
GRADED RINGS AND MODULES

Tom Marley

Throughout these notes, all rings are assumed to be commutative with identity.

§1. Definitions and examples

Definition 1.1. A ring R is called graded (or more precisely, Z-graded ) if there exists a
family of subgroups {Rn}n∈Z of R such that

(1) R = ⊕nRn (as abelian groups), and
(2) Rn ·Rm ⊆ Rn+m for all n, m.

A graded ring R is called nonnegatively graded (or N- graded) if Rn = 0 for all n ≤ 0. A
non-zero element x ∈ Rn is called a homogeneous element of R of degree n.

Remark 1.1. If R = ⊕Rn is a graded ring, then R0 is a subring of R, 1 ∈ R0 and Rn is
an R0-module for all n.

proof. As R0 · R0 ⊆ R0, R0 is closed under multiplication and thus is a subring of R. To
see that 1 ∈ R0, write 1 =

∑

n xn where each xn ∈ Rn and all but finitely many of the
xn’s are zero. Then for all i,

xi = 1 · xi =
∑

n

xixn.

By comparing degrees, we see that xi = xix0 for all i. Therefore,

x0 = 1 · x0 =
∑

n

xnx0

=
∑

n

xn = 1.

Hence 1 = x0 ∈ R0. The last statement follows from the fact that R0 ·Rn ⊆ Rn for all n.

Exercise 1.1. Prove that all units in a graded domain are homogeneous. Also, prove that
if R is a graded field then R is concentrated in degree 0; i.e., R = R0 and Rn = 0 for all
n 6= 0.

Exercise 1.2. Let R be a graded ring and I an ideal of R0. Prove that IR ∩ R0 = I.

Examples of graded rings abound. In fact, every ring R is trivially a graded ring by
letting R0 = R and Rn = 0 for all n 6= 0. Other rings with more interesting gradings are
given below.
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1. Polynomial rings

Let R be a ring and x1, . . . , xd indeterminates over R. For m = (m1, . . . , md) ∈ Nd, let
xm = xm1

1 · · ·xmd

d . Then the polynomial ring S = R[x1, . . . , xd] is a graded ring, where

Sn = {
∑

m∈Nd

rmxm | rm ∈ R and m1 + · · ·+ md = n}.

This is called the standard grading on the polynomial ring R[x1, . . . , xd]. Notice that
S0 = R and deg xi = 1 for all i. There are other useful gradings which can be put on S.
Let (α1, . . . , αd) ∈ Zd Then the subgroups {Sn} where

Sn = {
∑

m∈Nd

rmxm | rm ∈ R and α1m1 + · · ·+ αdmd = n}

defines a grading on S. Here, R ⊆ S0 and deg xi = αi for all i.
As a particular example, let S = k[x, y, z] (where k is a field) and f = x3 + yz. Under

the standard grading of S, the homogeneous components of f are x3 and yz. However,
if we give S the grading induced by setting deg x = 3, deg y = 4, deg z = 5, then f is
homogeneous of degree 9.

2. Graded subrings

Definition 1.2. Let S = ⊕Sn be a graded ring. A subring R of S is called a graded
subring of S if R =

∑

n(Sn ∩ R). Equivalently, R is graded if for every element f ∈ R all
the homogeneous components of f (as an element of S) are in R.

Exercise 1.3. Let S = ⊕Sn be a graded ring and f1, . . . , fd homogeneous elements of S
of degrees α1, . . . , αd, respectively. Prove that R = S0[f1, . . . , fd] is a graded subring of S,
where

Rn = {
∑

m∈Nd

rmfm1

1 · · · fmd

d | rm ∈ S0 and α1m1 + · · ·+ αdmd = n}.

Some particular examples:

(a) k[x2, xy, y2] is a graded subring of k[x, y].
(b) k[t3, t4, t5] is a graded subring of k[t].
(c) Z[u3, u2 + v3] is a graded subring of Z[u, v], where deg u = 3 and deg v = 2.

3. Graded rings associated to filtrations

Let R be a ring and I = {In}∞n=0 a sequence of ideals of R. I is called a filtration of R
if

(1) I0 = R,
(2) In ⊇ In+1 for all n, and
(3) In · Im ⊆ In+m for all n, m.

2



Examples of filtrations are: {In}, where I is an ideal of R; {P (n)}, where P is a prime
ideal of R and P (n) = P nRP ∩R is the nth symbolic power of P ; and {In}, where I is an
ideal of R and In denotes the integral closure of In.

Now let I = {In} be a filtration of R. Define the Rees algebra R(I) by

R(I) = ⊕In

= R⊕ I1 ⊕ I2 ⊕ · · ·

where the direct sum is as R-modules and the multiplication is determined by Im · In ⊆
Im+n. An alternative way to define the Rees algebra of I is to describe it as a subring of
the graded ring R[t] (where deg t = 1): define

R(I) = {a0 + a1t + a2t
2 + · · ·+ antn ∈ R[t] | ai ∈ Ii ∀ i}.

Then R(I) is a graded subring of R[t] where R(I)n = {atn | a ∈ In}. The advantatage to
this approach is that the exponent of the variable t identifies the degrees of the homoge-
neous components of a particular element of R(I).

Exercise 1.4. Let R be a ring, I = (a1, . . . , ak)R a finitely generated ideal, and I = {In}.
Prove that R(I) = R[a1t, . . . , akt]. Generalize this statement to arbitrary ideals.

In the case I = {In} where I is an ideal of R, we call R(I) the Rees algebra of I and
denote it by R[It]. By the above exercise, R[It] is literally the smallest subring of R[t]
containing R and It. As a particular example, let R = k[x, y] and I = (x2 + y5, xy4, y6).
Then

R[It] = R[(x2 + y5)t, xy4t, y6t]

= k[x, y, x2t + y5t, xy4t, y6t].

Notice in this example that in the Rees algebra grading, deg x = 0, deg y = 0 and deg t = 1.
Another graded ring we can form with a filtration I = {In} of R is the associated graded

ring of I, denoted G(I), which we now define: as an R-module,

G(I) = ⊕In/In+1

= R/I1 ⊕ I1/I2 ⊕ I2/I3 ⊕ · · · .

To define the multiplication on G(I), let n and m be nonnegative integers and suppose
xn + In+1 and xm + Im+1 are elements of G(I)n and G(I)m, respectively. Define the
product by

(xn + In+1)(xm + Im+1) = xnxm + In+m+1.

Exercise 1.5. Show that the multiplication defined above is well-defined.

If I is an ideal of R and I = {In}, then G(I) is called the associated graded ring of I
and is denoted by grI(R).
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Definition 1.3. Let R be a graded ring and M an R-module. We say that M is a graded
R-module (or has an R-grading) if there exists a family of subgroups {Mn}n∈Z of M such
that

(1) M = ⊕nMn (as abelian groups), and
(2) Rn ·Mm ⊆ Mn+m for all n, m.

If u ∈ M \ {0} and u = ui1 + · · ·+ uik
where uij

∈ Rij
\ {0}, then ui1 , . . . , uik

are called
the homogeneous components of u.

There are many examples of graded modules. As with arbitrary modules, most graded
modules are constructed by considering submodules, direct sums, quotients and localiza-
tions of other graded modules. Our first observation is simply that if R is a graded ring,
then R is a graded module over itself.

Exercise 1.4. Let {Mλ} be a family of graded R- modules. Show that ⊕λMλ is a graded
R-module.

Thus Rn = R⊕ · · · ⊕ R (n times) is a graded R-module for any n ≥ 1.
Given any graded R-module M , we can form a new graded R-module by twisting the

grading on M as follows: if n is any integer, define M(n) (read “M twisted by n”) to
be equal to M as an R-module, but with it’s grading defined by M(n)k = Mn+k. (For
example, if M = R(−3) then 1 ∈ M3.)

Exercise 1.5. Show that M(n) is a graded R-module.

Thus, if n1, . . . nk are any integers then R(n1)⊕ · · · ⊕ R(nk) is a graded R-module. Such
modules are called free.

We can also obtain graded modules by localizing at a multiplicatively closed set of
homogeneous elements, as illustrated in the following exercise:

Exercise 1.6. Let R be a graded ring and S a multiplicatively closed set of homogeneous
elements of R. Prove that RS is a graded ring, where

(RS)n = {r

s
∈ RS | r and s are homogeneous and deg r − deg s = n}.

Likewise, prove that if M is a graded R-module then MS is graded both as an R-module
and as an RS-module.

§2. Homogeneous ideals and submodules

Definition 2.1. Let M = ⊕Mn be a graded R-module and N a submodule of M . For
each n ∈ Z, let Nn = N ∩ Mn. If the family of subgroups {Nn} makes N into a graded
R-module, we say that N is a graded (or homogeneous ) submodule of M .

Note that for any submodule N of M , Rn ·Nm ⊆ Nn+m. Thus, N is graded if and only if
N = ⊕nNn.

Exercise 2.1. Let R and M be as above, and N an arbitrary submodule of M . Prove
that

∑

n N ∩Mn is a graded submodule of M .
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Proposition 2.1. Let R be a graded ring, M a graded R-module and N a submodule of
M . The following statements are equivalent:

(1) N is a graded R-module.
(2) N =

∑

n N ∩Mn.
(3) For every u ∈ N , all the homogeneous components of u are in N .
(4) N has a homogeneous set of generators.

proof. We prove that (4) implies (2) and leave the rest of the proof as an exercise. Let
N∗ =

∑

n N ∩Mn and let S = {uλ} be a homogeneous set of generators for N . Note that
S ⊂ N∗. Thus

N∗ ⊆ N ⊆
∑

λ

Ruλ ⊆ N∗.

In particular, an ideal of a graded ring is homogeneous (graded) if and only if it has a
homogeneous set of generators. For example, if the ring k[x, y, z] is given the standard
grading, then (x2, x3 + y2z, y5) is homogeneous, while I = (x2 + y3z) is not. What about
(x2z, y3 + x3z)?

Exercise 2.2. Let R be a graded ring, M a graded R-module and {Nλ} a collection of
graded submodules of M . Prove that

∑

λ Nλ and ∩λNλ are graded submodules of M .

Exercise 2.3. Suppose I is a homogeneous ideal of a graded ring R. Prove that
√

I is
homogeneous.

Exercise 2.4. Let R be a graded ring, M a graded R-module and N a graded submodule
of M . Prove that (N :R M) = {r ∈ R | rM ⊆ N} is a homogeneous ideal of R. In
particular, this shows that AnnR M = (0 :R M) is homogeneous.

Exercise 2.5. Prove that every graded ring has homogeneous prime ideals.

