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Chapter 1

MATH 901

1 Roots of Unity

1.1 Day 1 - August 24

Here we go! ,
Let n > 1 €N, and let U,, = {w € C: w™ = 1}. Recall that this is a cyclic group generated by 62:{1, or

i

generated by e”=" for ged(k,n) = 1. These generators are called primitive n-th roots of unity.

Remark 1. We will typically remember n and let w be a primitive n-th root of unity. We will use |w]| to
denote the order of w, i.e. n.

Definition 1. For n > 1, let ®,(z) = H (x —w).

|w|=n
Example 1.
(1)1(37) = -1
Dy(z) = xz+1
Oy(x) = 22+1

Remark 2. Note that deg(®,(x) = ¢(n).
Note also that 2™ — 1 = H (r—w) = H H (x—w)zH(I)d(a:).

|w| dividing n d>1 |w|=d d|n

Lemma 1. &, (x) € Z|[z]

Proof. Induct on n: Base case is true as ®; =z — 1.
Inductive case: n > 1. Let f(z) = H ®4(z). By the inductive hypothesis, f(z) € Z[z]. Note that
d|

d<n
2™ — 1= f(z)®,(x), and note also that f(x) is monic.
Recall that for all rings R, R[z] has a division algorithm for monic polynomials. In this case, there exists
a unique ¢(x),r(x) € Z[x] such that 2™ — 1 = f(x)q(z) + r(x) and where deg(r) < deg(f) or r(x) = 0.
But this is also true in C[z]. Since the quotient and remainder are unique, and f(z) divides 2™ — 1 in
C[z], then there is no remainder, and thus z" — 1 = f(z)q(z), so ¢(x) = ®,,(z), but ¢(x) € Z|x]. O

Theorem 1. &, (x) is irreducible in Q[x].

Proof. Assume for sake of contradiction that ®,,(x) is reducible in Q[z]. Then by Gauss’ Lemma, we can in
fact factor it in Z[z]. That is, there exist f(z), g(z) € Z[z] (non-constant), such that @, (x) = f(z)g(x).



Furthermore, we can assume WLOG that f(x) is irreducible in Q[z]. Also, since @, (x) is monic, then
f(z) and g(x) are (WLOG) monic as well.

Recall that the roots of @, (z) are precisely the primitive n-th roots of unity. Let w € C be a root of
f(x). Then |w| = n. Let p be any prime such that pfn. Then |wP| = n, so wP is a root of @, (x).

We wish to show that f(wP) = 0. If this is not true, then g(w?) = 0. Then, w is a root of g(zP) € Z|x].
Note that since f(z) is irreducible, then f(z) = Min(w,Q) (that is, it is the unique monic polynomial of
least degree for which w is a root). Then we know that f(z)|g(2?) (in Q[z]).

Since f(z) is monic, we can argue (as we did in the lemma) that g(z?) = f(x)h(x) for some h(x) € Z[z].

Now consider this in Z,[z]. Then g(zP) = f(z)h(x). But g(z?) = g(z)? (basically because of the
Frobenius Automorphism). Let 3 be a root of f(z) (in some algebraic closure of Z,[z]). Then g(3)? = 0, so
3(5) = 0.

Then ®,(z) = f(x)g(z) in Z,[z]. Thus B is a multiple root of ®,,(x). However, ®,(x)|z" — 1. Hence,
" — 1 € Z,[x] has a multiple root. But p was chosen so that p /n, so the formal derivative of 2™ — 1 is
na™ 1, which only has roots at z = 0 (and 0 is certainly not a root of ™ — 1). This is a contradiction.

Thus f(wP) = 0. But by the same argument, WP’ is a root, and so is wp37 and so on. But this gives that
every primitive n-th root of unity is a root of f(z), so deg(f) = deg(®,,), which is a contradiction. O

1.2 Day 2 - August 26

Recall from last class that we proved that each cyclotomic polynomial @, (x) is irreducible and has integer
coefficients.

Example 2. Let’s find ®15(x). We know it is a divisor of #12 — 1 = (2% — 1)(2® + 1). The roots of ®5(x)
have order 12, so none of them are roots of 2% — 1 (which have order dividing 6). Thus ®15(z) divides %+ 1.
We can factor like so: 2% + 1 = (22 + 1)(z* — 22 + 1). Similarly, the roots of 22 + 1 have order 4, so ®1(z)
divides 2% — 22 4+ 1. But ®15(z) is monic and has degree 4, so ®15(z) = 2% — 2% + 1.

Corollary 1. Let E be a splitting field of 2™ — 1 over Q. Then [E : Q] = ¢(n).

2mi

Proof. We know that E = Q(w) (where w = e™» ). Then [Q(w) : Q] = deg(Min(w,Q)) = deg®,(x) =
¢(n). H

2 Separable Extensions

Definition 2. Let F' be a field, and let F be a fixed algebraic closure of F. Let f(z) € Flz] and let o € F
be a root of f(x). If (x — a)?|f(x) (in F[z]), then we say « is a multiple root of f(x). Otherwise, « is called
a simple root.

Proposition 1. If f(z) is a polynomial, then f(z) has no multiple roots (in F') if and only if ged(f, f') = 1.

Definition 3. Let f(z) € F[z] be irreducible. Then f(x) is called separable if f(x) has no multiple roots in
F.

Proposition 2. Let f(z) € F[z] be irreducible. Then (1) if charF = 0, then f(x) is separable. Also, (2) if
charF = p, then f(z) has multiple roots if and only if f(x) = g(zP) for some g(z) € F[z].

Definition 4. Let E/F be an algebraic extension. An element o € E' is separable over F if Min(a, F) is
separable. We say E/F is a separable extension if every element of E is separable over F'.

Definition 5. A field F is called perfect if every algebraic extension of F is separable. (Equivalently, every
irreducible polynomial in F[x] is separable.)

Theorem 2. Let F be a field. Then (1) if charF = 0, then F' is perfect. Also, (2) if charF = p, then F is
perfect if and only if F' = FP = {a? : a € F}.

Proof. (1) follows immediately from proposition
We shall now prove (2). Suppose F is perfect. Let a € F. Consider 2 — a € Fx]. Let 8 be a root of
2P —a in F. Then 8P = a.



Also, Min(B3, F)|z? — a. But 22 — a = a? — 8? = (z — 8)?. Thus Min(B,F) = (z — 3)° for some
1 < i < p. But we assumed F is perfect, so 8 is separable, so its minimal polynomial has no multiple roots.
Thus ¢ = 1. But by definition of minimal polynomial, Min (5, F) € F[z], so x — 8 € F[z], and thus § € F.
Thus ao = P € FP.

Therefore, F' C FP. But the opposite direction, that F'P C F, is easy, so P = F.

Conversely, assume F' = FP. Suppose for the sake of contradiction that F' is not perfect. Then there
exists a minimal polynomial f(z) € F[z] which has multiple roots. So f(z) = g(«P) for some g(z) € F|x].
Then f(z) = bzP™ + byy—12°m=1) 4+ 4+ by where the b; € F. By hypothesis, for each b;, we can find an
a; € F such that b, = a?.

Thus f(x) = (@ma™ + am_12™ " + ... + ag)P. This contradicts the fact that f(z) is irreducible. Thus F
is perfect. O

Recall the following: Let E//F be an algebraic extension, and let o : F' — L be a nonzero field map (recall
that these must be injective, so we call them embeddings) where L is algebraicly closed. Then, there exists

an “extension” or “lifting” of o to a 7: E — L such that 7| = o. (You draw this with a diagram too.)
F
In this context, let S, ={7: E— L | 1| =o}.
F

Proposition 3. Let E/F be as above, and let 0 : F — Ly, 7 : F — Ly be nonzero field maps. Suppose
also Ly and Lo are algebraically closed. Then, |S,| = |Sx|.

Proof. “Without loss of generality”, we can assume that L; and Lo are algebraic closures of o(F') and 7(F)
respectively. We can do this because E/F is algebraic, so 7(E) will be algebraic over o(F). Thus 7(FE) lies
inside the algebraic closure of o(F) inside L;. We can make a similar argument for L.

Consider the following diagram which I can’t draw.

The long story short is that we get a A1 : L1 — Lo such that A

We claim that A is an isomorphism. (

This follows because Ly is an algebraic closure of o(F). Since A(L;) is an algebraic closure of 7(F)
inside Lo, La/A(L1) is an algebraic extension. As A(L;) is algebraicly closed, then Ly = A(Ly). Thus X is
surjective. Also, A is a field map, so it is automatically injective. Thus A is an isomorphism.

Let 7€ S,. Then A\7: E — L1 — Lo and )\T’F = )\(T’F) = )Xo =70 to =m. Thus A\t € S,. This gives
a map X:S, = S: by Zcr) = Ao. Similarly we can get an A LS, = So by )T:Jl(o') = A~lo. But AL and
A are inverses, so |S,| = |Sx|.

O

Definition 6. Let E/F be algebraic. The separable degree of E/F, denoted [E : F|g is |S,| for any
embedding o : F' — L (where L is algebraically closed).

In particular, fix an algebraic closure E of E. Then [E : F|g = |[{T : E — E : 7 fixes F}|. We could
denote this as |S1| if we were feeling funny. We will show next time that the separable degree is multiplicative.

2.1 Day 3 - August 28
Recall from last class that if E/F is an algebraic extension, we use [E : F|g to denote the separable degree.

Lemma 2. Let E/F be an algebraic extension, and let a € E. Let f(z) = Min(a, F). Then [F(«a) : F]s =
number of distinct roots of f(x) in F. (In particular, if « is separable over F', then [F(«) : F|s = deg f(x) =
[F(a): F].

Proof. We know that [F(a) : F]s = number of distinct embeddings of F(a) — F which fix F. If o :
F(a) — F fixes F, then o is determined by o(c). Note that f(o(a) = o(f(a)) = o(0) = 0.

Thus o(a) is a root of f(z) in F. So [F(«a) : F]g < # of distinct roots of f(x). If 3 € F is a root of f(x
then there exists o : F(a) — F such that o(a) = 8. Thus, [(a) : F]s > # of distinct roots of f(x). But f(
is minimal and separable, so it has deg f(x) distinct roots.

08 <=



Proposition 4. Let K C L C E be fields such that [E : K] is finite. Then [E : K|g = [E : L]g[L : K]s.
Moreover, [E : K|s < [E : K].

Proof. (Proof of multiplicativity.) Fix an algebraic closure E of E. Then E = L = K. Let S = {m : L —
E|r fixes K}. Then |S| = [L: K]s.
Givenm € S, let T, = {7 : F — E|7" =7}. The |T;| = [E : L]s. Note also that if 71 # mg, then T},
L

and T, are disjoint.

Let T'= |J,cg Tr- Note that every o € T is a function mapping E to E. and also fixes K. Furthermore,
if o : E — E fixes K, then J‘L:L%Eﬁxes K, so 0’]: =n€S. Thuso € T, CT. Hence |T| = [E: K]s.
Hence |T| = [E : K]g, but |T| = Y " [Tx| = Y [E: L] = [L: K]s[E : L]s. O

TES TES

Proof. (Proof of “moreover”.) Since E/K is finite, E = K(a,...as,). We use induction on n to show that
[E:K]s <[E:K]

If n = 1, then by the lemma we have have that the [E : K]g is the number of roots of the minimal
polynomial of oy, and [E : K] is the degree of the polynomial of a;. But it is an ultra-classical result that
the number of roots is less than or equal to the number of degrees.

If n > 1, assume the inductive hypothsis. Then let L = K(ay,...au—1). Then E = L(«,,). By induction,
[L:K]s<[L:K]. Bythen=1case, [F:Lls<[E:L],s0[E:K]s<[E:K] O

Example 3. Let p be a prime and F), be the field of p elements. Let ¢ be an indeterminant. Let E = F,(¢),
and K =T, (t?). Then t is algebraic over K, since t is a root of f(z) = a? —t* € K[z].

