending a 7→
[
a 0
0 0

]
preserves addition and

multiplication but not the multiplicative identities, and thus it is not a ring homomorphism.

Exercise 99. For any ring R, there exists a unique homomorphism Z→ R.

Definition A.6. A subset S of a ring R is a subring of R if it is a ring under the same
addition and multiplication operations and 1R = 1S.

So under this definition, 2Z, the set of even integers, is not a subring of Z; in fact, it is
not even a ring, since it does not have a multiplicative identity!

Definition A.7. Let R be a ring. A subset I of R is an ideal if:

• I is nonempty.

• (I,+) is a subgroup of (R,+).

• For every a ∈ I and every r ∈ R, we have ra ∈ I and ar ∈ I.

The final property is often called absorption. A left ideal satisfies only absorption on the
left, meaning that we require only that ra ∈ I for all r ∈ R and a ∈ I. Similarly, a right
ideal satisfies only absorption on the right, meaning that ar ∈ I for all r ∈ R and a ∈ I.

When R is a commutative ring, the left ideals, right ideals, and ideals over R are all the
same. However, if R is not commutative, then these can be very different classes.

One key distinction between unital rings and nonunital rings is that if one requires every
ring to have a 1, as we do, then the ideals and subrings of a ring R are very different
creatures. In fact, the only subring of R that is also an ideal is R itself. The change lies in
what constitutes a subring; notice that nothing has changed in the definition of ideal.

Remark A.8. Every ring R has two trivial ideals: R itself and the zero ideal (0) = {0}.

A nontrivial ideal I of R is an ideal that I ̸= R and I ̸= (0). An ideal I of R is a
proper ideal if I ̸= R.
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A.2 Modules

You can learn more about the basic theory of (commutative) rings and R-modules in any
introductory algebra book, such as [?].

Definition A.9. Let R be a ring with 1 ̸= 0. A left R-module is an abelian group (M,+)
together with an action R ×M → M of R on M , written as (r,m) 7→ rm, such that for all
r, s ∈ R and m,n ∈M we have the following:

• (r + s)m = rm+ sm,

• (rs)m = r(sm),

• r(m+ n) = rm+ rn, and

• 1m = m.

A right R-module is an abelian group (M,+) together with an action of R on M , written
as M ×R→M, (m, r) 7→ mr, such that for all r, s ∈ R and m,n ∈M we have

• m(r + s) = mr +ms,

• m(rs) = (mr)s,

• (m+ n)r = mr + nr, and

• m1 = m.

By default, we will be studying left R-modules. To make the writing less heavy, we will
sometimes say R-module rather than left R-module whenever there is no ambiguity.

Remark A.10. If R is a commutative ring, then any left R-module M may be regarded as
a right R-module by setting mr := rm. Likewise, any right R-module may be regarded as a
left R-module. Thus for commutative rings, we just refer to modules, and not left or right
modules.

The definitions of submodule, quotient of modules, and homomorphism of modules are
very natural and easy to guess, but here they are.

Definition A.11. If N ⊆M are R-modules with compatible structures, we say that N is a
submodule of M .

A map M
f
// N between R-modules is a homomorphism of R-modules if it is a

homomorphism of abelian groups that preserves the R-action, meaning f(ra) = rf(a) for
all r ∈ R and all a ∈ M . We sometimes refer to R-module homomorphisms as R-module
maps, ormaps of R-modules. An isomorphism ofR-modules is a bijective homomorphism,
which we really should think about as a relabeling of the elements in our module. If two
modules M and N are isomorphic, we write M ∼= N .

Given an R-module M and a submodule N ⊆ M , the quotient M/N is an R-module
whose elements are the equivalence classes determined by the relation on M given by a ∼
b ⇔ a − b ∈ N . One can check that this set naturally inherits an R-module structure
from the R-module structure on M , and it comes equipped with a natural canonical map
M −→M/N induced by sending 1 to its equivalence class.
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Example A.12. The modules over a field k are precisely all the k-vector spaces. Linear
transformations are precisely all the k-module maps.

While vector spaces make for a great first example, be warned that many of the basic
facts we are used to from linear algebra are often a little more subtle in commutative algebra.
These differences are features, not bugs.

Example A.13. The Z-modules are precisely all the abelian groups.

Example A.14. When we think of the ring R as a module over itself, the submodules of R
are precisely the ideals of R.

Theorem A.15 (First Isomorphism Theorem). Any R-module homomorphism M
f
// N

satisfies M/ ker f ∼= im f .

The first big noticeable difference between vector spaces and more general R-modules is
that while every vector space has a basis, most R-modules do not.

Definition A.16. A subset Γ ⊆ M of an R-module M is a generating set, or a set of
generators, if every element in M can be written as a finite linear combination of elements
in M with coefficients in R. A basis for an R-module M is a generating set Γ for M such
that

∑
i aiγi = 0 implies ai = 0 for all i. An R-module is free if it has a basis.

Remark A.17. Every vector space is a free module.

Remark A.18. Every free R-module is isomorphic to a direct sum of copies of R. Indeed,
let’s construct such an isomorphism for a given free R-module M . Given a basis Γ = {γi}i∈I
for M , let ⊕

i∈I R
π //M

(ri)i∈I //
∑
i

riγi

.

The condition that Γ is a basis for M can be restated into the statement that π is an
isomorphism of R-modules.

One of the key things that makes commutative algebra so rich and beautiful is that
most modules are in fact not free. In general, every R-module has a generating set — for
example, M itself. Given some generating set Γ for M , we can always repeat the idea above

and write a presentation ⊕i∈IR π //M for M , but in general the resulting map π will
have a nontrivial kernel. A nonzero kernel element (ri)i∈I ∈ kerπ corresponds to a relation
between the generators of M .

Remark A.19. Given a set of generators for an R-module M , any homomorphism of R-
modules M −→ N is determined by the images of the generators.

We say that a module is finitely generated if we can find a finite generating set for M .
The simplest finitely generated modules are the cyclic modules.
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Example A.20. An R-module is cyclic if it can be generated by one element. Equivalently,
we can write M as a quotient of R by some ideal I. Indeed, given a generator m for M , the

kernel of the map R
π //M induced by 1 7→ m is some ideal I. Since we assumed that m

generates M , π is automatically surjective, and thus induces an isomorphism R/I ∼= M .

Similarly, if an R-module has n generators, we can naturally think about it as a quotient
of Rn by the submodule of relations among those n generators.
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tensor product of complexes, 158
tensor product of maps, 89
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