Proposition 2.2. Let R be a graded ring, M a graded R-module and N a graded submod-
ule of M . Then M/N is a graded R-module, where

(M/N)n = (Mn + N)/N

= {m + N | m ∈ Mn}.

proof. Clearly, {(M/N)n}n is a family of subgroups of M/N and Rk · (M/N)n = (Rk ·
Mn + N)/N ⊆ (Mn+k + N)/N = (M/N)n+k. Now, if u ∈ M and u =

∑

n un where
un ∈ Mn for each n, then u + N =

∑

n(un + N). Thus M/N =
∑

n(M/N)n. Finally,
suppose

∑

n(un + N) = 0 + N in M/N , where un ∈ Mn for each n. Then
∑

n un ∈ N and
since N is a graded submodule, un ∈ N for each n. Hence un + N = 0 + N for all n and
so M/N =

∑

n(M/N)n is an internal direct sum.

Exercise 2.6. Prove that if I is a homogeneous ideal of a graded ring R then R/I is a
graded ring.
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Exercise 2.7. Let R be a graded ring and N ⊆ M graded R-modules. Prove that M = N
if and only if Mp = Np for all homogeneous prime ideals p of R.

Exercise 2.8. Let R be a graded ring and M a homogeneous maximal ideal of R. Prove
that M = · · ·R−2 ⊕R−1 ⊕m⊕ R1 ⊕ R2 · · · where m is a maximal ideal of R0.

Exercise 2.9. Let R be a nonnegatively graded ring and I0 an ideal of R0. Prove that
I = I0 ⊕ R1 ⊕ R2 ⊕ · · · is an ideal of R. Also, show that M is a homogeneous maximal
ideal of R if and only if M = m⊕ R1 ⊕ R2 ⊕ · · · for some maximal ideal m of R0.

Exercise 2.10. Let R be a nonnegatively graded ring and N ⊆ M graded R-modules.
Prove that M = N if and only if Mm = Nm for every homogeneous maximal ideals m of
R.

Exercise 2.11. Let M be a graded module and I a homogeneous ideal of R. Prove that
IM is a graded submodule of M and that M/IM is a graded R/I-module.

Exercise 2.12. Let R be a nonnegatively graded ring and M = ⊕Mn a graded R-module.
For any integer k, let M≥k = ⊕n≥kMn. Prove that M≥k is a graded submodule of M . In
particular, this shows that R+ = R≥1 is a homogeneous ideal of R.

Definition 2.2. Let R be a graded ring and M, N graded R-modules. Let f : M 7→ N be
an R-module homomorphism. Then f is said to be graded or homogeneous of degree d if
f(Mn) ⊆ Nn+d for all n.

As an elementary example of a graded homomorphism, let M be an R-module and
r ∈ Rd. Define µr : M 7→ M by µr(m) = rm for all m in M . Then µr is a graded
homomorphism of degree d.

Remark 2.1. If f : M 7→ N is a graded homomorphism of degree d, then f : M(−d) 7→ N
is a degree 0 homomorphism.

Let M be a graded R-module. We’ll construct a homogeneous map of degree 0 from
a graded free R-module onto M . Let {mλ} be a homogeneous set of generators for M ,
where deg mλ = nλ. For each λ, let eλ be the unit element of R(−nλ). Then the R-module
homorphism f : ⊕λ R(−nλ) 7→ M determined by f(eλ) = mλ for all λ is a degree 0 map
of a graded free module onto M .

Exercise 2.13. Prove that if f : M 7→ N is a graded homorphism of graded R-modules
then ker(f) is a graded submodule of M and im(f) is a graded submodule of N .

Exercise 2.14. Let C. be a complex of graded R-modules with homogeneous maps. Prove
that the homology modules Hi(C.) are graded for all i.

Definition 2.15. Let R and S be graded rings and f : R 7→ S a ring homomorphism.
Then f is called a graded or homogeneous ring homorphism if f(Rn) ⊆ Sn for all n.
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Remark 2.2. Recall that any ring homomorphism f : R 7→ S induces an R-module struc-
ture on S via r · s = f(r) · s for all r ∈ R and s ∈ S. If R and S are graded, then f is
homogeneous if and only if the grading for S is an R-module grading.

Let R = k[x, y] have the standard grading (where k is a field). Then the ring homor-
phism f : R 7→ R determined by f(x) = x + y and f(y) = x (i.e., f(g(x, y)) = g(x + y, x))
is a graded ring homomorphism, but the ring map h : R 7→ R defined by h(x) = x2 and
h(y) = xy is not graded, as h(Rn) ⊂ R2n. However, we can make h into a graded homo-
morphism as follows: let S = k[x, y] where deg x = deg y = 2. Then h : S 7→ R as defined
above is now graded.

As another example, define a ring map f : k[x, y, z] 7→ k[t3, t4, t5] by f(x) = t3, f(y) = t4

and f(z) = t5. If we set deg t = 1, deg x = 3, deg y = 4 and deg z = 5 then f is
homogeneous.

Definition 2.4. Let R be a graded ring. We say two graded R-modules M and N
are isomorphic as graded modules if there exists a degree 0 isomorphism from M to N .
Likewise, two graded rings R and S are said to be isomorphic as graded rings if there exists
a homogeneous ring isomorphism between them.

Exercise 2.15. Let R be a ring, I an ideal of R and S = R[It]. Prove that IS ∼= S+(1)
as graded S-modules and S/IS ∼= grI(R) as graded rings.

Exercise 2.16. Let R be a nonnegatively graded ring such that R = R0[R1] and let
I = R+. Prove that grI(R) ∼= R as graded rings.

§3. Primary decompositions of graded submodules

Definition 3.1. Suppose M is a graded R-module and N an R-submodule of M . We
denote by N∗ the R-submodule of M generated by all the homogeneous elements contained
in N . Clearly, N∗ is the largest homogeneous submodule of M contained in N .

Exercise 3.1. Let M be a graded R-module and {Nλ}λ a family of submodules of M .
Prove that ∩N∗

λ = (∩Nλ)∗. Also, show that it is not necessarily true that
∑

N∗
λ =

(
∑

Nλ)∗.

Exercise 3.2. Let R be a graded ring, M a graded R-module and N a submodule of M .
Prove that

√

AnnR M/N∗ = (
√

AnnR M/N)∗

Theorem 3.1. Let R be a graded ring and M a graded R-module.

(1) If p is a prime ideal of R, so is p∗.
(2) If N is a p-primary submodule of M then N ∗ is p∗-primary.

proof. We begin by showing that if N is primary then so is N ∗. By passing to the module
M/N∗, we may assume N∗ = 0. So suppose r ∈ R is a zero-divisor on M . We need to
show r is nilpotent on M . Let n be the number of (non-zero) homogeneous components
of r. We’ll use induction on n to show r ∈

√
AnnR M . If n = 0 then r = 0 and there’s

nothing to show. Suppose n > 0. Let x ∈ M \ {0} such that rx = 0 and let rk and xt be
7



the homogeneous components of r and x (respectively) of highest degree. Then rkxt = 0
and since N∗ = 0, xt /∈ N . Thus rk is a zero-divisor on M/N . Since N is primary, rk is
nilpotent on M/N and so re

kM ⊆ N for some integer e ≥ 1. But since re
kMn ⊆ N for each

n and N∗ = 0, we conclude that re
kM = 0. Thus, rk ∈

√
AnnR M .

Now, choose m such that rm
k x = 0 but rm−1

k x 6= 0. Let x′ = rm−1
k x and r′ = r − rk.

Then r′x′ = rx′ − rkx′ = 0 and so r′ is a zero-divisor on M with one less homogeneous
component than r. By induction, r′ ∈

√
AnnR M and so r = r′ + rk ∈

√
AnnR M . This

proves that N∗ is primary. Moreover, if N is primary to p =
√

AnnR M/N then, using

Exercise 3.2, N∗ is primary to
√

AnnR M/N∗ = p∗. This completes the proof of (2).
To prove (1), apply part (2) to M = R and N = p and use the fact that the radical of

a primary ideal is prime.

Corollary 3.1. Let R be a graded ring and I a homogeneous ideal. Then every minimal
prime over I is homogeneous. In particular, every minimal prime of the ring is homoge-
neous.

proof. If p ⊇ I then p∗ ⊇ I. So if p is minimal over I then p = p∗.

Exercise 3.3. Let R be a graded ring and f =
∑

fn (where fn ∈ Rn) an element of R
such that f0 is not in any minimal prime of R. Prove that f is a unit if and only if f0 is a
unit in R0 and fn is nilpotent for all n 6= 0.

Exercise 3.4. Let R be a graded ring which has a unique maximal ideal. Prove that R0

has a unique maximal ideal and every element in Rn (n 6= 0) is nilpotent. (Hint: first show
that the maximal ideal of R is homogeneous and then apply the Exercise 3.3.

Corollary 3.2. Let M be a graded R-module and N a graded submodule. If N has a
primary decomposition, then all the primary components of N can be chosen to be homo-
geneous. In particular, all the isolated primary components of N and all the associated
primes of M/N are homogeneous.

proof. Let N = Q1 ∩Q2 ∩ · · · ∩Qk be a primary decomposition of N . Then

N = N∗

= (Q1 ∩ · · · ∩Qk)∗

= Q∗
1 ∩ · · · ∩Q∗

k

is a primary decomposition of N with homogeneous primary submodules.

Exercise 3.5. Suppose R is a Noetherian graded ring and N ⊂ M finitely generated
graded R-modules. Prove that if p ∈ AssR(M/N) then p = (N :R x) for some homogeneous
element x ∈ M \N .

§4. Noetherian and Artinian properties

Exercise 4.1. Let R be a graded ring, M a graded R-module and N an R0-submodule
of Mn for some n. Prove that RN ∩Mn = N .

8



Lemma 4.1. Let R be a graded ring and M a Noetherian (Artinian) graded R-module.
Then Mn is a Noetherian (respectively, Artinian) R0-module for all n.

proof. Let N1 ⊆ N2 ⊆ N3 ⊆ · · · be an ascending chain of R0-submodules of Mn. Then
RN1 ⊆ RN2 ⊆ RN3 ⊆ · · · is an ascending chain of R-submodules of M and so must
stabilize. Contracting back to Mn and using the above exercise, we see that the chain
N1 ⊆ N2 ⊆ · · · stabilizes. A similar argument works if M is Artinian.

Theorem 4.1. A graded ring R is Noetherian if and only if R0 is Noetherian and R is
finitely generated (as an algebra) over R0

proof. If R0 is Noetherian and R is a f.g. R0-algebra then R is Noetherian by the Hilbert
Basis Theorem.