We claim that in fact, f(z) = Min(t, K). Let g(x) = Min(t,K). Then g(z)|f(x) in K[z], and hence
in E[z]. However, in E[z], 2P —t? = (z — t)P. Thus g(z) = (z — t)* for some 1 < i < p. But then
g(x) = o' —ita’~' + ... € K[z]. Thus —it € K. But if i < p, then 7 is a unit in F,, so ¢t € K. But this is
absurd, since K = F,(tP).

Thus [F : K] = p. But there is exactly one root of P — t? (namely, z =t), so [E: K]g = 1.

Remark 3. Let E/F be algebraic, and let « € E. Then « is separable over F' if and only if [F(«) : Fls =
[F(a: F]. (The proof of this was hidden in the lemma: [F(«) : F]g is the number of distinct roots, which
equals [F(« : F] if and only if all the roots are distinct, aka the polynomial is separable.)

Remark 4. Suppose E/F is algebraic and separable, and suppose L is an intermediate field. (It is directly
true from definitions that L/F' is separable.) Then E/L is separable.

Proof. Let a € E. Let f(z) = Min(o, F), and let g(z) = Min(a, L). Since f(x) € L[z], and f(a) = 0, so
g(x)|f(x). But since f(z) is separable, it has no repeated roots, and thus g(z) has no repeated roots. Hence
« is separable over L. O

Theorem 3. Let E/F be a finite extension. Then E/F is separable if and only if [F : Fl]g = [E : F].

Proof. Suppose E/F is separable. Then we can write £ = F(ay, ..a,). We will now induct on n.

If n =1, then the theorem follows from remark

If n > 1, then suppose the inductive hypothesis. Let L = F(«y,...an—1). Then E = L(«ay,). As E/L is
separable by remark then by the inductive hypothesis, [L : F]g = [L : F]. Furthermore, by the n = 1 case,
[E: L)s = [F : L]. Thus because both degree and separable degrees are multiplicative, [E : F|g = [E : F].

Conversely, suppose [E : Flgs = [E : F]. Let « € E. Then [E : F(a)]s[F(«) : Fls = [EF|s = [E : F] =
[E : F(a)][F(«) : F]. But since [E : F(a)]s < [E: F(a)] and [F(a) : Flg < [F(a) : F], the the only way
for us to have equality when we multiply these is to have equality in both of these expressions. That is,
[F(a) : Fls = [F(«) : F]. By remark [3] we know that « is separable over F. But a was arbitary, so every
element is separable, so E' is separable.

Robert’s alternate proof of the converse: suppose E/F were not separable. Then there would be some
a € F such that Min(a, F') has repeated roots. Then by remark [3| [F(«) : Fls < [F(«) : F]. By the
“moreover” part of the proposition, [E : F(a)ls < [F : F(«)]. Combining these two inequalities, we have
[E : F(a)]s[F(a) : Fls < [E : F(a)][F(a) : F]. But since both separable degree and regular degree are
multiplicative, the left hand side is [E' : F]g and the righthand side is [E : F]. O



Exercise 1. Let K C L C F be fields with E/K algebraic. Suppose E/L and L/K are separable. Then
prove E/K is separable.

Corollary 2. Let E = F(a,...a,), where each «; is separable and algebraic over F. Then E/F is algebraic
and separable.

Proof. Induct on n. If n = 1, then by remark 3] we have that [F(a;) : Fls = [F(a1) : F]. But by the
theorem, F'(ay)/F is separable.
(Rest of the proof is a sketch.) In the inductive case, we use multiplicativity. O

2.2 Day 4 - August 31

Definition 7. A field F is called separably closed if there does not exist an extension field E 2 F such that
E/F is algebraic and separable.

Given a field K, a field L is a separable closure of K if L C K and if L/K is separable algebraic and L
is separably closed.

Proposition 5. Let F be a field, and let F be a fixed algebraic closure of F. Let F'*P = {« € F|« is separable over F'}.
Then F*°P is a field and is a separable closure of F.

Proof. Certainly, F'*°P contains F'. Then it suffices to show that F'*°P is closed under the four field operations.

Let a, B € F*¢P. Since «, 3 are separable, then F(«, 3)/F is separable. But a+ 8, a— 3, af, % if (8#£0)
€ F(a,8) C F*¢P. Thus F*° is closed under these operations, so it is a field.

Suppose E/F*%P is an algebraic and separable extension. Without loss of generality, we can assume
E C F (since we can assume everything is happening within a single algebraic closure). We have that
E/F*P i separable, and F*¢P/F is separable, so by homework problem 2 [edit: see immediately below],
E/F is separable. That is, every element of E is an element of F which is separable over F, so E C F*°P.
Thus E = F*°P. O

Homework Problem 1. Claim: Let K C F C E be a tower of fields such that F/K and E/F are algebraic
and separable. Then E/K is algebraic and separable.

Definition 8. Let E, F be subfields of a field L. Then the compositum or join of E and F is EF =

N K.

K subfield of L
EUFCK
Example 4. Let E = K(a1,...cu,) C L and let F' = K(B1,...6,) C L. Then EF = K(a1, ...0tm, B1, -..0n)-

Exercise 2. If E/K and F/K are algebraic then EF/K is algebraic. If E/K and F/K are separable then
EF/K is separable.

Theorem 4 (Eisenstein’s Criterion). Let D be a Unique Factorization Domain, and let F' = Q(D) (ie
the field of fractions of D). Let f(z) = anx™ + ...a12x + ap € D[z], and suppose there exists an irreducible
element 7 € D such that 7/ a,, 7|a; for all i < n, and 72fag. Then f(z) is irreducible in F[x].

Proof. Suppose for the sake of contradiction that f(z) is reducible in F[z]. By Gauss’s Lemma, f(x) is
reducible in D[z], so let f(x) = g(z)h(z) be a non-trivial factorization in D|x].

Let g(z) = bpa™ +...4+bo, and let h(z) = ¢z’ +...co. In (D/(x))[x], write g(z) = bpa™ +...b;27 (b; # 0),
and similarly write h(z) = gz! + .62t (¢; #0)

In (D/(m))[z], we have that

2" = f(x)
= gla)h(z)
= (bpz™ + ... + bjzt) (Gat + ...¢27)
= bpez" + ...+ big;zt



If i <morj <1, then b¢; =0 in D/(r). But D/(r) is a domain since 7 is prime, so b; = 0 or ¢; = 0,
which contradicts our assumption. Thus ¢ = m and j = [. In particular, by = ¢y = 0, so 7|by and 7|cg. But
ag = boco, and thus m2|ag, which is a contradiction.

O

Proposition 6. Let K be a field and u be a transcendental element over K. Let F' = K(u). Then z" — u
is irreducible in F[z] for all n > 1.

Proof. Let F = Q(D) where D = K|[u]. Since u is transcendental over K, then Ku] is a polynomial ring, so
it is a UFD. Then w is an irreducible element in D, so by Eisenstein’s Irreducibility Criterion (with © = u),
" — w is irreducible in F[z]. O

Example 5. Let K be a field of characteristic p > 0. Let u be transcendental over K, and let v be
transcendental over K (u).

Let E = K(u,v) and let F' = K(uP,vP). What is [E : F]?

Let L = K (u,vP). Consider the tower F' C L C E. We can see that Min(v, L) = 2P — vP is irreducible
over K (u,v?) as vP is transcendental over K (u).

Also, Min(u, F) = 2P — uP, as u? is transcendental over K (vP) (take Professor Marley’s word for this).
Thus [E: F]=[E: L][L : F] = p°.

Remark 5. In the previous example, note that if g(u,v) € E, then g(u,v)? € KP(uP,vP) C K(uP,vP) = F.
Thus Min(g(u,v), F)|z? — g(u,v)?, so [F(g(u,v)) : F] < p for all ¢ € E. Thus E/F has no primitive
element.

Recall from 818 the following theorems:

Theorem 5 (Primitive Element Theorem 1 (PET 1)). Let E/F be a finite separable extension. Then
there exists o € F such that E = F(a).

Theorem 6. (Primitive Element Theorem 2 (PET 2)) Let E//F be a finite field extension. Then there exists
a € FE such that F = F(«) if and only if there exist only finitely many intermediate fields of E/F.

2.3 Day 5 - September 2
We shall prove the following theorem (which was stated last class):

Theorem 7 (Primitive Element Theorem II). Let E/F be a finite extension. Then E = F(«) for some
a € E if and only if there exists only finitely many intermediate fields of E/F (that is, if there exist only
finitely many fields L such that FF C L C F.

Proof. Let S = {intermediate fields of E/F} = {L field|E C L C F}.

Suppose E = F(a). Let f(x) = Min(a, F), and let E be a fixed algebraic closure of E.

Let T = {monic polynomial factors of f(x) in E[z]}. Note that f(z) = (x —a1)...(x — a,) € E[x], so the
monic factors of f(x) are of the form (z — oy, )...(x — a;, ) for some 4;...75 distinct elements of {1,...n}. Thus
T is finite.

Define A: S — T by L — Min(a, L). (Since Min(a, L)|Min(o, F), then Min(a, L) € T.)

We wish to show that ) is injective. Suppose L1, Ly € S and Min(a, L1) = Min(a, Ly) = 2™ +cp, 12"~ 1+
..co € L;[z] for i = 1,2. Tt suffices to show that L; = F(cg,...,cn—1) (since by the exact same argument it
would follow that, Lo = F(cg, ..., Cr—1)-

Let K = F(cp,...cn—1). Since the ¢; € L1, then certainly K C L;. It then suffices to show that
[E: L] = [E : K] (since then [Ly : K| =1).

10



Let g(z) = Min(o, L1). Note g(z) € K[x] and is irreducible in Lq[z], so it is also irreducible in K[x].
Thus g(x) = Min(a, K). Note that E = K(a) = L1(«). Thus

[E: K] = deg(Min(a,K))

= deg(g(z))
= deg(Min(a, Ly))
[E : Ll]

Following this string of implications all the way back, we can conclude that X is injective. Since A injects S
into T, and T is a finite set, then S is also finite, as desired.

Conversely, suppose there are only finitely many intermediate fields. We have two cases: either F is finite
or infinite.

If F is finite, then F is also finite, so E* is cyclic (since the unit group of any finite field is cyclic). Thus
E* =< a > (in the sense of generating a group) for some «a, so E = F(«).

If F' is infinite, then since the extension is finite, we can write E = F(ay, ...a,) for some aq, ...,a,, € E.
We then induct on n.

If n =1, then E = F(ay), as desired.

If n > 1, we can really just show that n = 2 case. So suppose E = F(a,(). Then let A = {F(a +
¢B)lec € F} € S. Since S is finite, then A is finite, but |F| = oo, so there exist ¢; # co € F such that
F(a+ c18) = F(a+ c2). Let us call this field L. Then (¢; — c2)8 = (a+c18) — (o +¢c26) € L, so 5 € L.
Then a € L as well, so L = F(«, 3), and thus F(«, ) is generated by a single element.

O

3 Inseparable Extensions
Let us turn our attention to inseparability.
Theorem 8. Let F be a field of characteristic p > 0, and let o € F. Then,

1. « is separable over F' if and only if F(«) = F(a?)

2. If « is inseparable over F' then [F(«a) : F(a?)] = p and Min(a, F(aP)) = 2P — oP.

3. Foralln>1, [F(a?" ) : F(a?")]s =1, 50 [F(a) : Fls = [F(a?") : Fls

4. There exists n € N such that o' is separable over F' for all i > n.

5. Let n be the least exponent such that a?” is separable over F. Then [F(a): F] = p"[F(a) : Fls.

Proof. (1) Suppose « is separable over F'. Then « is separable over F'(aP), but we know that Min(a, F'(a?))|aP—
a? = (x — a)P. Since Min(a, F(aF)) has distinct roots then it must be that deg(Min(a, F'(a?))) = 1, so
a € F(a?). Thus F(a) = F(a?).