Suppose R is Noetherian. By Lemma 4.1, R0 must also be Noetherian. We need to
prove that R is f.g. over R0. Let R− = ⊕n<0Rn and R+ = ⊕n>0Rn. We first show that
R0[R−] is finitely generated over R0. If R− = 0 then there is nothing to show. Otherwise,
let y1, . . . , yd ∈ R− be ideal generators for (R−)R. Since R− is a homogeneous ideal we
may assume that these generators are homogeneous. Let −k = min{deg y1, . . . , deg yd}
(k > 0). Let N = R−k ⊕R−k+1 ⊕ · · · ⊕R−1. By the lemma, N is finitely generated as an
R0-module, so let x1, . . . , xt be homogeneous generators for N as an R0-module. Clearly,
(x1, . . . , xt)R = (y1, . . . , yd)R = (R−)R.

We claim that R0[R−] = R0[x1, . . . , xt]. Let S = R0[R−] and T = R0[x1, . . . , xt]. We’ll
show by induction on n that S−n = T−n for all n ≥ 0. When n = 0 we have that S0 =
T0 = R0, so suppose n > 0. Let r ∈ S−n. If n ≤ k then r ∈ N = R0x1 + · · ·+ R0xt ⊆ T .
Suppose n > k. Since r ∈ R−R = (x1, . . . , xt)R, there exists homogeneous elements
u1, . . . , ut ∈ R such that r =

∑

uixi. Therefore, deg ui + deg xi = deg r = −n for all i.
Since −n < deg xi < 0 for all i, we see that −n < deg ui < 0 for all i. By the inductive
hypothesis, ui ∈ T for all i. Hence r =

∑

uixi ∈ T and hence S−n = T−n.
Let A = R0[R−]. We now claim that R is finitely generated over A. To show this,

let z1, . . . , zm ∈ R+ be homogeneous ideal generators for (R+)R. By using an argument
similar to the one above (for R0[R−]) one can prove that R = A[z1, . . . , zm]. Since R is
f.g. over A and A is f.g. over R0, we see that R is f.g. over R0. This completes the proof.

Exercise 4.2. A nonnegatively graded ring R is Noetherian if and only if R0 is Noetherian
and R+ is a f.g. ideal.

Exercise 4.3. Let R be a graded ring. Prove that R is Noetherian if and only if R satisfies
the ascending chain condition on homogeneous ideals. (Hint: use that (R−)R and (R+)R
are f.g. ideals.)

Exercise 4.4. Let R be a nonnegatively graded ring which has a unique homogeneous
maximal ideal M . Prove that R is Noetherian if and only if RM is Noetherian.

Exercise 4.5. Let R be a Noetherian ring and I an ideal of R. Prove that R[It] and
grI(R) are Noetherian. Also, give an example of a ring R and an ideal I such that grI(R)
is Noetherian but R[It] is not.
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Lemma 4.2. Let R be a graded ring and M a graded R-module. Then M is simple as an
R-module if and only if M is simple as an R0-module.

proof. Suppose M is simple as an R-module. Then M ∼= R/n for some homogeneous
maximal ideal n. By Exercise 2.8, n = · · · ⊕ R−2 ⊕ R−1 ⊕ m ⊕ R1 ⊕ R2 ⊕ · · · for some
maximal ideal m of R0. Thus M ∼= R/n ∼= R0/m and so M is simple as an R0-module.
The converse is trivial.

If M is an R-module, we denote the length of M as an R-module by λR(M) (or simply
by λ(M) if there is no ambiguity about the underlying ring.)

Lemma 4.3. Let R be a graded ring and M a graded R-module such that λR(M) = n.
Then there exists chain of submodules of M

M = M0 ⊃ M1 ⊃ · · · ⊃ Mn−1 ⊃ Mn = (0)

such that Mi/Mi+1 is simple and Mi is graded for all i.

proof. If n = 0, 1 the result is trivial, so suppose n > 1. By induction, it is enough to
show there exists a non-zero proper graded submodule of M . Let x ∈ M be a non-zero
homogeneous element. If Rx 6= M , we’re done, so suppose Rx = M . Then M ∼= R/I(d)
(as graded R-modules), where I = (0 :R x). Thus, λR(R/I) = n and so R/I is Artinian.
Thus, all the maximal ideals of R/I are homogeneous (since they are minimal). If the only
maximal ideal of R/I is (0), then n = λ(R/I) = 1, a contradiction. Thus, there exists a
non-zero homogeneous element r ∈ R \ I such that r + I is not a unit in R/I. Set y = rx
and N = Ry. Then N is a non-zero proper graded submodule of M .

Theorem 4.2. Let R be a graded ring and M a graded R-module. Then

λR(M) = λR0
(M)

=
∑

n

λR0
(Mn).

proof. If λR(M) = ∞ the λR0
(M) = ∞, so suppose λR(M) = n. Then by Lemma 4.3

there exists a composition series

M = M0 ⊃ M1 ⊃ · · · ⊃ Mn−1 ⊃ Mn = (0)

where Mi/Mi+1 are graded simple R-modules for all i. By Lemma 4.2, these modules are
simple R0-modules as well. Hence, λR0

(M) = n.

Corollary 4.1. Let R be a graded ring and M a graded R-module. Then M has finite
length as an R-module if and only if each Mn has finite length as an R0-module and Mn = 0
for all but finitely many n.

proof. Immediate from Theorem 4.2.
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Corollary 4.2. A graded ring R is Artinian if and only if Rn is an Artinian R0-module
for all n and Rn = 0 for all but finitely many n.

proof. A ring is Artinian if and only if it has finite length.

We remark that this corollary does not hold for modules, as the following example
illustrates:

Example 4.1. Let k be a field and R = k[x] where x is an indeterminate of degree 1.
Then Rx = k[x−1, x] and R is a graded R-submodule of Rx. Let M = Rx/R. We claim
that M is an Artinian R-module and Mn 6= 0 for all n < 0.

Note that

M = k[x−1, x]/k[x]

= · · · ⊕ kx−n ⊕ kx−n+1 ⊕ · · · ⊕ kx−1

Hence, Mn 6= 0 for all n < 0. It is easy to see that if N is a submodule of M and
a−nx−n + · · · + a−1x

−1 ∈ N where a−n 6= 0 then {x−n, . . . , x−1} ⊂ N . Hence, every
proper submodule of M is of the form kx−n ⊕ · · · ⊕ kx−1 for some n. Thus M is Artinian
(but not Noetherian).

Exercise 4.6. Let k be a field and R = k[x, y, z]/(x2, y2, z3). Find λ(R).

Exercise 4.7. Let R be a nonnegatively graded ring. Prove that R is Artinian if and
only if R satisfies the descending chain condition on homogeneous ideals. Is this true for
Z-graded rings?

Exercise 4.8. Let R be a nonnegatively Noetherian graded ring such that R0 is Artinian
and R+ is a nilpotent ideal. Prove that R is Artinian. Give an example to show this is
false if the Noetherian hypothesis is removed.

Exercise 4.9. Let R be a nonnegatively graded ring such that R0 has a unique maximal
ideal. Let M be the unique homogeneous maximal ideal of R. Prove that R is Artinian if
and only if RM is Artinian.

Exercise 4.10. Let R be a nonnegatively graded ring and M an Artinian graded R-
module. Prove that Mn = 0 for all n sufficiently large.

§5. Height and dimension in graded rings

Exercise 5.1. Let R be a reduced graded ring where R0 is a field and let u ∈ Rn \ {0}
with n 6= 0. Prove that u is transcendental over R0.

Lemma 5.1. Let R be a graded ring which is not a field and suppose the only homogeneous
ideals of R are (0) and R. Then R = k[t−1, t] where k = R0 is a field and t is a homogeneous
element of R transcendental over k.

proof. Since every non-zero homogeneous element of R is a unit, all the non-zero elements
of R0 are units and so R0 is a field. As R is not a field, there exist some t ∈ Rn (n 6= 0)
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such that t 6= 0. Since t is a unit, t−1 ∈ R−n and so without loss of generality, we may
assume that n is the smallest positive integer such that Rn 6= 0. By Exercise 5.1, we know
t is transcendental over R0.

We’ll show that every homogeneous element in Rm is of the form cti for some i. This
is trivially true when 0 ≤ m < n. So suppose m ≥ n and let u ∈ Rm. Then t−1u ∈ Rm−n

and 0 ≤ m − n < m, so by induction t−1u = cti for some i. Multiplying both sides by
t, we’re done. A similar argument works for homogeneous elements of negative degrees.
Thus R = R0[t

−1, t].

Lemma 5.2. Let R be a graded ring and P a non-homogeneous prime ideal of R. Then
there are no prime ideals properly between P and P ∗.

proof. By passing to R/P ∗ we may assume that R is a domain and that P ∗ = 0. Let W be
the set of all non-zero homogeneous elements of R. Since P ∩W = ∅, PRW is a non-zero
prime ideal of RW . Since every non-zero homogeneous element of RW is a unit, we have by
the above lemma that RW = k[t−1, t]. Since dim k[t−1, t] = 1 there are no primes properly
between (0) and PRW . Hence, there are no primes of R properly between (0) and P .

Theorem 5.1. (Matijevic-Roberts) Let R be a graded ring and P a non-homogeneous
prime ideal of R. Then ht(P ) = ht(P ∗) + 1.

proof. If ht(P ∗) = ∞ then the result is trivial, so assume ht(P ∗) < ∞. We’ll use induction
on n = ht(P ∗). If n = 0 we are done by Lemma 5.2. Suppose n > 0 and let Q be any
prime ideal properly contained in P . It suffices to show that ht(Q) ≤ n. Now Q∗ ⊆ P ∗. If
Q∗ = P ∗ then Q = P ∗ (by Lemma 5.2) and we’re done. If Q∗ 6= P ∗ then ht(Q∗) ≤ n− 1.
Hence ht(Q) ≤ n by induction.

Corollary 5.1. Let R be a graded ring and M a finitely generated graded R-module. Let
p ∈ Supp M , where p is a not homogeneous. Then dimMp = dimMp∗ + 1.

proof. By passing to R/ AnnR M we may assume AnnR M = 0. Thus, dim Mp = dim Rp =
ht(p) for any p ∈ Supp M . The result now follows from Theorem 5.1.

Corollary 5.2. Let R be a nonnegatively graded ring. Then dimR = max{ht(M) |
M a homogeneous maximal ideal}.
proof. Let N be a maximal ideal of R. Then ht(N ∗) = ht(N∗) − 1 by the Theorem 5.1.
Since N∗ is homogeneous and R is nonnegatively graded, N ∗ is contained in a homogeneous
maximal ideal M (see Exercise 2.9). Since M 6= N ∗, ht(M) ≥ ht(N∗) + 1 = ht(N).

Proposition 5.1. Let R be a Noetherian graded ring and P a homogeneous prime ideal
of height n. Then there exists a chain of distinct homogeneous prime ideals

P0 ⊂ P1 ⊂ P2 · · · ⊂ Pn = P.

proof. The result is trivially true if n = 0 so assume n > 0. Let Q be a prime ideal
contained in P such that ht(Q) = n − 1. If Q is homogeneous we’re done by induction,
so suppose Q is not homogeneous. Then ht(Q∗) = n − 2. By passing to R/Q∗ we can
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assume R is a graded domain and P is a homogeneous prime of height two. It is enough
to show there exist a homogeneous prime ideal of height one contained in P . Let f ∈ P be
a non-zero homogeneous element of P . Then P is not minimal over (f) by KPIT, so let P1

be a prime contained in P which contains (f). Then P1 is minimal over (f) (as ht(P ) = 2)
and hence homogeneous.

Corollary 5.2. Let R be a nonnegatively graded Noetherian ring. Then

dimR = sup
n
{P0 ⊂ P1 ⊂ · · · ⊂ Pn | P0, . . . , Pn are homogeneous primes of R}.

proof. This follows from Corollary 5.2 and Proposition 5.1.

Exercise 5.2. Let R be a Noetherian graded ring and I an ideal of R. Prove that
ht(I)− 1 ≤ ht(I∗) ≤ ht(I).

The following result can be found in Appendix V of Zariski-Samuel, Vol II:

Proposition 5.2. (Graded version of prime avoidance)Let R be a graded ring and I a ho-
mogeneous ideal generated by homogeneous elements of positive degree. Suppose P1, . . . , Pn

are homogeneous prime ideals, none of which contain I. Then there exists a homogeneous
element x ∈ I with x /∈ Pi for all i.

proof. Without loss of generality, we may assume there are no containment relations among
the ideals P1, . . . , Pn. Thus for each i, Pi does not contain the homogeneous ideal P1 ∩
· · · ∩ P̂i · · · ∩Pn. Hence, there exists a homogeneous element ui /∈ Pi such that ui ∈ Pj for
all j 6= i. Also, for each i there exists a homogeneous element wi ∈ I \Pi of positive degree.
By replacing wi by a sufficiently large power of wi, we may assume that deg uiwi > 0. Let
yi = uiwi. Then yi /∈ Pi but yi ∈ I ∩ P1 ∩ · · · ∩ P̂i ∩ · · · ∩ Pn. By taking powers of yi, if
necessary, we can assume that deg yi = deg yj for all i, j. Now let x = y1 + · · ·+ yn. Then
x is homogeneous, x ∈ I and x /∈ Pi for all i.

Remark 5.1. We note that Proposition 5.2 is false without the assumption that I is
generated by elements of positive degree. For example, let S = Z(2) and R = S[x] where
deg x = 1. Let I = (2, x)R, P1 = (2)R and P2 = (x)R. Then there does not exist a
homogeneous element x ∈ I such that x /∈ P1 ∪ P2.

Lemma 5.3. Let (R, m) be a local ring such that R/m is infinite. Let M be an R-module
and Q, N1, . . . , Ns submodules of M such that Q is not contained in any Ni. Then there
exists x ∈ Q such that x /∈ Ni for i = 1, . . . , s.

proof. Suppose by way of contradiction that Q ⊆ ∪iNi. For each i = 1, . . . , s let xi ∈ Q\Ni.
By replacing Q with Rx1 + · · ·+ Rxs and Ni with Ni ∩ Q, we may assume Q is finitely
generated and Q = ∪iNi. Then

Q/mQ =
⋃

i

(Ni + mQ)/mQ.

Since a vector space over an infinite field is not the union of a finite number of proper
subspaces, we must have that Q/mQ = (Ni + mQ)/mQ for some i. By Nakayama’s
lemma Q = Ni, a contradiction.
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Exercise 5.4. Let R be a nonnegatively graded ring such that R0 is local with infinite
residue field. Let I, J1 . . . , Js be homogeneous ideals of R such that I is not contained in
any Ji. Prove that there exists u ∈ I such that u /∈ Ji for all i.

The following corollary allows us in certain situations to avoid ideals which are not even
prime or homogeneous:

Corollary 5.3. Let R be a graded ring such that R0 is local with infinite residue field.
Let I be an ideal of R generated by homogeneous elements of the same degree s. Suppose
J1, . . . , Jn are ideals of R, none of which contain I. Then there exists a homogeneous
element x ∈ I of degree s such that x /∈ Ji for all i.

proof. Clearly I ∩ Rs is not contained in Ji ∩ Rs for any i, else I ⊂ Ji. Applying Lemma
5.3, there exists x ∈ I ∩Rs such that x /∈ Ji for all i.

Exercise 5.5. Give an example to show Corollary 5.3 may be false if the residue field of
R0 is not infinite.

Theorem 5.2. Let R be a Noetherian graded ring and P a homogeneous prime ideal of
height n. Suppose that either

(a) P is generated by elements of positive degree, or
(b) R0 is local with infinite residue field and P is generated by elements of the same

degree s.

Then there exist homogeneous elements w1, . . . , wn ∈ P such that P is minimal over
(w1, . . . , wn)R. Moreover, in case (b) we may choose w1, . . . , wn in degree s.

proof. If n = 0 the result is trivial, so we may assume that n > 0. Let Q1, . . . , Qn be the
minimal primes of R. Since P is not contained in any Qi, there exists a homogenous element
w1 ∈ P (of degree s in case (b)) such that w1 /∈ Qi for all i. Then ht(P/(w1)) = n − 1.
The result now follows by induction.

Corollary 5.4. Let R be a Noetherian nonnegatively graded ring with R0 Artinian and
local. Let M be the homogeneous maximal ideal and d = dimR = ht(M). Then there

exist homogeneous elements w1, . . .wd ∈ R+ such that M =
√

(w1, . . . , wd). If in addition
R = R0[R1] and the residue field of R0 is infinite, we can choose w1, . . . , wd to be in R1.

proof. Let m be the maximal ideal of R0. Since mR is nilpotent, we can pass to the
ring R/mR and assume that R0 is a field; i.e., M = R+. By Theorem 5.2, there exists
homogeneous elements w1, . . . , wd in R+ (or in R1 if the additional hypotheses are satisfied)
such that M is minimal over (w1, . . . , wd). As every prime minimal over (w1, . . . wd) is
homogeneous and hence contained in M , M is the only prime containing (w1, . . . , wd).

Thus, M =
√

(w1, . . . , wd).

Remark 5.2. We note that Corollary 5.4 is false if the hypothesis that R0 is Artinian is
removed. For example, let R = Z(2)[x]/(2x). Then dimR = 1 and M = (2, x)R, but there

does not exist a homogeneous element w ∈ R such that M =
√

(w).
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§6. Integral dependence and Noether’s normalization lemma

Exercise 6.1. Let A ⊆ B be rings and W a multiplicatively closed subset of A. Assume
that no element of W is a zero-divisor in B, so that we may consider B as a subring of
BW . Suppose f ∈ BW is integral over AW . Prove that there exists w ∈ W such that wf
is in B and integral over A.

Exercise 6.2. Let A ⊂ B be rings and x an indeterminate over B. Then a polynomial
f(x) ∈ B[x] is integral over A[x] if and only if all the coefficients of f(x) are integral over
A. (Hint: see Atiyah-Macdonald, page 68, exercise 9.)

Theorem 6.1. (Bourbaki) Let R be a graded subring of the graded ring S and let T be
the integral closure of R in S. Then T is a graded subring of S.

proof. Let t be an indeterminant over S. Define a ring homomorphism f : S 7→ S[t−1, t] as
follows: for s =

∑

n sn ∈ S let f(s) =
∑

n sntn. Now, suppose s =
∑

n sn ∈ S is integral
over R. We need to show each sn is integral over R. As f is a ring homomorphism and
f(R) ⊂ R[t−1, t], we see that f(s) is integral over R[t−1, t]. Let W be the multiplicatively
closed subset {tn}n≥0 of R[t]. Then S[t−1, t] = S[t]W and R[t−1, t] = R[t]W . By Exercise
6.1, there exists tn ∈ W such that tnf(s) is in S[t] and integral over R[t]. By Exercise 6.2,
this means that all the coefficients of tnf(s) (which are the sn’s) are integral over R.

Theorem 6.2. Let R = R0[R1] be a Noetherian graded ring and w1, . . . , wd ∈ R1. The
following statements are equivalent:

(1) R+ ⊆
√

(w1, . . . , wd).
(2) (R+)n+1 = (w1, . . . , wd)(R+)n for some n ≥ 0.
(3) R is integral over R0[w1, . . . , wd]

proof. (1) ⇒ (2) : As R+ is finitely generated, (R+)n+1 ⊆ (w1, . . .wd) for some n. Let
f ∈ Rn+1. Then f = r1w1 + · · ·+ rdwd for some ri ∈ Rn. Thus, f ∈ (w1, . . . , wd)Rn and
so Rn+1 ⊆ (w1, . . . , wd)(Rn). Since R+ = R1R, (R+)m = RmR for any m ≥ 0. Thus,
(R+)n+1 ⊆ (w1, . . . , wd)(R+)n.

(2) ⇒ (3) : Since R = R0[R1], it is enough to show that any element u ∈ R1 is integral
over R0[w1, . . . , wd]. By (2), uRn ⊆ Rn+1 = Rnw1 + · · ·+ Rnwd for some n ≥ 0. Since R
is Noetherian, Rn is finitely generated as an R0-module, so let f1, . . . , ft be R0-generators
for Rn. Then for each i, ufi =

∑

j rijfj where rij ∈ R0w1 + · · ·+ R0wd for all i, j. If we
set

A =









u− r11 −r12 . . . −r1t

−r21 u− r22 . . . −r2t
...

...
. . .

...
−rt1 −rt2 . . . u− rtt









then

A ·









f1

f2
...
ft









= 0.
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Multiplying by both sides by adj(A), we get that det(A)Rn = 0. Since un ∈ Rn we see
that det(A)un = 0. This equation shows that u is integral over R0[w1, . . . , wd].

(3) ⇒ (1) : It suffices to show that R1 ⊂
√

(w1, . . . , wd). So let u ∈ R1. As u in integral
over R0[w1, . . . , wd], there exists an equation of the form

un + r1u
n−1 + · · ·+ rn = 0

where r1, . . . , rn ∈ R0[w1, . . . , wd]. Furthermore, since u is homogeneous of degree 1, we
may assume each ri is homogeneous of degree i. Thus r1, . . . , rn ∈ (w1, . . . , wd)R and so

un ∈ (w1, . . . , wd)R. Hence R1 ⊂
√

(w1, . . . , wd).