[Alternative proof of the forward direction: Since « is separable, then [F(a) : F(a?)] = [F(a) : F(aP)]s =
# of distinct roots of Min(a, F(aP)) = 1]

Conversely, suppose F(a) = F(aP). Suppose for the sake of contradiction that « is not separable
over F'. Let f(z) = Min(o,F). Then f(z) = g(zP) for some g(z) € Flz]. Thus g(a?) = 0. Then
[F(aP) : F] < deg(g(z)) < deg(g(aP)) = [F(«) : F]s. This is a contradiction, so F(a) = F(aP). O

(2) We know that Min(a, F(aP))|a? —aP. By homework problem 5 [edit: see immediately below], either
aP — aP is irreducible in F'(a®)[x] or it splits completely. If it splits, then a € F(aP), which implies that « is
separable by part (1) of the theorem. But this is a contradiction, since we assumed « is inseparable. Thus
xP — aP is irreducible, so it is the minimal polynomial of o as desired. O
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(3) We know that [F(«) : F(a?)]s = # of distinct roots of Min(a, F(a?)) = 1. From part (2), Min(a, F(a?)) =
(r — )P, so it only has one distinct root. By applying this argument to ozpnfl, we get that [F(apnfl) :
F(a?")]s = 1 for all n. Thus [F(a) : F(a?")]s = [F(a) : F(ap)]s...[F(ale) : F(e?")]s = 1, so
[F(a): Fls = [F(a): F(a®")|s[F(a?") : F]g = [F(a?") : F]g for all n. O

(4) Consider the descending chain of F-vector spaces F(«) D F(aP) D F(a”2) D ... Since dimp(F,) =
[F(a) : F] < oo, then this chain stabilizes. Thus there exists an n € N such that F(a?") = F(apn+l).
But (" )P = o™ so by part (1), a?" is separable over F. Thus F(a®") is separable over F but since
P € F(apn) whenever ¢ > n, then P s separable for all i > n. O

(5) We have the following tower of fields: F(a) D F(a?) D F(a?’)... D F(a?"). For each of these, the
degree of the extension is p by part (2), and the separable degree is 1 by part (3). By assumption, a?" is
separable, so F(aP") is separable. Thus [F(a?") : F] = [F(a?") : Flg.

But

[F(a): F] = [F(a): F
o

Homework Problem 2. Let E/F be an extension, and suppose charF = p > 0. Let « € E. Then either
xP — « is either irreducible over F', or it factorizes completely.

Corollary 3. Let E/F be a finite extension, and let CharF = p. Then [E : F| = p"[E : F|g for some
n > 0.

Proof. Let E = F(ay, ..., ax) for some ay,...,ar € E. We induct on k.

If k = 1, we have this from part (5) of the previous theorem.

If k > 1, then let L = F(ay,...,ax_1). By the inductive hypothesis, [L : F] = p*[L : F]g for some ¢ € N.
Also, E = L(ay). By the k = 1 case, [E : L] = p'[E : L]s for some ¢t € N. Then we multiply, and get that
[E:F)=[E:L][L:F)=p""E: Ls[L: Fls =p'TE: Fls. O

Definition 9. If E/F is a finite extension, with [E : F] = p*[E : F]g, then the inseparable degree of E/K
f ok
is p".

Theorem 9. (Really easy) The inseparable degree is multiplicative.

3.1 Day 6 - September 4

Andrew sez:im helping!
On homework 1 problem 4, we can assume the degrees are finite.

Definition 10. Let F be a field of characteristic p > 0, and let o € F. Then « is purely inseparable (often
written p.i.) if a?” € F for some n > 0.

This is equivalent to Min(a, F)|zP" — 3 in Flz].

We say E/F is purely inseparable if each o € E is p.i. over F.

Lemma 3. Let o € F. Then the following are equivalent
1. «is p.i. over F.
2. [F(a): Fls=1
3. [F(a) : Fl; = [Fa) : F]

12



Proof. We note that 2 and 3 are equivalent by the definitions of separable and inseparable degrees.

For 1 and 2, note that « is p.i. over F if and only if o?” € F for some n > 0. But this is the case if and
only if [F(a?") : F] =1 for some n > 0. But this is the case if and only if [F(a?") : F]g = 1 for some n > 0
(since for some n sufficiently large, aP” is separable by a theorem from last class). But this is the case if and
only if [F(a) : F]g = 1 since [F(a) : Flg = [F(a?") : Fls. O

Theorem 10. Let E/F be a finite extension. Let E = F(ay,...ay,) for some «; € E. Then the following
are equivalent.

1. E/Fis p.i.

2. Each «; is p.i. over F

3. [E:Flg=1

4. [E:F|=[E:F);

Proof. Note that (3) and (4) are equivalent by the definition of separable and inseparable degree.

Note that (1) implies (2) by definition.

Suppose (2) holds. We induct on 4 to prove that [F'(aq,...c;) : F]g = 1. The i =1 case is the lemma.

Ifi > 1, let L = F(ai,...c;—1). By the inductive hypothesis, [L : F]s = 1. As «; is p.i. over F, then
[L(ci) : Lls =1, 80 (L(ey;) : Fls =1, but L(ew;) = F(a,...,«;). Thus (2) implies (3).

Suppose 3 is true. Then let 8 € E. Then [F(8) : F|s < [E : F]s = 1, so by the lemma 3 is p.i. over F.
Thus (3) implies (1), and all are equivalent. O

Definition 11. Let E/F be an algebraic extension, and let charF = p. Let L = {« € E|a is p.i. over F}.
Then L is a field (proof omitted, but straightforward). Certainly, L is intermediate between E and F. We
call L the inseparable closure of I inside F.

4 Normal Extensions

Question 1. If E/F is an algebraic extension, is E generated by the separable closure of F and the
inseparable closure of F'?
Answer: yes, if E/F is normal.

Lemma 4. Let E/F be an algebraic extension. And let 0 : E — FE be a field map fixing F. Then o is an
automorphism of E.

Proof. Let 8 € E. Let f(x) = Min(8,F), and let S = {all roots of f(z) in E}. Observe that S is a
nonempty finite set. As f(z) has coefficients in F', and o fixes F, then o(8) is a root of f(x). Thus ¢ maps
elements of S to elements of S. But S is finite, and o is injective (as it is a field map), so in fact o permutes
S. Thus in particular there exists a v € S such that o(y) = 8. Thus o is onto, so it is a bijection. O

Proposition 7. Let E/F be an algebraic extension. The following are equivalent.
1. F is a splitting field for some (possibly infinite, but definitely nonempty) set of polynomials in F[z].
2. Any embedding ¢ : E — E which fixes F is an automorphism of E.

3. Any irreducible polynomial in F[z] which has a root in E splits completely in E|[x].
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Proof. Suppose (1), and let S denote the set of polynomials for which E is the splitting field. Then let
T={a€E:aisaroot of some f(x) € S}. Certainly, F = F(T).

Let 0 : E — E and suppose o fixes F.

By the same argument as in the previous lemma, o is a permutation of T, so namely o(T) =T C E.
Thus o(T) C E. But o fixes F' and sends elements of T' to elements of T', and F' is generated by F' and T,
SO O"E maps into E. But by the previous lemma, o(E) = E, and thus o is an automorphism.

Thus (1) implies (2).

Suppose (2). Let f(z) € F[z] be irreducible and let o € E be a root of f(x). Let 3 € E be a root of
f(z). Then there exists an isomorphism between F'(a) and F(f) which fixes F' (since both are isomorphic
to Flz]/(f(x))) and for which « is mapped to . Let this automorphism be called 7.

Then 7 extends to an embedding o of E into E, but by (2), then ¢ is in fact a field automorphism. Thus
7(a) = B € E, so every root of f(z) is in E, so f(x) factors completely. Thus (2) implies (3).

Suppose (3). Let S = {Min(a, F) : a € E}. By (3), all polynomials in S split completely in E, so F is
the splitting field for S over F. Thus (3) implies (1), and all three criteria are equivalent.

O

Definition 12. If E/F satisfies any of the equivalent conditions in Proposition [7} then E/F is called a
normal extension.

Example 6. If [E : F] =2, then E/F is normal.

Remark 6. Let E/F and F/K be field extensions. If E/K is normal, then F/F is normal. This follows
directly from the criterion 1 in Proposition [7}

However, F'/K may not be normal. For instance, let K = Q, F' = Q(+/2), let w be a primitive third root
of unity, and let £ = Q(w, v/2). Then E is the splitting field of 3 — 2, but F/K is not normal since z° — 2
has a root but does not factor completely.

Remark 7. If E/F and F/K are normal extensions, then it does NOT follow that F/K is normal.

For instance, if K = Q, F = Q(v/2), and E = Q(+/2), then E/F is degree 2, hence normal, and similarly
F/K is also degree 2, hence normal.

However, 2* — 2 has a root in E but does not factor completely.

4.1 Day 7 - September 9

Recall from last class that if K C L C E are field extensions and E/K is normal, then E/L is normal. If E
is the splitting field for a set S C Klx], then E is also the splitting field for S as a subset of L[x].

Exercise 3. Let {E,}aca be a set of subfields of a field L, and suppose each F,, is normal over a fixed field

F. Then ﬂ FE, is normal over F'.
a€cA

Definition 13. Let E/F be an algebraic field extension. Then normal closure of E/F is ﬂ K. By

ECKCE
K/F normal

the previous exercise, this is normal, and by construction it is the smallest normal extension of F' containing

E.

Example 7. Let E = F(a1,...,ap). Let fi(z) = Min(a;, F), and let f(z) = f1(x)...fn(2).
Then the normal closure of E/F is the splitting field for f(z) over F.

Proposition 8. Let F/F be a normal algebraic extension. Suppose E/F is inseparable. Then there exists
a € E\ F such that « is purely inseparable over F'.
(Remark: This is false if E//F' is not assumed to be normal.)

Proof. Let a € E, such that « is inseparable over F. Let f(x) = Min(a, F'). Since « is inseparable over F,
then its minimal polynomial is of the form f(z) = g(2*) for some g(z) € F[x].
In Efz], we can factorize g(z) = (z — a1)...(x — o).
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So f(z) = g(zP) = (2P — ay)...(xP — ). For each i, let 3; € E be a root of 2P — ;. Then 7 = «; for
all i, so f(z) = (aP — B7)...(a" — B2) = ((z — B1)...(x — B2))P.

But each 3; is a root of f(z), and f(z) € Flx] is irreducible and has a root o € E. But E/F is normal,
so f(x) factors completely in E[z]. Thus each §5; € E.

Let () = (z — B1)...(x — Bn) € Elz]. Also, {(z)? = f(z) € F[z] (and 4(x) ¢ Flx] since f(x) is
irreducible). Therefore, there exists a coefficient in #(z) which is not in F'. Let us call that coefficient c¢. But
the corresponding coefficient in ¢(z)? is ¢P, which is in F. Thus ¢ € E \ F, and ¢ is purely inseparable (by
the definition). O

Definition 14. If E/F is a field extension, then we say F"*®? = {a € E|« is purely inseparable over F'}.
We call F™"*¢P the inseparable closure of F (over E).

Time for Galois Theory!

Definition 15. Let E/F be a field extension. Let Aut(E/F) = {¢ : E — FE|¢ fixes F'} (C {¢ : £ —
E|¢ fixes F'}. We call Aut(E/F) the automorphism group of E/F (and yeah, it is a group).

Remark 8. Let E/F be a finite extension. Then
1. |Aut(E/F)| < [E : F]s with equality if and only if E/F is normal.

2. |[Aut(E/F)| < [E : F)] (this follows immediately from the first part), with equality if and only E/F is
normal and separable.

Definition 16. Let E/F be an algebraic extension. If E/F is normal and separable, then we say that E/F
is a Galois extension. In this case, Aut(E/F) is called the Galois group, and we denote it Gal(E/F).

(By the previous remark, note that if E/F is finite, then E/F is Galois if and only if |Gal(E/F)| = [E :
Fl.)

Example 8. Let E be the splitting field of 2% — 2 over Q. The roots of 2% — 2 are /2, w+/2, w?+/2, where
w is a primitive third root of unity.