Corollary 6.1. (Graded version of Noether’s normalization lemma) Let R = R0[R1] be
a d-dimensional Noetherian graded ring such that R0 is an Artinian local ring and the
residue field of R0 is infinite. Then there exists T1, . . . , Td ∈ R1 such that R is integral
over R0[T1, . . . , Td]. Moreover, if R0 is a field then R0[T1, . . . , Td] is isomorphic to a
polynomial ring in d variables over R0.

proof. By Corollary 5.4, there exists T1, . . . , Td ∈ R1 such that R+ ⊆
√

(T1, . . . , Td).
Hence, by the above theorem, R is integral over R0[T1, . . . , Td]. The last statement follows
from the fact that dim R0[T1, . . . , Td] = dimR = d.

§7. Hilbert functions

A graded R module M is said to be bounded below if there exists k ∈ Z such that
Mn = 0 for all n ≤ k.

Definition 7.1. Let R be a graded ring and M a graded R-module. Suppose that
λR0

(Mn) < ∞ for all n Define the Hilbert function HM : Z 7→ Z of M by

HM (n) = λR0
(Mn)

for all n ∈ Z. If in addition M is bounded below, we define Poincaré series (or Hilbert
series ) of M to be

PM (t) =
∑

n∈Z

HM (n)tn

as an element of Z((t)).

If M is a graded R-module such that λR0
(Mn) < ∞ for all n, we say that M “has

a Hilbert function” or that the Hilbert function of M “is defined.” Similarly, if M is
bounded below and has a Hilbert function, we say that M “has a Poincaré series.” The
most important class of graded modules which have Hilbert functions are those which
are finitely generated over a graded ring R, where R is Noetherian and R0 is Artinian.
On the other hand, if M is a f.g. graded R-module which has a Hilbert function, then
R0/ AnnR0

M is Artinian. In fact:
16



Exercise 7.1. Let R be a graded ring and M a f.g. graded R-module which has a Hilbert
function. Then R/ AnnR M has a Hilbert function.

The most important class of graded modules which have Poincaré series are those that
are finitely generated over a nonnegatively graded Noetherian ring in which R0 is Artinian.
Conversely, if R is a graded ring and M is a f.g. graded R-module which has a Poincaré
series, then R/ AnnR(M) is bounded below. Moreover, we have the following:

Exercise 7.2. Let R be a graded ring and M a finitely generated graded R-module which
has a Poincaré series. Prove that R/ AnnR(M) has a Poincaré series and that R/

√
AnnR M

is nonnegatively graded.

Exercise 7.3. Let R be a graded ring and

0 −→ Mk −→ Mk−1 −→ · · · −→ M0 −→ 0

an exact sequence of graded R-modules with degree 0 maps. If each Mi has a Poincaré
series, prove that

∑

i(−1)iPMi
(t) = 0.

The following Proposition gives an example of a Hilbert function which, although very
simple, provides an important prototype for all Hilbert functions.

Proposition 7.1. Let R = k[x1, . . . , xd] be a polynomial ring over a field k and deg xi = 1
for i = 1, . . . , d. Then

HR(n) =

(

n + d− 1

d− 1

)

for all n ≥ 0.

proof. We use induction on n + d. The result is obvious if n = 0 or d = 1, so suppose
n > 0 and d > 1. Let S = k[x1, . . . , xd−1] and consider the exact sequence

0 −→ Rn−1
xd−→ Rn −→ Sn −→ 0.

Then

HR(n) = dimk Rn = dimk Rn−1 + dimk Sn

=

(

n + d− 2

d− 1

)

+

(

n + d− 2

d− 2

)

=

(

n + d− 1

d− 1

)

.
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Theorem 7.1. Let R be a Noetherian graded ring and M a finitely generated graded R-
module which has a Poincaré series. Then PM (t) is a rational function in t. In particular,
if R = R0[x1, . . . , xk] where deg xi = si 6= 0 then

PM (t) =
g(t)

∏k
i=1(1− tsi)

where g(t) ∈ Z[t−1, t].

proof. If k = 0 then R = R0. As M is finitely generated, this means that Mn = 0 for all
but finitely many n. Thus, PM (t) ∈ Z[t−1, t]. Suppose now that k > 0. Then consider the
exact seqence

0 −→ (0 :M xk)(−sk) −→ M(−sk)
xk−→ M −→ M/xkM −→ 0.

For each n, we have that

λ(Mn)tn − λ(Mn−sk
)tn = λ((M/xkM)n)tn − λ((0 :M xk)n−sk

)tn.

Summing these equations over all n ∈ Z, we obtain

PM (t)− tskPM (t) = PM/xkM (t)− tskP(0:Mxk)(t).

Now, as xkM/xkM = 0 and xk(0 :M xk) = 0, M/xkM and (0 :M xk) are modules over
R0[x1, . . . , xk−1]. As M is bounded below, so are M/xkM and (0 :M xk). By induction,
PM/xkM (t) and P(0:M xk) are of the required form, and so there exists g1(t), g2(t) ∈ Z[t−1, t]
such that

(1− tsk)PM (t) =
g1(t)

∏k−1
i=1 (1− tsi)

− tskg2(t)
∏k−1

i=1 (1− tsi)
.

Dividing by (1− tsk), we obtain the desired result.

An important special case is given by the following corollary:

Corollary 7.1. Let R = R0[x1, . . . , xk] be a Noetherian graded ring where R0 is Artinian
and deg xi = 1 for all i. Let M be a non-zero f.g. graded R-module. Then there exists a
unique integer s = s(M) with 0 ≤ s ≤ k such that

PM (t) =
g(t)

(1− t)s

for some g(t) ∈ Z[t−1, t] with g(1) 6= 0.

proof. By Theorem 7.1, we have that PM (t) = f(t)
(1−t)k for some f(t) ∈ Z[t−1, t]. We can

write f(t) = (1− t)mg(t) where m ≥ 0 and g(1) 6= 0. If we let s = k−m then we are done
provided s ≥ 0. But if s < 0 then PM (t) ∈ Z[t−1, t] and PM (1) = 0. Hence

∑

n λ(Mn) = 0
and so M = 0, contrary to our assumption. The uniqueness of s and g(t) is clear.
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Exercise 7.4. Let R be a graded ring and M a graded R-module which has a Poincaré
series. Let x ∈ Rk (k 6= 0). Prove that PM/xM (t) = (1− tk)PM (t) if and only if x is not a
zero-divisor on M .

Exercise 7.5. Let R = k[x1, . . . , xd] be a polynomial ring over a field with deg xi = ki > 0
for i = 1, . . . , d. Prove that

PR(t) =
1

∏d
i=1(1− tki)

.

Exercise 7.6. Prove that for any integer d ≥ 1

1

(1− t)d
=

∞
∑

n=0

(

n + d− 1

d− 1

)

tn.

Let k be a positive integer. Define a polynomial
(

x
k

)

∈ Q[x] by
(

x

k

)

=
x(x− 1) · · · (x− k + 1)

k!
.

Further, define
(

x
0

)

= 1 and
(

x
−1

)

= 0. Thus, deg
(

x
k

)

= k. (We adopt the convention that

the degree of the zero polynomial is −1.)

Proposition 7.2. Let M be a graded R-module having a Poincaré series of the form

PM (t) =
f(t)

(1− t)s

for some s ≥ 0 and f(t) ∈ Z[t−1, t] with f(1) 6= 0. Then there exists a unique polynomial
QM (x) ∈ Q[x] of degree s− 1 such that HM (n) = QM (n) for all sufficiently large integers
n.

proof. Let f(t) = alt
l + al+1t

l+1 + · · ·+ amtm. By exercise 7.6,

PM (t) =
f(t)

(1− t)s

= f(t) ·
∞
∑

n=0

(

n + s− 1

s− 1

)

tn.

Comparing coefficients of tn, we see that for n ≥ m

HM (n) =
m

∑

i=l

ai

(

n + s− i− 1

s− 1

)

.

Let QM (x) =
∑

i ai

(

x+s−i−1
s−1

)

. Then QM (x) is a polynomial Q[x] of degree at most s− 1

and QM (n) = HM (n) for all n sufficiently large. Note that the coefficient of xs−1 is
(al + · · ·+ am)/(s− 1)! = f(1)/(s− 1)! 6= 0. Thus deg QM (x) = s− 1.
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Definition 7.2. Let R be a graded ring and M a graded R-module which has a Hilbert
function HM (n). A polynomial QM (x) ∈ Q[x] is called the Hilbert polynomial of M if
QM (n) = HM (n) for all sufficiently large integers n

Corollary 7.2. Let R = R0[x1, . . . , xk] be a Noetherian graded ring where R0 is Artinian
and deg xi = 1 for all i. Let M be a non-zero finitely generated graded R-module. Then
M has a Hilbert polynomial QM (x) and deg QM (x) = s(M)− 1 ≤ k − 1.

proof. Immediate from Corollary 7.1 and Proposition 7.2.

Exercise 7.7. Let k be a field and R = k[x, y, z]/(x3−y2z) where deg x = deg y = deg z =
1. Find PR(t) and QR(x).

Exercise 7.8. Let R = k[x1, . . . , xd] be a polynomial ring over a field with deg xi = 1 for
all i. Suppose f1, . . . , fd are homogeneous elements in R+ which form a regular sequence
in R. Prove that

λ(R/(f1, . . . , fd)) =
d

∏

i=1

deg fi.

Definition 7.3. Let R be a graded ring and M a graded R-module. An element x ∈ R`

is said to be superficial (of order `) for M if (0 :M x)n = 0 for all but finitely many n.

Lemma 7.1. Let R be a nonnegatively graded ring which is finitely generated as an R0-
algebra and M a finitely generated graded R-module. Then for any k ≥ 1, Mn ⊆ (R+)kM
for n sufficiently large.

proof. First note that if Rn = 0 for n sufficiently large then Mn = 0 for n sufficiently
large. Now N = M/(R+)kM is a finitely generated S = R/(R+)k-module. If Sn = 0 for
n >> 0 then Nn = 0 for n >> 0 and we’re done. Hence, it suffices to prove the Lemma
in the case M = R. Let R = R0[y1, . . . , ys] where deg yi = di > 0 for i = 1, . . . , s. Let
p = k(d1 + · · ·+ds) and suppose u ∈ Rn for some n ≥ p. Then u is a finite sum of elements
of the form rya1

1 · · · yas
s , where r ∈ R and a1d1 + · · ·+asds = n. Since n ≥ k(d1 + · · ·+ds),

we must have that ai ≥ k for some i. Hence, rya1

1 · · · yas
s ∈ (R+)k.

The following Proposition generalizes a result in Zariski-Samuel, Vol II:

Proposition 7.3. Let R be a nonnegatively graded Noetherian ring and M a finitely
generated graded R-module. Then there exists a homogeneous element x ∈ R+ such that x
is superficial for M . Moreover, if R = R0[R1] and the residue field of R0 is infinite, then
we may choose x ∈ R1.

proof. Let

0 = Q1 ∩Q2 ∩ · · · ∩Qt

be a primary decomposition of 0 in M . Let Pi =
√

AnnR M/Qi be the prime ideal
associated to Qi. We can arrange the Qi’s so that R+ 6⊂ Pi for i = 1, . . . , s and R+ ⊆ Pi

for i = s + 1, . . . , t, where 0 ≤ s ≤ t.
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Since R+ 6⊂ P1 ∪ · · · ∪ Ps, there is a homogeneous element x ∈ R+ which is not in
P1 ∪ · · · ∪ Ps. Let ` = deg x. If the residue field of R0 is infinite and R = R0[R1], then we
may choose ` = 1 by Corollary 5.3.

We claim that x is superficial for M . As

R+ ⊆ Ps+1 ∩ · · · ∩ Pt

there exists k ∈ N such that

(R+)k ⊆ AnnR M/Qs+1 ∩ · · · ∩ AnnR M/Qt.

Therefore,
(R+)kM ⊆ Qs+1 ∩ · · · ∩Qt.

By Lemma 7.1, there exists N ∈ N such that Mn ⊆ (R+)kM for n ≥ N . Thus, for n ≥ N

Mn ⊆ Qs+1 ∩ · · · ∩Qt.

Now suppose u ∈ (0 :M x)n where n ≥ N . Then u ∈ Qi for i = s + 1, . . . , t. But since
xu ∈ Qi and x /∈ Pi for i = 1, . . . , s, we see that u ∈ Q1 ∩ · · · ∩Qs. Hence

u ∈ Q1 ∩ · · · ∩Qt = 0.

Lemma 7.2. Let R be a nonnegatively graded Noetherian ring and M a finitely generated
graded R-module such that dimM > dimR0. Then for any superficial element x ∈ R+ for
M

dim M/xM = dim M − 1.

proof. Without loss of generality, we may assume that AnnR M = 0. Then dimM/xM =
dim R/xR. Since R is nonnegatively graded, dim R = dim RN for some homogeneous
maximal ideal N of R by Corollary 5.1. Since x ∈ N ,

dimR/xR ≥ dim RN/xRN ≥ dimRN − 1 = dimR− 1.

So it is enough to show dim R/xR < dimR. Suppose not. Then there exists a minimal
prime P of R such that x ∈ P and dimR/P = dim R. As P is minimal over (0) = AnnR M ,
P ∈ AssR M . Hence P = (0 :R f) for some homogeneous element f ∈ M . As x ∈ P ,
f ∈ (0 :M x) and so certainly (R+)kf ∈ (0 :M x) for all k ≥ 1. Since (0 :M x)n = 0 for
large n, we see that (R+)kf = 0 for some k. Hence R+ ⊆ P and so

dimM = dimR = dimR/P ≤ dim R/R+ = dimR0,

a contradiction. Thus, dim R/xR < dim R.
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Theorem 7.2. Let R be a nonnegatively graded Noetherian ring with R0 Artinian local
and M a non-zero finitely generated graded R-module of dimension d. Then there exists
positive integers s1, . . . , sd and g(t) ∈ Z[t, t−1] where g(1) 6= 0 such that

PM (t) =
g(t)

∏d
i=1(1− tsi)

proof. We again use induction on d = dim M . If d = 0 then Mn = 0 for all but finitely
many n and thus g(t) = PM (t) ∈ Z[t, t−1]. Note g(1) = λ(M) 6= 0.

Suppose d > 0. Let x ∈ R+ be a superficial element for M and let sd = deg x. Consider
the exact sequence

0 −→ (0 :M x)n −→ Mn
x−→ Mn+sd

−→ (M/xM)n+sd
−→ 0.

Since length is additive on exact sequences, we get that

(*) λ(Mn+sd
)− λ(Mn) = λ((M/xM)n+sd

)− λ((0 :M x)n)

and so

λ(Mn+sd
)tn+sd − λ(Mn)tn+sd = λ((M/xM)n+sd

)tn+sd − λ((0 :M x)n)tn+sd .

Summing these equations up over all n, we get that

PM (t)− tsdPM (t) = PM/xM (t)− tsdP(0:M x)(t).

By Lemma 7.2, dim M/xM = d− 1 and since (0 :M x) has finite length, dim(0 :M x) = 0
or (0 :M x) = 0. Therefore, there exists g1(t), g2(t) ∈ Z[t, t−1] with g1(1) 6= 0 and positive
integers s1, . . . , sd−1 such that

(1− tsd)PM (t) =
g1(t)

∏d−1
i=1 (1− tsi)

+ tsdg2(t).

Thus,

PM (t) =
g1(t) + tsd

∏d−1
i=1 (1− tsi)g2(t)

∏d
i=1(1− tsi)

.

Let g(t) = g1(t) + tsd
∏d−1

i=1 (1 − tsi)g2(t). We need to show that g(1) 6= 0. If d > 1 then
g(1) = g1(1) 6= 0. If d = 1 then g(1) = g1(1)− g2(1) = λ(M/xM)− λ((0 :M x)). Suppose
λ(M/xM) = λ((0 :M x)). Using equation (*) above, we see that for n sufficiently large

λ(Mn+1) + · · ·+ λ(Mn+sd
) =

n
∑

i=−∞

λ(Mi+sd
)− λ(Mi)

=
n

∑

i=−∞

λ(M/xM)i+sd
−

n
∑

i=−∞

λ((0 :M x)n)

= λ(M/xM)− λ((0 :M x))

= 0.

Hence, λ(Mn) = 0 for n sufficiently large and thus dim M = 0, a contradiction.
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Remark 7.1. The above proof also shows that if M is nonnegatively graded then g(t) ∈
Z[t].

Corollary 7.3. Let R = R0[x1, . . . , xk] be a Noetherian graded ring with R0 Artinian local
and deg xi = 1 for all i. Let M be a non-zero finitely generated graded R-module. Then
s(M) = dimM . In particular, dim M ≤ k and deg QM (x) = dim M − 1.

proof. By Corollary 7.1 and Theorem 7.2,

PM (t) =
g(t)

∏d
i=1(1− tsi)

=
f(t)

(1− t)s
.

where f(1) · g(1) 6= 0, d = dim M and s = s(M). From this equation it is clear that s = d.
The last statement follows from Corollaries 7.1 and 7.2.

Suppose M is a graded R-module possessing a Hilbert polynomial QM (x). Since
QM (n) ∈ Z for sufficiently large n, it follows that QM (Z) ⊆ Z. It can be shown that
there exist unique integers ei = ei(M) for i = 0, . . . , d− 1 such that

QM (x) = e0

(

x + d− 1

d− 1

)

− e1

(

x + d− 2

d− 2

)

+ · · ·+ (−1)d−1ed−1.

The integers e0, . . . , ed−1 are called the Hilbert coefficients of M . The first coefficient, e0,
is called the multiplicity of M and is denoted e(M). In the case dim M = 0, e(M) is
defined to be λ(M). (See the first exercise below.)

In Exercises 7.9–7.13, R is a Noetherian graded ring such that R = R0[R1] and R0 is
Artinian local.

Exercise 7.9. Let M be a finitely generated graded R-module of dimension d. Show that
there exists a unique integer ed(M) such that

n
∑

i=−∞

λ(Mi) =
d

∑

i=0

(−1)iei(M)

(

n + d− i

d− i

)

for all sufficiently large integers n. Moreover, if d = 0 then e0(M) = λ(M).

Exercise 7.10. Let M be a f.g. graded R-module of positive dimension and x ∈ R+ a
superficial element for M . If dimM > 1 prove that

e(M/xM) = deg x · e(M).

If dimM = 1 prove that

e(M/xM) = λ(M/xM) = deg x · e(M)− λ((0 :M x)).
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Exercise 7.11. Let M be a non-zero f.g. graded R-module. Prove that e(M) > 0.

Exercise 7.12. Let M be a f.g. graded R-module of dimension d ≥ 2 and x ∈ R1 a
superficial element for M . Prove that ei(M/xM) = ei(M) for i = 1, . . . , d− 2.

Definition 7.3. Let (R, m) be a local ring and I an m-primary ideal. Applying Exercise
7.9 to the graded ring grI(R), we see that that the function hI(n) = λ(R/In) (called the
Hilbert function of I) coincides for large n with a polynomial qI(n) ∈ Q[n] (the Hilbert
polynomial of I). We often write qI(n) in the following form:

qI(n) =

d
∑

i=0

(−1)iei(I)

(

n + d− i− 1

d− i

)

,

where d = dim grI(R) (but see Theorem 7.3 below). The integers e0(I), . . . , ed(I) are
called the Hilbert coefficients of I.

Lemma 7.3. Let (R, m) be a local ring and I and J two m-primary ideals of R. Then
dim grI(R) = dim grJ(R).

proof. Without loss of generality, we may assume J = m. As I is m-primary there exists an
integer k such that mk ⊆ I. Then for all n, mkn ⊆ In ⊆ mn. Thus, for n sufficiently large,
qm(kn) ≤ qI(n) ≤ qm(n). Hence, dim grI(R) = deg qI (n) = deg qm(n) = dim grm(R).

Theorem 7.3. Let (R, m) be a local ring and I an m-primary ideal. Then dim grI(R) =
dim R.

proof. By Lemma 7.3, it is enough to prove the result in the case I is generated by a
system of parameters x1, . . . , xd, where d = dimR. Since grI(R) = R/I[x∗1, . . . , x

∗
d],

where x∗i is the image of xi in I/I2, we know by Corollary 7.3 that dim grI(R) ≤ d.
Let e = dim grI(R) and M the homogeneous maximal ideal of grI(R). By Corollary
5.4, there exists homogeneous elements w1, . . . , we ∈ grI(R) of positive degree such that

M =
√

(w1, . . . , we). Furthermore, by replacing the wi’s with appropriate powers of them,
we may assume that each wi has the same degree p. For each i, let ui ∈ Ip be such that
u∗i = wi. Then for n sufficiently large, In/In+1 = [(u1, . . . , ue)I

n−p + In+1]/In+1. Thus,
In = (u1, . . . , ue)I

n−p ⊆ (u1, . . . , ue). Hence, u1, . . . , ue is an s.o.p. for R and so e ≥ d.

Exercise 7.13. Let (R, m) be a Cohen-Macaulay local ring of dimension d and J an ideal
generated by a system of paramaters for R. Prove that for all n ≥ 1,

hJ (n) = qJ (n) = λ(R/J)

(

n + d− 1

d

)

.

Hence, e0(J) = λ(R/J) and ei(J) = 0 for i ≥ 1. (Hint: first find the Hilbert polynomial
of grJ(R).)
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Exercise 7.14. Let R be a graded ring and

0 −→ Mk −→ Mk−1 −→ · · · −→ M0 −→ 0

an exact sequence of graded R-modules with degree 0 maps. Suppose each Mi has a Hilbert
polynomial. Prove that

∑

i(−1)iQMi
(x) = 0.