So E = Q(w, ¥/2). We can draw a chart of the intermediate fields as Q C Q(¥/2) C Fand Q C Q(w) C F
(wow, it would really help if T could draw diagrams in LaTeX... I should probably learn). Note that
[Q(/2: Q] =3 and [Q(w) : Q] =2, so 3|[E : Q] and 2|[E : Q]. Thus [E : Q] > 6. But at the same time it
is at most 6 (since it can at most permute the roots, and there are only 3! = 6 permutations of 3 roots), so
[E: Q] =6.

Then Gal(E/F) = {permutations of the roots of z3 — 2}. Alternatively, if 0 : E — E by w — w? and
2 \3/5, and 7: F — F by w — w and /2 — w/2. Then we can present the group as < 0,7\02 =1,7=
1,70 = o712 >.

Remark 9. If you are working over a field of characteristic 0, separability is free. Therefore, Galois-ness is
equivalent to normality.

27mi

Example 9. Let E be the splitting field for 2™ — 1 over Q. Then F = Q(w), where w = e™» (a primitive
n-th root of unity).

Furthermore, Min(w,Q) = ®,(x) which has degree ¢(n), so [Q(w) : Q] = ¢(n).

Define ¢, : E — E by w — w;. Then Gal(E/Q) = {¢;| ged(i,n) = 1} (and one should check that ¢; = 1;
if and only if ¢ = j mod n). Then Gal(E/Q) = Z), so |Gal(E/Q)| = |Z)| = ¢». Thus the extension is
Galois.

(But actually, we already knew this: the extension is separable because it is over fields of characteristic
0, and it is normal since it is a splitting field. Thus it is Galois.)

5 Fundamental Theorem of Galois Theory

5.1 Day 8 - September 11
Special thanks to Matt Mills for letting me use his laptop today!
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Example 10. Let E be the splitting field of 2° — 2 over Q. Then E = Q(w, ¥/2), where w is a primitive
5-th root of unity.

Then what is the degree of the extension? Well [Q(w) : Q] = 4 and [Q(¥/2) : Q] = 5, so the degree of

What is the Galois group? Let L; = Q(w), Ly = Q(+/2), and E = Q(w, v/2). Then we define 7: E — E
by V2 + ¥/2w (and fixing L;). Observe that 7 has order 5. We also define ¢ : E — F by w + w? (and
fixing Ly). Observe that o has order 4.

Thus o and 7 generate Gal(E/Q) = G. What is the relation between 7 and 0? By Sylow’s theorem, < 7 >
is normal in G. Thus o7~ = 7° for some i between 1 and 4. In particular, o(7(v/2)) = o(wv/2) = w?V/2.
Also, 7(0(¥/2)) = 74(v/2) = w'v/2. Thus i = 2, and we can present G by G =< o,7|0* = 1,7° = 1,07 =
20 >.

Theorem 11 (Fundamental Theorem of Galois Theory). Let E/F be a finite Galois extension, and let
G = Gal(E/F). Then we have maps from {intermediate fields of E/F'} to {subgroups of G} and vice-versa,
given by

o If H<G,let Ey ={a € FElo(a) = for all 0 € H}. We call Ey the fized field of H, and it is indeed
an intermediate field between E/F. We say ¢(H) = Ep.

e Let L be an intermediate field of E/F. Then E/L is Galois, and Gal(E/L) < G. We say ¢(L) =
Gal(E/L).

Then ¢ and 1+ are inverses. That is L = Egag/rL), and H = Gal(E/Eg).

Proof. We first show that L = Eqgq(g/r)- Recall that Eg,g/r) denotes the set of elements that are fixed
by every automorphism which fixes L. Then certainly L C Egag/L)-

Instead suppose a € Egqyp/r)- Let o : L(a) — L = E be any embedding which fixes L. The number of
such os is [L(«) : L]s, but since E/L is Galois, it is separable, so this equals [L(«) : L].

Let 7 : E — E be any extension of 0. As 7 fixes L, and E/L is normal, we have that 7 : E — E, so
T € Aut(E/L) = Gal(E/L). Since a € Ega(e/1), T() = . But recall that 7 L =080 o(a) = «, and

since o was arbitrary, then o = id. Hence, 1 = [L(«a) : L]s = [L(c) : L], so a € L. Thus L = Egqig/L)-
[Proof that H = Gal(E/Ey) comes later.]

Lemma 5. Let E/F be a separable algebraic extenion such that there exists n satisfying [F(«) : F] < n for
all « € E. Then [E: F] <n.

Proof. Choose o € E such that [F(«) : F] is as large as possible (we can find such an a because these degrees
are bounded above by n).

Suppose for the sake of contradiction that F(a) # E. Then there exists some § € E \ F(«). Then
[F(a, ) : F] > [F() : F]. But by the first primitive element theorem (which we did not prove in class),
there exists v € F(«, ) such that F(a,8) = F(v), so this is a contradiction of the assumption that o was
maximal. Thus F = F(a), and [E : F] = [F(a) : F] < n. O

Theorem 12 (Artin’s Theorem). Let E be a field, and let G be a finite subgroup of Aut(E). Let
E¢ ={a € Elo(a) = a for all 0 € G}. Then E/E¢q is Galois and finite, and G = Gal(E/E¢).

Note that Artin’s Theorem makes it very easy to prove the second part of the Fundamental Theorem of
Galois Theory:

Proof. If H is a finite subgroup of Aut(E) = Gal(E/F), then by Artin’s Theorem, H = Gal(E/Ey). O
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5.2 Day 9 - September 14

We shall begin by proving Artin’s Theorem, which will finish our proof of The Fundamental Theorem of
Galois Theory.

Theorem 13. Let E be a field, and let G be a finite subgroup of Aut(E). Let Eq = {a € E|o(a) =
a for all o € G}. Then E/E¢ is Galois, and Gal(E/Eg) = G.

Proof. Let « € E. Let ¢1(«),...¢-(a) be the distinct maps of « under G (where each ¢; € G).
Let G = |n|. Then r < n.
If 7 € G, as 7 is one-to-one, then 7¢;(a),...,7¢. () are distinct, so 7 is merely permutes the set
s

{$1(a),...0r()}. Let f(z) = H(m — ¢i(@)). Then for all 7 € G, f7(z) = f(z) (where f7(z) denotes
i=1

the polynomial given by applying 7 to the coefficients of f(x)). Thus f(z) € Eglz].

Also note that f(a) = 0.

So, Min(«, Eg)|f(x). Since f(x) has distinct roots, then so does Min(a, E¢). Thus « is separable over
Eg for all a € E. Thus E/E¢ is separable.

Note that [Eg(a) : Eg] < degf(x) =r < n for all @ € E. Thus [E : Eg] < n by the lemma from last
class.

Note that for all @ € E, Min(«o, Eg) splits in E[z] (since f(z) does). But if f(x) € E[z] has a root a,
then f(x) = kMin(a, Eg), so f(x) splits completely. Thus the extension is normal. Thus E/E¢ is Galois.

Certainly, G < Gal(E/Eg). Then |Gal(E/Eg)| > |G| = n. But |Gal(E/Eg)| = [E : Eg] since this is a
Galois extension, but [E : Eg] < n, so G = Gal(E/Eg). O

Remark 10. Let E/F be a finite Galois Extension, and let G = Gal(E/F). Then,

1. If L is an intermediate field, then |Gal(E/L)| = [E : L] (since E/L is Galois).
2. If H < G, then |G| = [E : Eg]. This follows from part 2 of the FTGT since H = Gal(E/FEg).

3. If L1 and Lo are intermediate fields, then Ly D Ly <= Gal(E/L1) C Gal(E/Ls), and if H; and
Hy are subgroups of G, then Hy < Hy <= FEpg, D Ep,. The forward directions are easy, and the
backwards directions follow from the forward directions plus the Fundamental Theorem.

Example 11. Let E = Q(w, v/2), the splitting field of 23 — 2 over Q. Let’s find generators of all the
intermediate fields of E/Q.

Let G = Gal(E/Q) =< 0,7 > where o fixes w and sends /2 — w2, and 7 fixes ¥/2 and sends w — w?.

Since this group is isomorphic to S3, then every proper subgroup is of order 2 or 3, and is hence cyclic.
In fact, the subgroups are < ¢ >, < 7 >, < 0T >, < 027 >. Then the subfield lattice is the subgroup lattice
but order-reversed.

Since all of our extensions in this case are prime, then we can merely check that we adjoin a single things
fixed by our generator and which is not rational.

Then the subfields are F,» = Q(w), E<;s> = Q(/2), E<grs = Qw?V/3), and E_,2,» = Q(wv/2).

Proposition 9. Let E/F be a finite Galois extension. Then E/F is separable, so by the first Primitive
Element Theorem, E = F(«) for some a € E. Let H < Gal(E/F) = G. Then

1. Min(a, Efr) = H(az—h(a)).
heH

2. If Min(a, Egr) = 2™ + ¢pp_12™ 1 + ....co, then Eg = F(cpm_1,..., o).
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Proof. Let E/F be a finite Galois extension, and suppose E = F(«), and let H < Gal(E/F). Furthermore,
let f(z) = [] (z = h(a)).

heH
For all 7 € H, we have that f7(x) = f(x) since TH = H (where f7(x) denotes 7 applied to all the

coefficients of f). Thus f(x) € Eylz].

Note that degf(x) = |H| = [E : Eg] = [En(a) : Eg|. Since f(a) =0, then Min(o, Eg)|f(z). But since
f(z) and Min(a, Ey) have the same degree (and are monic), then f(z) = Min(«a, Ey), as desired.

Let L = F(co,...,¢m—1), and note that E = L(a). Since f7(x) = f(z), then each ¢; is fixed by each
element in H, so L C Ey. But f(x) € L[z], so f(z) is irreducible in L[x] (since it is irreducible in Ey[x]).
Thus f(x) = Min(a, L), so [E: L] = [L(«) : L] = degf(z) = [E : Egl, so L = Ey. O

Example 12. Let w be a primative 19th root of unity. Let E = Q(w), a splitting field for z'% — 1 over Q[z].
Then Gal(E/Q) =2 Z7, = Cis (where Cig is the cyclic group of 18 elements).

Note that Gal(E/Q) is generated by ¢ : w + w?. Thus the subgroups of G are generated by ¢15 = ¢,
b7 = ¢S, ¢ = ¢3, and ¢4 = ¢3.

Let E; denote the subfield of E fixed by ¢;. Then the subfield orders are given by Q C Eg C F13 C E,
QCE4sCE;CEFE,and Eg C F7.

How do we write these nicely? Let’s do Er, for which H; =< w7 >. Then the corresponding polynomial
is (z —w)(z—w)(z—wl) =2° - (W+w +whz? + (W + w2 + Wz — 1. Thus E; = Q(w® + w!? +
WS, W+ w’ +w'h).

5.3 Day 10 - September 16
Recall Artin’s Theorem from last class:

Theorem 14. Let E be a field, and let G be a finite subgroup of Aut(E). Let Eq¢ = {a € Elo(a) =
a for all o € G}. Then E/E¢ is Galois, and Gal(E/Eq) = G.

Here’s an application of it:
Let K be a field and let z1, ..., x, be indeterminants over K. Let F = K(x1,...,z,) = {% fg€
Klz1,...x,]}. Given o € S, define 6 : E — E by sending z; to x,;.

. _ ~ Swgwg—wi _ 3I4I§—m§
For example, if o = (13)(24), then J(m%m2+m3+m%) = Foaterrel

Observe that some polynomials are fixed by all &. For instance, 1 + ... + x,, and x1x3...x, are fixed by
all 7.

Let L = Eg, (the fixed field under S,). We call L the field of symmetric rational functions.

What are field generators for L/K?

By Artin’s theorem, since S,, is a finite subgroup of the automorphism group of E, then E/L is Galois
and Gal(E/L) = S,,. Also, [E : L] =|S,| = nl

n

Let ¢ be another indeterminant over E. Consider f(t) = H(t — x;) € E[t]. Note that f7(t) = f(t).

i=1
Thus all coefficients of f(¢) are in L. That is, f(t) € L[t]. Let s; be the coefficients in L such that
f(t) =t" — 511" 4+ 55t" 2 + .. + (=1)"s,. Then, for instance, s; = x1 + ... + T, and 8, = T1T9...Ty,.