Proposition 7.4. Let R be a Noetherian graded ring and M a non-zero finitely generated
graded R-module. Then there exists a filtration

(*) 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that for 1 ≤ i ≤ r, Mi/Mi−1
∼= (R/Pi)(`i) for some homogeneous prime Pi and

integer `i. We’ll refer to such a filtration as a quasi-composition series for M . The set S =
{P1, . . . , Pr} is not uniquely determined by M , but Min(S) = MinR M . If p ∈ MinR M ,
then the number of times p occurs in any quasi-composition series for M is λRp

(Mp).

proof. We first show the existence of a quasi-composition series for M . Let

Λ = {N | N a graded submodule of M which is zero or has a quasi-composition series}.

Let N be a maximal element of Λ. Suppose M 6= N and let N ′ = M/N . Choose
q ∈ AssR N ′. Then N ′ has a graded submodule L isomorphic to (R/q)(`) for some integer
`. Let M ′ be the inverse image of L in M . Then M ′ contains N properly and M ′ ∈ Λ, a
contradiction.

Now, p ⊇ AnnR M if and only if p ⊇ AnnR Mi/Mi−1 for some i, which holds if and only
if p ⊇ Pi for some i. Thus, Min(S) = MinR M .

Let p ∈ MinR M . Then (Mi/Mi−1)p = 0 or Rp/pRp. Hence, localizing (*) at p yields a
composition series for the Rp-module Mp, and λRp

(Mp) is the number of nonzero factors,
i.e., the number of times (R/p)(`) occurs as a factor in (*).

Theorem 7.4. (The Associativity Formula) Let R = R0[R1] be a Noetherian graded ring
such that R0 is an Artinian local ring. Let M be a non-zero finitely generated graded
R-module of dimension n. Then

e(M) =
∑

dim R/p=n

λ(Mp) · e(R/p).

proof. If n = 0 then e(M) = λ(M) and the formula holds (since λRm
(Mm) = λR(M)

and e(R/m) = λ(R/m) = 1, where m is the homogeneous maximal ideal of R). So
we may assume n > 0. Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M be a quasi-composition
series for M , where Mi/Mi−1

∼= (R/Pi)(`i) for 1 ≤ i ≤ r. Using the exact sequences
0 → Mi−1 → Mi → (R/Pi)(`i) and Exercise 7.14, we obtain

QM (x) =
r

∑

i=1

QR/Pi
(x + `i).
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Since e(M) is the coefficient of xn−1 in (n− 1)! ·QM (x) and dimR/Pi ≤ n, we see that

e(M) =
∑

dim R/Pi=n

e(R/Pi).

(Note that the leading coefficients of QR/Pi
(x) and QR/Pi

(x+`i) are equal.) By Proposition
7.4, if dim R/Pi = n then Pi ∈ MinR M and conversely, if λ(Mp) 6= 0 and dim R/p = n
then p = Pi for some i. Finally, if dimR/p = n then the number of times R/p occurs as a
factor (up to a shift) in any quasi-composition series for M is λRp

(Mp).

.

§8. Reductions and integral closures of ideals

Definition 8.1. Let R be a Noetherian ring and I an ideal of R. An ideal J ⊆ I is called
a reduction of I if JIr = Ir+1 for some r ≥ 0. (The case when r = 0 just means J = I.)
The smallest such r is called the reduction number of I with respect to J and is denoted
rJ (I).

Example 8.1. Let R = k[x, y] and I = (x3, x2y, y3). Then J = (x3, y3) is a reduction of
I and rJ(I) = 2, since I3 = JI2 and x4y2 ∈ I2 \ JI.

Example 8.2. Let R = k[t3, t4, t5] and I = (t3, t4, t5). Then J = (t3) is a reduction of I
and rJ(I) = 1.

Exercise 8.1. Let R = k[x, y] and I = (x4, x3y, x2y2, y4). Find a reduction of I which
has two generators.

Exercise 8.2. Suppose J is a reduction of I. Prove that
√

J =
√

I.

Exercise 8.3. Suppose (R, m) is a local ring and I an m-primary ideal. Let J be a
reduction of I. Prove that e0(I) = e0(J).

Definition 8.2. An element a ∈ R is said to be integral over an ideal I if there exists an
equation of the form

an + r1a
n−1 + · · ·+ rn−1a + rn = 0,

where ri ∈ Ii for all i.

Example 8.3. Let R = k[x, y, z] and I = (x3, y3, z3). Then xyz is integral over I, since
(xyz)3 − x3y3z3 = 0 and x3y3z3 ∈ I3.

Exercise 8.4. Let R = k[x, y, z]/(x4 − y2z2) and I = (y2, z2). Show that xy is integral
over I.

Exercise 8.5. Prove that a is integral over I if and only if at ∈ R[t] is integral over the
subring R[It].

26



Lemma 8.1. Let I be an ideal of R. Then the set of all elements of R integral over I
forms an ideal I, called the integral closure of I.

proof. Let a, b ∈ I, and r ∈ R. We need to show a + b ∈ I and ra ∈ I. By the previous
exercise, it is enough to show that (a + b)t and rat are integral over the ring R[It]. But
the integral closure of R[It] in R[t] forms a subring of R[t]. Therefore, we are done since
at and bt are integral over R[It].

Exercise 8.6. Let R be a graded ring and I a homogeneous ideal. Prove that I is
homogeneous. (Hint: consider the ring R[It] as bigraded and apply Theorem 6.1.)

Exercise 8.7. Prove that I = I and that I · J ⊆ IJ .

Theorem 8.1. Let R be a ring, J ⊆ I ideals of R. The following are equivalent:

(1) J is a reduction of I.
(2) I is integral over J ; i.e., I ⊆ J.

proof. Let T = R[It] and S = R[Jt]. Then I is integral over J if and only if T is integral
over S. And J is a reduction of I if and only if for some n ≥ 0, J(T+)n = (T+)n+1. The
result now follows from Theorem 6.2.

Definition 8.3. Let (R, m) be a local ring. The elements a1, . . . , ar are said to be analyt-
ically independent if whenever φ(T1, . . . , Tr) ∈ R[T1, . . . , Tr] is a homogeneous polynomial
such that φ(a1, . . . , ar) = 0, then all the coefficients of φ are in m; i.e., φ ∈ m[T1, . . . , Tn]

Exercise 8.8. Let (R, m) be a local ring and I = (a1, . . . , an) where a1, . . . , an are ana-
lytically independent. Prove that µ(I) = n.

Theorem 8.2. Let I = (a1, . . . , ar). Then the following are equivalent:

(1) a1, . . . , ar are analytically independent.
(2) R[It]/mR[It] is isomorphic to a polynomial ring over a field in r variables.
(3) dimR[It]/mR[It] = r.

proof. (1) ⇐⇒ (2): define g : R[T1, . . . , Tr] → R[It]/mR[It] by g(f(T )) = f(a1t, . . . , art).
Clearly, g is surjective and mR[T1, . . . , Tr] ⊆ ker g. It is enough to show that a1, . . . , ar are
analytically independent if and only if ker g = mR[T1, . . . , Tr]. The “if” direction is true
by definition. For the converse, suppose a1, . . . , ar are analytically independent. Let f be
a homogeneous element in ker g. Then f(a1t, . . . , art) ∈ mR[It]. Now, it is easily seen that
mR[It] = {h(a1t, . . . , art) | h ∈ mR[T1, . . . , Tr]}. Hence, f(a1t, . . . , art) = h(a1t, . . . , art)
for some homogeneous h ∈ mR[T1, . . . , Tr]. Now 0 = (f − h)(a1t, . . . , art)) = td(f −
h)(a1, . . . , ar), where d = deg f = deg h. Hence, (f − h)(a1, . . . , ar) = 0 and so, by
definition of analytic independence, f − h ∈ mR[T1, . . . Tr]. Thus, f ∈ mR[T1, . . . , Tr].

(2) ⇐⇒ (3): Consider the map g defined above. Since mR[T1, . . . , Tr] is contained
in ker g, we see that R[It]/mR[It] is the homomorphic image of R/m[T1, . . . , Tr]. Thus,
dim R[It]/mR[It] ≤ r with equality if and only if R/m[T1, . . . , Tr] ∼= R[It]/mR[It].
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Corollary 8.1. Let R be a ring and x1, . . . , xr a regular sequence. Then x1, . . . , xr are
analytically independent.

proof. Let I = (x1, . . . , xr). Then R[It]/IR[It] = grI(R) ∼= (R/I)[T1, . . . , Tr], where
T1, . . . , Tr are indeterminates corresponding to the images of x1, . . . , xr in the first graded
piece of grI(R). (This is a fact about regular sequences. See Theorem 16.2 of [Mats], for
example.) Therefore, R[It]/mR[It] ∼= R/m[T1, . . . , Tr]. Thus, x1, . . . , xr are analytically
independent.

Corollary 8.2. Let (R, m) be a local ring and x1, . . . , xd a system of parameters for R.
Then x1, . . . , xd are analytically independent.

proof. Let I = (x1, . . . , xd). By Theorem 7.3, dimR[It]/IR[It] = dim grI(R) = d. As
mn ⊆ I for some n, (mR[It])n ⊆ IR[It]. Thus, dim R[It]/mR[It] = dim R[It]/IR[It] = d,
so x1, . . . , xd are analytically independent.

Definition 8.4. Let J ⊆ I be ideals where J is a reduction of I. Then J is called a
minimal reduction of I if no reduction of I is properly contained in J . An ideal I is called
basic if it is a minimal reduction of itself.

Exercise 8.9. Let J ⊆ I be ideals where J is a reduction of I. Prove that J is a minimal
reduction of I if and only if J is basic.

Exercise 8.10. Let (R, m) be a local ring and J ⊆ I ideals of R. Then J is a reduction
of I if and only if J + mI is a reduction of I.

Proposition 8.1. (Northcott-Rees) Let (R, m) be a local ring and I an ideal of R. Then
I has a minimal reduction.

proof. Let P = {(J + mI)/mI | J is a reduction of I}. Since P consists of subspaces of a
finite dimensional vector space, P has a minimal element (K + mI)/mI. Let a1, . . . , as be
elements of K such that the images of these elements in (K +mI)/mI form a vector space
basis. Let J = (a1, . . . , as). Then J + mI = K + mI. By Exercise 6.10, J is a reduction
of I. We claim that J is a minimal reduction of I. First note that J ∩mI = mJ . Clearly
mJ ⊆ J ∩mI. Let c ∈ J ∩mI. Then c = r1a1 + · · · rsas ∈ mI for some r1, . . . , rs ∈ R.
As the images of a1, . . . , as in I/mI are linearly independent over R/m, we see that each
ri ∈ m. Hence, J ∩mI ⊆ mJ . Now suppose L ⊆ J is a reduction of I. We need to show
that L = J . Since L + mI ⊆ J + mI and J + mI is a minimal element of P , we must have
L + mI = J + mI. In particular, J ⊆ L + mI. Now let u ∈ J . Then u = x + y for some
x ∈ L and y ∈ mI. Hence y = u − x ∈ J ∩mI = mJ . Thus, J ⊆ L + mJ and so L = J
by Nakayama.