Theorem 15. If K, L, E, and s; are as before, then L = K(s1, ..., 8p).

Proof. We’ve already shown that s; € L for all 4, so K(s1,...,8,) C L.

But observe that f(t) splits in £ = K(s1, ..., $n) (1, ..., ), and in fact F is the smallest field that f(¢)
splits in (since if it splits, each x; must be in the splitting field). Thus E is actually the splitting field of f(¢)
over K(s1,...,8n).

Since degf(t) = n then [E : K(s1,...,8,)] < n! (by elementary abstract algebra). However, [E : L] = n!
by Artin’s theorem. Then

n!-[L:K(s1,....,8,)] = [E:L][L:K(s1,...,8)]
= [E:K(s1,-,Sn)]
< nl!



Thus [L: K(s1,...,8,)] =1, and L = K(s1, ..., $5) O

Theorem 16 (Fundamental Theorem of Galois Theory, Part 3). Let E/F be a finite Galois extension,
let G = Gal(E/F) and let L be an intermediate field. Let H = Gal(E/L). Then L/F is normal if and only
if H < G. Furthermore, if L/F is normal, Gal(L/F) 2 G/H.

Proof. Suppose L/F is normal. Define ¢ : G — Gal(L/F) by 0 — o L It is easy to see ¢ is a group
homomorphism.
What is the kernel of ¢? Well, o € ker ¢ if and only if o L= 1y if and only if ¢ fixes L, which is the case

if and only if 0 € H. Thus H = ker¢. But every kernel is normal in the group, so H < G, as desired.

Furthermore, since every 7 € Gal(L/F) can be extended to some o € Gal(E, F'), then ¢ is onto.

Then we can apply an Isomorphism Theorem (of groups): that G/ker(¢) = im(¢) = Gal(L/F). Since
ker(¢) = H, then G/H = Gal(L/F), as desired.

Conversely, suppose H<1G. We wish to show that L/F is normal using the definition that every embedding
of L into L = F which fixes F in fact is an automorphism of L. To that end, let o : L — F be an embedding
which fixes F. Let o € L, and let h € H. We can extend o to 7 : E — E. But since E/F is Galois, it is
normal, so since 7 fixes F, then in fact 7 maps into E. Thus 7 € Aut(E/F) = Gal(E/F) = G. Since H <G,
then there exists some h’ € H such that 7='ht = h’. Thus 7~ *h7(a) = W (a). But H = Gal(E/L), and
a € L, so W (a) = a. Thus by transitivity, 77 1hr(a) = a, so h(1(a)) = ().

But h was arbitrary, so 7(«) is fixed by every element of H = Gal(E/L). Thus 7(a) € L. Recall that
o(a) = 7(a), so o(a) € L. But o was an arbitrary element of L, so o maps every element of L to an element
of L. That is, o is an automorphism of L/F, as desired. O

6 Norm and Trace

Definition 17. Let E/F be a finite extension. Let o1, ...,0, be the distinct embeddings of E — F fixing
F. (Sor=[E: F|s by the definition of separable degree.)

r [EZF]insep
Define the norm of E/F as NE: E — E by a (Hai(a)> .

i=1

Similarly, we define the trace of E/F as Trl : E — E by a — [E : Flinsep (Z ai(a)> .
i=1
Example 13. Let E = Q(v/2) = {a + bv2|a,b € Q} (and F = Q, of course). Then there are only two o;:
the identity, and ¢ : a 4+ bv/2 — a — b\/2. Then N(a+ b\/i) =a? — 2b? and Tr(a + b\/ﬁ) = 2a.

Example 14. Let F = Q(3/2) = {a + b¥/2 + c¢V/4|a,b,c € Q} (and F = Q, of course). Then there are now
three o;: the identity; o, which is generated by o : V/2 — w+/2 (where w is a primitive 3rd root of unity); and
02. Then N(a+bv/2+cv/4) = a+bv/2+cV/4+0(a+by/2+cV/4)+02 (a+b¥/2+cV/4) = a®+2b3+4c® —6abe € Q.
Also, Tr(a 4+ b¥/2 + c¢v/4) = 3a (since 1 +w +w? = 0, and a few steps of algebra).

Example 15. (An inseparable example) Let E = F,(t), and F' = F,(t?) (where ¢ is some indeterminant).
Then we have seen that E/F is purely inseparable, with [E : Flipsep = p, and [E : F|g = 1. Since
the separable degree is only 1, there is only the identity map, so for all 3 € E, N(8) = P € F. Also,

Tr(B) =p- 6 =0.

Remark 11. The trace always “degenerates” whenever E/F fails to be separable. That is, if [E : Flinsep >
1, then Tr(3) =0 for all 8 € E.
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6.1 Day 11 - September 18

Recall from last class the norm and trace: if E/F is a finite extension, and o1, ...0,. are the distinct embeddings

[E F]'Lnaep
of F into E, then we say NE(a (H oi(a ) , and Trk(a) is the additive version for all a € E.

Lemma 6. Let E/F be a finite separable extension. Then for all o € E, NE(a) € F and Tr&(a) € F.

Proof. Let o1,...0, : E — F be the distinct embeddings of E into F which fix F. Let L be the normal
closure of E/F. In particular, by the primitive element theorem, E/F is generated by as single element, so
E = F(a) for some a € E, and then L is the splitting field of Min(a, F') over F'.

As proved on the homework [edit: see immediately below], L/F is separable, and since it is normal, then
L/F is Galois (and also finite). Let G = Gal(L/F). For each ¢ € G, ¢o1,...¢0, are distinct embeddings
from E — F fixing F. (We can do this because Im(o;) C L for all i as L/F is normal.)

Thus each ¢ € G permutes o1, ...0,

Let a € E. Then

¢(NF(a) = ¢(o1(a),...;on())
(¢o1)(a)...(¢or) ()
o1(a)...or(a)

= NE( )

Thus N is fixed by all ¢ € G. Thus NE(a) € Lg = F, as desired.
The proof for trace is identical. O

Homework Problem 3. Let E/F be a separable algebraic field extension, and let L be the normal closure
of E/F. Then L/F is separable.

Remark 12. Recall that if [F'(a) : Flinsep = p", then aP” is separable over F.
Theorem 17. Let E/F be a finite extension. Then for all a € E, NE(a) € F and Tr&(a) € F.

Proof. We know that [E : Flipsep = p”. By the lemma, it suffices to consider the case n > 0.

The claim for trace is boring: Trk(a) = p™(blah) = 0 € F for all a € E.

It then suffices to check NEZ(a) € F. Let L be the separable closure of F in E. By a homework problem
[edit: see immediately below|, E/L is purely inseparable. That is, [F : L]s = 1. Let r = [E' : Flg = [L :
Fls=I[L:F]. B

Then there are r embeddings of L into F' which fix F' (by the definition of separable degree). Let us call
them o1, ..., 0.

Extend each o; to 7; : E — F. But each embedding of E — F which fixes F' can be restricted back down
to some o, 50 71, ...7, are the distinct embeddings of E — F which fix F.

Let a € E. Then [L(a) : Llinsep < [E : F]msep p", so aP” is separable over L. Thus o?" is separable
over F since L/F is also separable. Therefore a?" € L.

Then
r [E:F]inss:p
Ni(a) = (Hﬂ‘(a)>
i=1

n

= (Hﬂ'(@)

= HTz‘(Oépn)
= Hgi(apn)

= Ng(a™)

20



Since L/F is separable and o?" € L, then by the lemma, Nk (a?") € F. Thus NE(a) € F as desired. [

Homework Problem 4. Let E/F be an algebraic field extension and let K = F*°P the separable closure
of F in E. Then E/K is purely inseparable.

Proposition 10. Let E/F be a finite extension. Then
1. For all o, 8 € E, N(af) = N(a)N(B3). In particular, NF : EX — F* is a group homomorphism.

2. For all @, 8 € E, and ¢ € F, Tr(a + ) = Tr(a) + Tr(8) and Tr(ca) = ¢T'r(a). Thus Trk : E — F is
an F-linear transformation (a “linear functional”).

3. For a € F, NE(a) = alFF1,
4. For a € F, Tri(a) = [E : Fla.

5. If K is an intermediate field, then NF = NJ o FE and Try = Trk o Tr¥.

Proof. Observe that (1) and (2) follow from the fact that the o;s are automorphisms, so they respect addition
and multiplication.

Observe that (3) and (4) follow from the fact that the number of o; is the separable degree, and that if
a € F, then 0;(a) = « for all i.

We will now prove (5). Let ¢1, ..., ¢s be the distinct embeddings £ — F fixing K. (So s = [E : K]s).

Let 01,...,04 : K — F be the distinct embeddings fixing F.

Extend each o; to 7, : E — F.

We claim that the {7;¢;} are distinct embeddings of E — F fixing F.

Suppose T;¢; = Tr¢;. Then restrict these both to K. But the ¢s fix K, so they are the identity when

restricted to K, and thus Ti’K = Tk)K. But 7; o o; and 7 s 0k. Thus ¢ = k, and by applying 7'2»—1, we
get that ¢; = ¢; so j = 1. Thus the 7;¢; are distinct.

Note that #{r;¢;} = st = [£ : K]s[K : F|s = [E : F|s. But then we have found the right number of
distinct embeddings of £ — F' fixing F', so this is the correct list of all embeddings.

Then,

NENE(@) = NE | []oy(e)e e
J

[B:Klinsep i Flinser

Hﬂ' H(ﬁj(a)

[E:Flinsep
= | [[7e(@
2]}
= Ng(a)
The proof of trace is similar but with sums instead of products. O

Lemma 7. Let 01,...0 : E — L be distinct nonzero field homomorphisms. Then {07, ...0,-} is a linearly
independent set over L, in the sense that if cyo1 + ... + ¢.0 = 0 as a linear transformation, where each
¢; € L, then ¢; = 0 for all 3.

Proof. We induct on r. If r = 1, then if ;09 = 0, then ¢; = ¢;0(1) =0, so ¢; = 0.

In the inductive case, suppose r > 1, and assume for the sake of contradiction that cio1 + ...cro. = 0,
where ¢; # 0 for some i. By the inductive hypothesis, we can in fact assume that ¢; # 0 for all 7. Our
inductive hypothesis also lets us assume that there is no shorter linear dependence among the o;s.
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As 01 # 09, there exists some S € E such that 01(8) # 0 and 01(8) # 02(8).
Then for all o € E, we have that

ET:CZ'O};(O[) = 0
=1

= ZCiUi(Oéﬂ)

=1

= Zcmi(a)ai(ﬁ)

cioi(B)
o1 (ﬁ)
previous equation, we get that a non-zero linear combination of o9, ...0, is 0. Thus we have found a linear
dependence among r — 1 of the s, which contradicts the inductive hypothesis. Thus o1, ..., 0, are linearly
independent. O

T
Thus we can divide by o1(8) to get that cio(ay) + Z ( ) oi;(a) = 0 and subtracting from a
i=2

6.2 Day 12 - September 21

The first exam will be coming soon: probably either Wednesday October 7 or Wednesday October 14. But
maybe we won’t have class on Friday October 16.
Recall the following theorem from character theory:

Theorem 18 (Linearly Independent Characters). Let o1,...0, be distinct field embeddings from E
into L. Then o1, ...0, are linearly independent (as linear transformations) over L.

Corollary 4. If E/F is finite separable, then Tr% # 0. If E/F is inseparable, then Tr% = 0.

Proof. If E/F is separable and finite, Trg = 01 + ... + 0. This is a non-zero linear combination, so it is
non-zero.

If E/F is inseparable, then recall that the trace is multiplied by the inseparable degree. The inseparable
degree is p™ for some n > 1, but p is the characteristic, so Tr? is always zero. ]

Definition 18. Let E/F be a finite extension. The extension is called cyclic (respectively abelian, solvable,
nilpotent, etc.) if E/F is Galois, and Gal(E/F) is cyclic (respectively abelian, solvable, nilpotent, etc.).

Theorem 19 (Hilbert’s Satz 90). Let E/F be a finite cyclic extension, let o be a generator for Gal(E/F),
and let 8 € E. Then N(B) =1 if and only if 8 = 7(ay for some o € E.

@ )= o(a)...0™(a)
(@)’ o2(a)..cnt1(a)

n—1
Proof. Suppose 3 = ;5. Let n be the order of 0. Then NE@B) = H o' (B) = o'(
o)
1=1

1 since o” = id.
Suppose instead that N(8) = 1. Then by Theorem {1,0,...0""1} is linearly independent.

n—1
Let ¢ : E — E by ¢(x) = 8- o(z). Note that ¢™(z) = <H a(B) | (e™(z)) = N(B)o™(x) =1 -2 =z for
i=0
all € E. '
n—1
Let g : E — FE be given by g(z) = Z ¢'(x). By gathering up all of the o terms in ¢*, we can see that g
i=0

is a linear combination of os. But one of its coefficients (namely the one on the 1 term) is nonzero, so since
the o's are linearly independent, then g # 0. Let u € F such that g(u) # 0. Let & = g(u). Then
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Thus fo(a) = «, so = =%~ as desired.

a(e)

O

Remark 13. Let F be a field and let n > 1 such that Char F {n. Then 2™ — 1 has n distinct roots on F.

The set of roots, called U, is a subgroup of 7. Furthermore, U, is cyclic. Any cyclic generator of U, is
caled a primitive n-th root of 1.

Theorem 20. Let E/F be a finite extension. Assume F contains a primitive n-th root of 1. Also assume
Char F { n. Then E/F is cyclic of degree dividing n if and only if there exists some « € FE such that
E=F(a)and o™ € F.

Proof. Suppose E/F is cyclic of degree dividing n. Let [E : F] = d (so n|d). Let ¢ € F be a primitive n-th
root of 1. Then w = (4 is a primitive d-th root of unity.

Note that NEZ(w™') = (w™1)IFF] = 1. By Hilbert’s Satz 90, there exists o € E such that w™! = EOR
where Gal(E/F) =< o >.

Then o(a) = wa, so 0'(a) = wla for i =0,....,d — 1.

Since Char F { d, we can say that a,wa, ...,w? !a are all distinct, so [F(a) : F|g > d, since a — w'a
are d distinct embeddings of F(a) into E. But d < [F(a) : Fls < [F(a) : F] < [E : F] = d, so all of these
equal d. Thus F = F(a).

It then suffices to check that o™ € F. Since E/F is Galois, it suffices to check that o™ is fixed by all
elements of Gal(E/F). Note that o(a”) = (0(a))” = w"a™ = o, so a" is fixed by 0. But Gal(E/F) is
generated by o, so a™ is fixed by all automorphisms, and thus a™ € F', as desired.

Conversely, suppose there exists an « € F such that £ = F(«), and 8 = o™ € F.

Then « is a root of 2™ — 8 € F|z]. By hypothesis, F' contains a primitive n-th root of unity. Let w be
such a root of unity. Then wia (for i = 0,...,n — 1) are all of the roots of ™ — 3. Thus F(«) is the splitting
field of ™ — .

So F(«a)/F is normal. Also, Min(«a, F)|z™ — (8, so Min(a, F) has distinct roots. Thus « is separable
over F, so F(«)/F is separable. Since it is separable and normal, F'(«)/F is Galois.

Let G = Gal(E/F). If o € G, then o(a) = w'" (a) for some i, = 0,...,n — 1. Define ¢ : G =< w > by
Y

We claim 1) is a group homomorphism. Let o,7m € G. Say o(a) = w'a and 7(a) = w/a. Then
om(a) = (wt)a. Thus (o) (n) =i+ j = (o), so 1 is a homomorphism.

Furthermore, note that o € ker if and only if (o) = 1 if and only if o(a) = «, which is the case
precisely when o = id. Thus % is injective, so G is isomorphic to a subgroup of a cyclic group of order n.
Thus G is cyclic of order d|n.

O

Remark 14. This is the key step to showing that not all equations are solvable by radicals.
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6.3 Day 13 - September 23

The first Exam will be Monday, October 12, from 3-6. The actual exam will be only 2 hours, and we get to
choose when we start.
Recall the following foreshadowing theorem from the last class:

Theorem 21. Let E/F be a finite extension. Assume F contains a primitive n-th root of 1. Also assume
Char F t n. Then E/F is cyclic of degree dividing n if and only if there exists some o € E such that
E=F(a)and o" € F.

But now let’s ignore it and look at something else:

7 Solvable Groups and Radical Extensions

1

Definition 19. Let G be a group. A commutator is an element of the form zyxz~'y~! for some z,y € G.

The commutator subgroup G’ of G is the subgroup of G generated its commuators.

Definition 20. A subgroup H < G is a characteristic subgroup if ¢(H) = H for all Y € Aut(G). We use
the notation H Char G.

Remark 15. We have the following results:
1. H Char G < ¢(H) C H for all ¢ € Aut(G).
2. H Char G implies H < G.
3. G' Char G

Let us prove the last part:

Proof. Tt suffices to show that if ¢ € Aut(G), then ¢(G') C G'. It suffices to show that each commutator is
sent into G’. But ¢(zyz~ty™t) = ¢(x)d(y)o(x) te(y) L, so G’ Char G. O

Remark 16. Since G’ Char G, then G’ < G.
Proposition 11. Let G be a group and let H < G. Then

1. G/G is abelian.
2. If H <G and G/H is abelian, then G’ < H.
3. If @ < H, then H < G and G/H is abelian.

Proof. (Part 1) In G/G’, for all z,y € G, 7yz 'y~ ! =1, so 7y = yz. O
(Part 2) Let 2,y € G. Then in G/H, Ty = T, so xyz~ty~t =1, so zyr 'y~ € H,s0 G’ C H. O
(Part 3) Note H/G" is a subgroup of G/G’. Then H/G' <G /G’, as G/G' is abelian. Thus H <G because

normality lifts.
O

Definition 21. Let G(°) = G, and for all i, let GO+ = (GO,
The derived normal series of G is ... < G <GV 4 GO = @G.
A group G is called solvable if G™) =1 for some n > 0.

Remark 17. If G is a group, then G = 1 if and only if G is abelian.

Example 16. Let’s compute the derived normal series of S3. Let H =< (123) > <S3. Then S3/H is
abelian, so Sél) C H. Since Sél) # 1, then H = S:gl).
Then S§2) = H' =1 since H is abelian. So S3 is solvable.
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Lemma 8. Let ¢ : A — B be a surjective group homomorphism. Then ¢(A®) = B for all i > 0.

Proof. We induct on 4. If i = 0, then A® = A and B®) = B. But since ¢ is surjective, then ¢(A) = B, as
desired.

If i = 1, then for all z,y € A, p(zyz— y™) = d(x)p(y)d(x) T (y) ", so p(AD) < BM . If aba='b~" €
B then there exist x,y € A such that ¢(z) = a and ¢(y) = b, so then ¢(zyz—'y~') = aba='b~'. Thus
¢(A(1)) — B

Suppose i > 1, and assume ¢(AG~1) = BG=1_ Then ¢ . is a surjective homomorphism, so we can
apply the ¢ = 1 case to this, proving the inductive case. O

Corollary 5. Suppose H < G and ¢ : G — G/H is the natural map. Then ¢(G)) = (G/H)!"). Also,
H(GD) = GO = %

Theorem 22. Let G be a group, and let H < G. Then
1. If G is solvable, so is H. If, in addition, H <1 G, then G/H is solvable.
2. Conversely, if H <G, and both H and G/H are solvable, then so is G.

Proof. If G is solvable, then G(™ = 1 for some n. Since H®" ¢ G for all 4, then H™ =1, so H is solvable.

If H <1 G, then by the corollary, (G/H)™ = G =1, so G/H is solvable. O
Conversely, suppose we have G(:I)H = (G/H)(") =T for some n. Hence G™ C H, so we have H(™ =1
for some m, and thus Gt = 1. Thus G is solvable. O

Proposition 12. Any p-group is solvable.

Proof. Let G be a p-group, and let |G| = p™. We induct on n. We use the fact that any p-group has a
non-trivial center: If n = 1, then G is cyclic, hence abelian, hence solvable. If n > 1, then consider the
center Z(G). This is certainly normal, and it is abelian, hence solvable. Furthermore, G/Z(G) is smaller,
so by the inductive hypothesis it is solvable. Thus by the previous theorem, G is solvable by the previous
theorem. O

Exercise 4. Any group of order pq is solvable.
Why? If p = q, then we are done. If p < ¢, then the Sylow g-subgroup @ is normal and solvable. Thus
|G/Q| = p, so G/Q is a Ap-group, hence solvable. Thus G is solvable.

Exercise 5. Any group of order pgr (where p,q,r are primes) is solvable. I should prove this by extensive
application of Sylow’s Theorem.

7.1 Day 14 - September 25

Definition 22. A solvable series for a group G is a normal series {1} = G;<...<<Gy = G such that G;/G; 11
is abelian for all 7.

Proposition 13. If G is a group, then G is solvable if and only if G has a solvable series.

Proof. Suppose G is solvable. Then its derived series is a solvable series.

Suppose instead that G has a solvable series {1} = G; < ... <Gy = G. We claim that G < G; for all
i. We prove this by induction on i. If i = 0, this is easy, since Gy = G. Suppose G~V < G;_;. Then
GW = (GU=Y) < G}_, < G; (the last containment is because G;_1/G; is abelian). Thus G® < G; = {1},
so G is solvable. O

This proof also implies that the derived series is the shortest possible normal series.

Corollary 6. If G is a group, then G is solvable if and only if G has a normal series where the factor groups
are cyclic of prime order.
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Proof. Suppose G has a normal series where the factor groups are cyclic of prime order. Then it has a normal
series, so it is solvable by the previous proposition.

Suppose instead that G is solvable. We wish to consider the “longest possible” solvable series of G. First,
note that any time a quotient in a solvable series is the identity, we can remove it. But then in each step,
the group gets strictly smaller, so the lengths of solvable series are bounded by |G|. Thus there is a solvable
series of maximal length. Let {1} = G; < ... < Gy = G be such a series.

Then suppose for the sake of contradiction that some G;/G;+1 is not cyclic of prime order. Since |G;/G 1|
is a natural number greater than 1, it must be composite. But G;/G;11 is abelian, so there exists some
intermediate group H such that G;y; < H < G; and such that H/G;11 is a subgroup of order p. Then
H/G;11<G;/Giy1 as G; /Gy is abelian. Then H <Gy, and G411 <H <G;. Furthermore, this containments
are proper, so we have that this can be inserted into the solvable series. This contradicts the maximality of
the solvable series, so G;/G;41 is cyclic of prime order for all i. O

We will use this exercise for the next theorem:
Exercise 6. Let A,, denote the alternating group on n elements. Then A,, is generated by the 3-cycles.

Theorem 23. Let A, denote the alternating group on n elements. Then A,, is not simple (i.e. it contains
no proper, nontrivial normal subgroups) for all n > 5.

Proof. Suppose K <1 A, and suppose K # {1}.

We will show that K contains a 3-cycle. Choose o € K \ {1} such that o fixes a maximal number of
elements of {1,2,...,n}. Assume for the sake of contradiction that o is not a 3-cycle. Write o as a product
of disjoint cycles. Then there are two possible forms (much WLOGing is going on):

1. 0 = (123...)... (i.e. there exists a 3-cycle or longer)
2. 0 =(12)(34)... (i.e. there are no 3-cycles, i.e. o is the product of disjoint transpositions)

If we are in case (1), then note that since o is not a 3-cycle, then o must move at least two more elements.
Without loss of generality, let those elements be called 4 and 5. Also let 8 = (354), and let 7 = B0~ 1.
Then in case (1), 7 = (124...). In case (2), 7 = (12)(35).... Note that 7 # o.

Now let 7 = 7o~ = Bo3~to~ L. Since 7 # o, then 7 € K \ {1}.