Exercise 8.11. Let (R, m) be a local ring and J a minimal reduction of I. Prove that
every minimal generating set for J can be extended to a minimal generating set for I.
(Hint: use the method of proof of Proposition 8.1.)

Definition 8.5. Let (R, m) be a local ring and I an ideal of R. The analytic spread of I,
denoted `(I), is defined to be dimR[It]/mR[It].
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Exercise 8.12. Let (R, m) be a local ring and I an m-primary ideal. Prove that `(I) =
dim R.

Proposition 8.2. Let (R, m) be a local ring and J ⊆ I ideals such that I is integral over
J . Then `(I) = `(J).

proof. Let S = R[It] is integral over T = R[Jt],
√

mS ∩ T =
√

mT . Hence `(I) =
dim S/mS = dim T/(mS ∩ T ) = dim T/mT = `(J).

Theorem 8.3. Let (R, m) be a local ring such that R/m is infinite. Let J ⊆ I be a
reduction of I. Then the following are equivalent:

(1) J is a minimal reduction of I.
(2) J is generated by analytically independent elements.
(3) µ(J) = `(I).

proof. (1)⇒ (2): Consider the ring S = R[Jt]/mR[Jt]. By Corollary 6.1, there exists
w1, . . . , wr ∈ J \ mJ such that S is integral over T = (R/m)[w1t, . . . , wrt] (where wit
is the image of wit in Jt/mJt), and T is isomorphic to a polynomial ring in r variables
over R/m. By Theorem 6.2, (S+)n+1 = (w1t, . . . , wrt)(S+)n for some n ≥ 0. That
is, Jn+1/mJn+1 = ((w1, . . . , wr)J

n + mJn+1)/mJn+1 for some n ≥ 0. By Nakayama’s
lemma, this means that Jn+1 = (w1, . . . , wr)J

n, and so (w1, . . . , wr) is a reduction of J .
As J is a minimal reduction of I, J is basic by Exercise 8.9. Thus, J = (w1, . . . , wr) and
S = T . Hence J is generated by analytically independent elements by Theorem 8.2.

(2)⇒ (1): By Exercise 8.9, it is enough to show that J is basic. Let K ⊆ J be a
minimal reduction of J . By (1)⇒(2), K is generated by analytically independent elements.
Furthermore, `(I) = `(J), so S = R[Jt]/mR[Jt] and T = R[Kt]/mR[Kt] are isomorphic
to polynomial rings over R/m of the same dimension. Thus, S ∼= T as graded rings.
Now, since T = R[Jt]/mR[Jt] = R[Kt]/(mR[Jt] ∩ R[Kt]) (see the proof of Proposition
8.2). Hence, λ(J/mJ) = λ(S1) = λ(T1) = λ(K/(mJ ∩ K)) = λ((K + mJ)/mJ). Thus,
J = K + mJ and so J = K by Nakayama.

(2)⇒ (3): By Theorem 8.2, Exercise 8.8, and Prop. 8.1, µ(J) = dim R[Jt]/mR[Jt] =
`(J) = `(I).

(3)⇒ (2): By Proposition 8.1, µ(J) = `(J) = dimR[Jt]/mR[Jt]. Hence R[Jt]/mR[Jt]
is isomorphic to a polynomial ring in µ(J) variables over R/m. Thus, J is generated by
analytically independent elements by Theorem 8.2.

Exercise 8.13. Let (R, m) be a local ring with infinite residue field and let I be an ideal
of R. Prove that ht I ≤ `(I) ≤ µ(I).

§9. Graded free resolutions

Throughout this section R will denote a nonnegatively graded Noetherian ring such that
R0 is local. We let m denote the homogeneous maximal ideal of R.

Proposition 9.1. (Graded version of Nakayama’s Lemma) Let M be a finitely gener-
ated graded R-module. Then µR(M) = dimR/m(M/mM). Morever, there exists µR(M)
homogeneous elements which generate M .
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proof. Choose homogeneous elements x1, . . . xk ∈ M such that their images in M/mM
form an R/m-basis. It suffices to show that x1, . . . xk generate M . Let N be the submodule
generated by x1, . . . , xk. Then M = N + mM and hence M/N = m(M/N). If M 6= N ,
then M/N is a finitely generated non-zero graded R-module. Let s be the smallest integer
such that (M/N)s 6= 0. Then (M/N)s = n(M/N)s, where n is the maximal of R0. This
contradicts the local version of Nakayama’s lemma. Hence, M = N .

Exercise 9.1. In the above proposition, prove that the set {deg x1, . . . , deg xk} is uniquely
determined by M .

For a f.g graded R-module M , we let µ(M) denote dimR/m M/nM . Clearly, µ(M) is
the minimal number of generators of M .

Corollary 9.1. Let F be a f.g. graded free R-module. Then there exist a unique set of
integers {n1, . . . , nk} such that F ∼= ⊕iR(−ni) (as graded modules).

proof. Let k = rkF = µ(F ). Then there exists homogeneous elements x1, . . . , xk which
generate F and hence form a basis for F . Setting ni = deg xi, we see that F ∼= ⊕R(−ni).
The uniqueness of the ni’s follows from the Exercise 9.1.

Exercise 9.2. Let P be a finitely generated graded projective R-module. Prove that P
is free.

Definition 9.1. Let M be a finitely generated graded R-module. An exact sequence

· · · −→ Fi+1
∂i−→ Fi −→ · · · −→ F0 −→ M −→ 0

is called a graded free resolution of M if each Fi is free and all the maps are degree 0.
The resolution is called minimal if ker(∂i) ⊂ mFi+1 for all i ≥ 0; equivalently, rank Fi =
µ(ker(∂i−1)).

Remark 9.1. By the graded version of Nakayama’s lemma, it is clear that any f.g. graded
R-module possesses a minimal graded free resolution.

Lemma 9.1. Consider the following diagram of f.g. graded R-modules and degree 0 maps:

0 −−−−→ K
α−−−−→ F

β−−−−→ M −−−−→ 0




y
f

0 −−−−→ L
γ−−−−→ G

δ−−−−→ N −−−−→ 0

Assume the rows are exact, F and G are free and f is a isomorphism. Suppose that
α(K) ⊂ mF and γ(L) ⊂ mG. Then there exist degree 0 isomorphisms g : K → L and
h : F → G making the diagram commute.

proof. Since F is free, it is easily seen that there exists a degree 0 maps h and g making the
diagram commute. If we show that h is an isomorphism, then g must be an isomorphism
by the Snake Lemma. But if we tensor the diagram with R/m, we see from the minimality
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that β ⊗ 1 and δ ⊗ 1 are isomorphisms. Consequently, h ⊗ 1 is an isomorphism. Thus, if
C = coker(h) then C/nC = 0 and so C = 0 by (graded) Nakayama. Hence, h is surjective.
Since G is free, h splits and so ker(h)/m ker(h) = 0. Therefore, ker(h) = 0 and h is an
isomorphism.

Theorem 9.1. Let F. and G. be two minimal graded free resolutions of a f.g. graded R-
module M . Then there exists a chain map f. : F. → G. such that for each i, fi : Fi 7→ Gi

is a degree 0 isomorphism.

proof. We define the map fi : Fi → Gi by induction on i. To start, let f−1 : M → M
be the identity map. Assume we have defined fi for i ≤ p. Let ∂. be the differential for
the resolution F. and ∂′. be the differential for G.. Set Ki = ker(∂i−1) and Li = ker(∂′i−1)
for each i ≥ 0. We also include in our induction hypothesis that there exist isomorphisms
hi : Ki → Li for each i ≤ p (this is vacuous for p = −1). So consider the diagram

0 −−−−→ Kp+1 −−−−→ Fp+1 −−−−→ Kp −−−−→ 0

hp





y

0 −−−−→ Lp+1 −−−−→ Gp+1 −−−−→ Lp −−−−→ 0

By the previous lemma, there exist degree 0 isomorphisms fp+1 : Fp+1 → Gp+1 and
hp+1 : Kp+1 → Lp+1 which make the diagram commute.

Theorem 9.2. Let M be a f.g. R-module and F. a minimal graded free resolution of M .
For each i ≥ 0, let

Fi = ⊕ri

j=1R(−nij).

Then

(a) For each i ≥ 0, the set {nij}ri

j=1 is uniquely determined.

(b) For each i, j > 0, there exists j ′ such that nij ≥ n(i−1)j′ (or nij > n(i−1)j′ if R0 is
a field).

(c) If F. is finite (i.e., Fi = 0 for i sufficiently large) and R0 is Artinian, then

PM (t) =
∑

i,j

(−1)itnij PR(t).

proof. By the preceeding theorem, any two minimal graded free resolutions of M are chain
isomorphic with degree 0 maps, so the ranks of the Fi and the integers {nij} are uniquely
determined. This proves (a).

For i > 0, let e1, . . . , er and f1, . . . , fs be homogeneous bases for Fi and Fi−1, respec-
tively, where r = ri and s = ri−1. By part (a), we can arrange the bases so that deg ej = nij

and deg fj = n(i−1)j . Since F. is minimal, for each j there exist homogeneous elements
u1, . . . us ∈ n such that ∂i−1(ej) =

∑

j′ uj′fj′ . Then nij = deg ∂i−1(ej) = deg uj′fj′ ≥
n(i−1)j′ for some j′. Notice that if R0 is a field, then deg uj′ > 0 and so nij > n(i−1)j′ .
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For part (c), we have

PM (t) =
∑

i

(−1)iPFi
(t)

=
∑

i

(−1)i
ri

∑

j=1

PR(−nij)(t)

=
∑

i,j

(−1)itnij PR(t).

Exercise 9.3. Let R = k[x1, . . . , xd] be a polynomial ring over a field with deg xi = 1 for
all i and let M be a f.g. graded R-module. Prove that M has a finite minimal graded
free resolution. (Hint: use what you know about minimal resolutions over Rm where
m = (x1, . . . , xd).)

Exercise 9.4. Let R = k[x1, . . . , xd] be a polynomial ring over a field with deg xi = 1 for
all i and let M be a f.g. graded R-module. Prove that the Hilbert polynomial of M is
given by

QM (x) =
∑

i,j

(−1)i

(

x + d− nij − 1

d− 1

)

where the integers nij are the invariants which occur in a minimal graded free resolution
of M .
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