We now wish to show that 7 fixes more elements than o, which will contradict our choice of o. Note that
if i > 5, and o(i) =4, then 7(i) = i.

Also note that in case (1), 7(2) = 2, but o moves 1,2,3,4, and 5. Thus 7 fixes more elements than o.

In case (2), 7(1) = 1 and 7(2) = 2, but 0 moves 1,2,3, and 4, so 7 fixes more elements than o.

Thus in either case, we have a contradiction. Thus o is a 3-cycle, so K contains at least one 3-cycle.

We will now show that o contains every other 3-cycle. Without loss of generality, let the 3-cycle in K be
(123). Let (ijk) be any other 3-cycle. We construct v € S,, by v(1) =i, v(2) = j, v(3) = k. Furthermore,
we choose two other elements [, m such that v(4) = [ and v(5) = m, and we fill out the rest of « any other
way. If 7 is even, then v € A, so v(123)y~! = (ijk) € K since K is normal. If v is odd, then let 7 = (Im)y.
Then 7 € A, so 7(123)7~! = (ijk) € K. Thus K contains every 3-cycle.

Then by the exercise, since A, is generated by 3-cycles, K = A,,. Thus the only normal subgroups of A,
are {1} and A,.

O

Corollary 7. If n > 5, then A, is not solvable.

Proof. Since A, is not abelian, A/ # {1}. However, A}, < A,, so since A, is simple, A} = A,. Thus
AP = A, # {1} for all 4, so it not solvable. O

Remark 18. The quadratic formula says that if F' is a field with characteristic not equal to 2, and f(x) =
ax? 4+ br + ¢ € Flx] (for a # 0), then the roots of f are %@,

Remark 19. Suppose F is a field, and 2 + bz? + cx + d € F[z]. If CharF # 2,3, then by replacing = by
T — %, we get a polynomial of the form f(z) = 23 + pz + q.
The following result of Cardano (in the 1500s) found that the roots of f(z) can be found in the field

E = F(w,d,y1,y2) where w?® € F, §% € F(w), y} € F(w,9), y3 € F(w,d,y1). This is called a root tower.
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7.2 Day 15 - September 28

Recall the following theorem from last class:

Theorem 24. Let E/F be a finite extension, and suppose Char F t n. Suppose also that F' contains a
primitive nth root of unity. Then E/F is cyclic of degree n;|n if and only if E = F(«) for some « such that
a™ e F.

Recall also the remark on the cubic formula from last class:

Remark 20. Suppose F is a field, and 23 + bx? + cx + d € F[z]. If CharF # 2,3, then by replacing = by
T — %, we get a polynomial of the form f(z) = 23 + pz + ¢.
The following result of Cardano (in the 1500s) found that the roots of f(z) can be found in the field
E = F(w,d,y1,y2) where w® € F, % € F(w), y} € F(w,9), y3 € F(w,d,y1). This is called a root tower.
Namely,

W= 1
52 12p° — 81¢°
27 3
2
= q+36
Y1 2Q+2
27 3
3
= q¢-36
Y2 261 2

Definition 23. A field extension E/F is called radical if there exists a sequence of fields F = Ey C Ey C
... C By = E where for each i, E; = E;_1(u;) and u]"* € E;_; for some m; € N.

Definition 24. A polynomial f(x) € Flx] is called solvable by radicals over F if f(x) splits completely in
some radical extension of F'.

Theorem 25. Let f(x) € F[x] be a separable polynomial, and let E be its splitting field. Suppose also that
Char F {[E : F]. Then if Gal(E/F) is solvable, then f(z) is solvable by radicals (over F).

Proof. Let n = [E : F]. We wish to reduce to the case where F' contains a primitive n-th root of unity.

To this end, let w be a primitive nth root of unity, and let L = F(w). Note that since Char F { [E : F],
then there are indeed ¢(n) distinct nth roots of unity.

Note also that f(x) is solvable by radicals over L if and only if its splitting field lies inside a radical
extension R. This is the case if and only if L = Fy C ... C E; = R for some appropriately chosen E;. Let
FE_1=F. Then Ey C ... C E; is a radical tower if and only if ¥y C Ey C ... C E; = R is a radical tower.
This is the case if and only if f(x) is solvable by radicals over E_; = F'.

Thus it suffices to show f(x) is solvable by radicals over L.

By a homework problem [edit: see immediately below]|, EL/L is Galois and G = Gal(EL/L) is isomorphic
to a subgroup of Gal(E/F). By assumption Gal(E/F) is solvable, and a subgroup of a solvable group is
solvable. Thus G = Gal(EL/L) is solvable.

That is, there exists a normal series {1} = G; <... <G <Gy = G. Recall that by a previous result, we
can assume G;/G;y1 is cyclic. If n; = #G;/G;41, then certainly, n;|#G = n.

Let E; be the subfield of EL fixed by G;. (So E; = EL and Ey = F). Then Gal(E;/E;) =G; < G;—1 =
Gal(E;/E;_1). Since the one Galois group is normal in the other, then F;/F;_; is a normal extension, and
Gal(E;/FE;—1) & G;_1/G;, which is cyclic.

Thus by Theorem 24| E; = E;_1(u;), where u;* € E;,. Thus EL/L is a radical extension, so f(z) is
solvable by radicals over L. Therefore it is solvable by radicals over F. O

Homework Problem 5. Let K C E C L and let K C F C L be fields. Suppose E/K s finite and Galois.
Then EF/F is Galois, and Gal(EF/F) is isomorphic to a subgroup of Gal(E/K).

We now want to prove some form of the converse of this theorem.
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Lemma 9. Let E/F be a radical extension, and let L be the normal closure of E/F. Then L/F is a radical
extension.

Proof. Since E/F is radical, E = F(uy,...,us), where there exists some m € N such that u!* € F(uq,...u;—1)
for all 7.

Let o1, ...0, be the distinct embeddings of E — F fixing F.

Let K = F({0;(ui)}:;}, and recall that L denotes the normal closure of F' in E. We claim that L = K.

For each j, let 7; be an extension of o to L — L. Then 7;(u;) = 0j(u;) € L for all 7,5 (since L is the
normal closure), so K C L.

Let 7 : K — F be an embedding fixing F. It suffices to show that this sends elements of K to elements
of K. In other words, it suffices to show that 7(o;(w;)) € K for all ¢,j. Extend m and o; to 7 and
7; € Aut(L/F). Then (wo;)(u;) = (775)(u;). But 77; 5" E — F and fixes E, so 77; 5= Ok for some k.
Thus (7o) (w;) = (775)(w;) = ox(u;) € K. Thus K/F is normal, so K C L. Thus K = L.

It then suffices to show that K/F is radical. To do this, you adjoin the roots in a moderately clever way.
First you adjoin o;(uy) for all ¢, since for all 4, o;(u1)™ = o;(uy"), and since E/F is radical, uy* € F. Also,
o; fixes F, so o;(u1)™ € F.

Then you adjoin o;(uz) for all ¢, and then continue through all the u;s. Finally, you have adjoined all
0j(u;), so K/F is radical. Thus L/F is radical.

O

7.3 Day 16 - September 30
Recall from last class the following lemma (which we proved):

Lemma 10. Let E/F be a radical extension, and let L be the normal closure of E/F. Then L/F is a
radical extension.

We will now prove another lemma:

Lemma 11. Let L/K be a Galois radical extension. Then the Galois group is solvable.

Proof. Since L/K is radical, there is a root tower K = Ky C K; C ... C K; = K, where K; = K;_1(u;)
where ;" € K;_ for all 4.

We wish to show that we can in fact choose m; such that Char K t m; for all i. Suppose for the sake
of contradiction that this is not the case. Then Char K = p, a prime, and let m; = Ip* where p { I. Then
(ué)pt € K;_1, so uﬁ is purely inseparable over K; ;. But L/K;_; is separable, so uﬁ € K;_1. Thus we can
replace m; with [, and p { .

Let m = mj...my. Then Char K {m, and u* € K;_; for all i.

Let w be a primitive mth root of unity. We will now show that, without loss of generality, we can assume
w € K. That is, we will show that Gal(L/K) is solvable if Gal(L(w)/K (w)) is solvable.

Consider the five extensions in K C K(w) C L(w) and K C L C L(w) (namely K(w)/K), L(w)/K(w),
L/K, L(w)/L, and L(w)/K). We claim that all of these extensions are Galois and radical.

In no particular order, we can see that K(w)/K and L(w)/L are the splitting fields of ™ — 1, so they
are Galois and radical. Also, L/K is radical and Galois by our hypothesis. Then since L(w)/L and L/K are
radical and Galois, then L(w)/K is radical and Galois since “radicalness” and “radicalness” are transitive.
It then suffices to show that L(w)/K (w) is radical and Galois. This extension must be radical because L/ K
is radical, and you can take the same radical tower with the same exponents. Furthermore, L(w) = LK (w),
and by Homework Problem |5, LK (w)/K (w) is Galois.

Therefore all of these extensions are radical and Galois.

Let I’ = L(w) and K’ = K(w). Let K] = K;(w).

Then, let H; = Gal(L'/K!). By the theorem on m-cyclic extensions, K//K]|_ is cyclic. Thus H; < H;_1
and H;_1/H; is cyclic. Then Hy = Gal(L'/K') and H, = Gal(L'/L") = {1}, so Gal(L'/K') is solvable.
That is, Gal(L(w)/ K (w)) is solvable.

Also, Gal(K (w)/K) is isomorphic to a subgroup of Z, which is abelian. Thus Gal(K (w)/K) is solvable.

But Gal(K(w)/K) & Gal(L(w)/K)/Gal(L(w)/K(w)), and by a previous theorem, since Gal(K (w)/K)
and Gal(L(w)/K(w)) are both solvable, then so is Gal(L(w)/K).
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But Gal(L/K) = Gal(L(w)/K)/Gal(L(w)/L), and the quotient of a solvable group is solvable. Thus
L/K is solvable.
O

Theorem 26. Let F be a field, and let f(z) € F[z] be a separable polynomial which is solvable by radicals
over F. Let E be the splitting field of f(z) over F. Then Gal(E/F) is solvable.

Proof. Since f(z) is solvable by radicals, there exists some radical extension L/F such that E C L.
By the first lemma (Lemma, we can assume L/F is normal (if not, replace it by its normal closure).

Let G = Aut(L/F). Note that |G| = [L: Flg < [L: F] < 0o. Define ¢ : G — Gal(E/F) by 0 — o & Note
that ¢ does indeed map into Gal(E/F) since E/F is normal.

Furthermore, any 7 € Gal(E/F) can be extended to some o € Aut(L/F) since L/E is algebraic, and
L/F is normal. Thus ¢ is surjective.

Thus to show that Gal(E/F) is solvable, it suffices to show that G = Aut(L/F) is solvable.

Let L¢ be the fixed field of G. By Artin’s Theorem, we know that L/Lq is Galois, and G = Gal(L/Lg).
Also, L/L¢ is radical as F C Lg and L/F is radical.

But by the second lemma (Lemma, G is solvable, as desired.

O

Recall that if wug, ..., u,,z are indeterminants over F, then let g(z) = | |(x — w;) € Fluy, ..., upn,x] C

—-

i=1
F(uy,...u,)[x]. Let s; be the correct polynomial in the u;s such that g(z) = 2" — s12" "1 + ... + (=1)"s,,.
Then the s; are elements of Flug, ..., uy].
We showed that F'(uq, ..., upn)/F($1, ..., $n) is a Galois extension, and the Galois group is S,,. Furthermore,
we showed that F(uq,...,uy) is the splitting field for g(z) over F(s1, ..., 8p).

Definition 25. Let F be a field. The general equation of degree n over F is a™ — t12" 1 + ... + (=1)"t,
where tq, ..., t, are indeterminants over F.

Theorem 27. Let F be a field and let ¢4, ..., ¢, be indeterminants. Furthermore, let L = F(¢1,...,t,), and
let f(z) = 2™ — 12" ! + ... + (=1)"t, € L[z]. Let E be the splitting field of f(x) over L. Then E/L is
Galois and Gal(E/L) &£ S,.

(A proof will be given next class.)

Remark 21. For n < 4, S, is solvable. Therefore the general equation of degree n < 4 is solvable by
radicals, so there exists a single formula for all functions of degree n. That is, there exists a quadratic, cubic,
and quartic formula.

7.4 Day 17 - October 2

We will now prove this statement, which we said last class:

Theorem 28. Let F be a field and let ¢4, ..., ¢, be indeterminants. Furthermore, let L = F(¢1,...,t,), and

let f(z) = 2™ — t12" 1 + ... + (—=1)"t, € Llz]. Let E be the splitting field of f(z) over L. Then E/L is

Galois and Gal(E/L) = S,,.

Proof. Let E = L(y1,...,yn) where 1, ...,y are the n roots of f(x) in L. Then f(z) = H(:E —y;) in E[z].
i=1

Then by definition of the elementary symmetric functions, ¢; = s;(y1, ..., yn) for each i.

Then E = L(y1, ..., yn) = F(y1,...yn) since L = F(ty,...,t,,) and each t; € F(y1,..yn).

Consider the diagram [which I can’t draw lol] of Fly1, ...yn] < Flu1, ..., uy], where this arrow is ¢ given
by plugging in y; for u;. Below this should be F|[ty,...,t,] — F|[s1,...,s,] with containment arrows going
up. Here the function is 9 given by sending ¢; to s;. Since the ;s and w;s are indeterminants, these are
surjections.

Note that ¢(t;) = é(si) = d(si(u1, ..oy un)) = 8i(y1, .oy Sn) = t;. Thus ¢ is the identity on Flty, ..., t,].
Thus v is injective and thus is an isomorphism.
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Now consider a diagram of the field of fractions:
We have L = F(t1,...,tn) C F(y1,...,yn) = E, and B = F(s1,...,8,) C F(uy,...,u,) = A (and these are
F

the respective splitting fields). But we also have o : F(t1,...,tn) — F(s1,...,8,) by o : Tt)) Zg;

But f(z) € Lz] and f7(z) = 2" — sy2™ 1+ ... + (=1)"s, = H(a: —u;). Thus A is the splitting field for
i=1

f over B. As E is the splitting field for f(z) over L, we get an isomorphism 7 : E — A such that T‘L =o0.

Thus we’ve proven A/B is Galois, and Gal(A/B) = S,,. But because we have isomorphisms, F/L is Galois
and Gal(E/L) & S,,. O

Corollary 8. If n < 4, and Char F t n!l, then the general equation of degree n over F is solvable by
radicals.

Proof. This follows from the fact that S, is solvable for n < 4. O

Corollary 9. (Abel’s Theorem)
If n > 5, the general equation of degree n is not solvable by radicals (over any field).

Proof. This follows from the fact that S, is not solvable for n > 5. O]

Exercise 7. Let p be prime. Then S, is generated by any p-cycle and any transposition.

Proposition 14. Let f(x) € Q[z] be any irreducible polynomial of prime degree with precisely two non-real
roots. Let E be the splitting field of f(z). Then G = Gal(E/Q) = S,,.

Proof. As degf(x) = p, and is separable, then every element of G is a permutation of the roots of f(z).
Thus G < 5.

Let o € E be a root of f(z). Then [F(«) : F] = p, since f(z) is the minimal polynomial (assuming,
without loss of generality, that f(z) is monic). Thus pHG |, so G contains an element of order p. But the
only elements of order p in S}, are p-cycles, so G contains a p-cycle. Also, if 7 denotes complex conjugaction
restricted to E, then 7 € Gal(E/F), but 7 is a transposition. Thus by the exercise, G = S,,. O

Example 17. Let f(x) = 2° — 223 — 82 — 2 € Q[z]. By Eisenstein, f(x) is irreducible.

We now use calculus to show that there are exactly three real roots. Observe that f’(z) = 5% — 622 -8 =
(52% 4 4)(2® — 2). The only zeroes of f'(z) are /2, so it has at most 3 real roots (recall from calculus that
between any two zeroes of a function is a zero of its derivative).

Note also that f(—3) = —167, f(—1) =7, f(0) = —2, and f(3) = 163, so by the intermediate value
theorem, f(z) has three real roots. Thus by the proposition, this is a polynomial whose roots do not live in
root towers!

Remark 22. RIP Quintic Formula

Question 2. (Inverse Galois Problem) Is every finite group the Galois group of a finite extension of Q7
This is an open problem.

7.5 Day 18 - October 2

Lemma 12. Let m,n be distinct positive integers, such that m|n. Let p be a prime such that p t n. Then
®,,(z) and 2™ — 1 have no common root mod p.

Proof. We know that 2" — 1 = Hfl)d(:zz) =, (z)- H Oy(z) |. Let f(z) = H ®4(x). Then z™ — 1 =
dn d| d|
d<n d<n
®,,(z) - f(x). Note that ™ — 1 divides f(x).
Suppose for the sake of contradiction that a € Z is a common root of z™ — 1 and ®,,(z) mod p. Then a
is a double root of 2™ — 1. But p{n, so ™ — 1 has distinct roots mod p. This is a contradiction. O
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Theorem 29. Let n > 1 be an integer. Then there exists infinitely many primes congruent to 1 mod n.

Proof. Suppose for the sake of contradiction that there were only finitely many primes congruent to 1 mod
n. Let pq, ..., pr be the complete list of them.

We know that ®,,(x) is monic, so ®,,(s) > 1 for all s sufficiently large.

Choose [ sufficiently large such that @, (Inp;...px) > 2. Note that the constant term of ®,,(z) = £1. Let
a = Inp1...pk.

As I, n, and each p; divides each term of ®(a) except the constant term, then we can see that n { ®(a)
and p; 1 ®(a).

Since ®(a) > 2, there exists a prime p dividing it. Then ®,(a) = 0 (mod p), and since ®,(z)[z™ — 1,
then ¢ — 1 =0 (mod p). Thus a™ =1 (mod p).

Also, p t n, (since if p|n, then pla, so pt ®,(a), a contradiction). By the lemma, a™ # 1 (mod p) for all
m|n and m < n, so the order of a in ZX is n.

But by Fermat’s little theorem, a?~* = 1 (mod p), so n|p — 1 so p = 1 (mod n). But p is not any p;
since no p; divides ®(a). This is a contradiction of our assumption that py,...p; is a complete list of primes

congruent to 1 mod n.
O

Theorem 30. Let G be a finite abelian group. Then there exists a root of unity w € C and a field E C Q(w)
such that F/Q is Galois and Gal(F/Q) = G.

Proof. Recall that by the classification of finite abelian groups, G = C,,, X ... x C,,, where each C,, is a
cyclic group of order n;.

Let p1,...px be distinct primes such that p; =2 1 mod n;. (Remark: in order to do the pathological case
ny = ng = ... = ng, we need the fact that there are infinitely many primes congruent to 1 mod n;.)

Let m = p;y...px. Then Z,, 2 Zy, X ... X Z,, (as rings).

So, Zy, = L, X ... X Ly, as abelian groups.

But for all primes p;, Z,;, is cyclic, and has p; — 1 elements, so Z), = Cp, 1 X ... Xx Cp, —1. As n;|p; — 1,
there exists H; < Cp,_1 of order % Let H=H; x ... x Hy,. Then Z)\/H =2 Cy, X ... x Cl, .

Let w be a primitive mth root of unity, and let £ = Q(w). We've seen Gal(E/Q) = Z.,. Let F = Ey.
As ZY is abelian, F/Q is Galois and Gal(F/Q) 2 Z>,/H = G. O

Stuff before this point: - will be on the exam. Stuff after it will not!

8 Algebraic Independence and Transcendental Extensions

Now let’s start on algebraically independent things.

Definition 26. Let E/F be a field extension, and let S C E. We say S is algebraically dependent over F if
there exist s1,...,8, € S and f(x1,...,2,) € Flx1, ..., T, such that f is nonzero, but f(sy,...,$,) =0.
We say S is algebraically independent over F' if it is not algebraically dependent.

Proposition 15. If S is the singleton {s}, then S is algebraically dependent over F' if and only if s is
algebraic. (Equivalently, S is algebraically independent over F' if and only if s is transcendental.)

Example 18. Let E = F(x,y) (the field of rational functions in z and y). Let S = {22, zy,y*}. Then if
f(u,v,w) = uw—v?, then f(x2,ry,y%) = 0 and f is not the zero polynomial, so S is algebraically dependent
over F'.

Remark 23. Recall the concept from linear algebra that if S is linearly independent and v € S, then SU{v}
is linearly independent if and only if v & Span(S).

We now write a version of this for algebraically independent sets over fields.

Lemma 13. Let E/F be a field extension, and let S C E be an algebraically independent set over F'. Let
u € E. Then S U {u} is algebraically independent if and only if u is transcendental over F'(S).
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Proof. Suppose u is not transcendental over F'(S).Then it is algebraic. That is, there exist f(z) € F(S)[x]
such that f(u) = 0. Since f(z) has coefficients in F(S), there exists sq, ..., s, € S such that each coefficient is
a polynomial in the s;. Then f can be thought of as a root of the nonzero polynomial in n + 1 variables. [

Suppose instead that u is transcendental over F(S). Suppose that g is a polynomial in z1,...,z, such
that g(s1, ..., $n—1,u) = 0. Then this can be interpreted as a polynomial in one variable and sy, ..., $,_1, SO
it is a polynomial in F'(S)[z] with u as a root. Thus it is the zero polynomial.

8.1 Day 19 - October 7

Exam will be next week. The room was decided, but will be announced via email. We need to answer 4 — 5
problems, but there will be more questions than that on the exam. Also, one of the problems will be a
homework problem. Also, Friday will be review.

Recall the following Lemma

Lemma 14. Let E/F be a field extension and S C F an algebraically independent set over F', and let
u € E. Then U U {u} is algebraically independent if and only if u is transcendental over F(.S).

Proof. We proved the “only if” direction last time, so we will prove the “if” direction now.

By way of contradiction, suppose u is algebraic over F'(S). Then there exist sy, ...,$,) € S such that u
is algebraic over F(sq,...,8,). That is, there exists a nonzero polynomial f(z) € F(sq,..., s, )[z] such that
f(u) = 0. The coeflicients of f(x) are of the form % If we clear all denominators, we can find fi(x)
with coefficients in F[s1, ..., s,]. But all denominators are non-zero, so the leading coefficient is non-zero.
Also, fi(u) = 0 still. Then, thinking of this as a polnyomial in 1, ...,2,,z, we have found u as a root.
But {s1,...,8n,u} is algebraically independent over F, so this polynomial cannot evaluate to 0. This is a
contradiction, and we are done. O

Definition 27. Let E/F be a field extension. A set S C E is called a transcendence base for E/F if S is
algebraically independent over F' and E/F(S) is algebraic.

Example 19. Let X and Y be indeterminants over F', and let E = F(X,Y’). Then {z, y} is a transcendence
base for E/F. But so is {X?,Y5}.

Theorem 31. Let E/F be a field extension. Then if L is an algebraically independent set, there exists
a transcendence base of F/F containing L. Since () is algebraically independent, it can be extended to a
transcendence base, so there always exists a transcendence base.

Proof. We use Zorn’s Lemma. Let A={T| L CT C E, T is alg. ind. overF'}. This is partially ordered by
containment. Also, L € A, so A is nonempty.
Suppose C'is a chain of A. Let ¢ = U T. Then T¢ is algebraically independent, since any finite subset

TeC
of T is contained in some T € C.

Thus T¢ is an upper bound for C.

Thus by Zorn’s Lemma, A has a maximal element, say S. Since S € A, then S is algebraically independent.
If E/F(S) is not algebraic, it has a nonalgebraic element u. Then SU{u} is algebrically independent, which
contradicts the maximality of S. Thus S is a transcendence base for E/F. O

Theorem 32. Let E/F be a field extension, and let S, T be two transcendence bases for E/F. If |S| < oo,
then |S| = |T|.

Proof. Let S = {s1,...8,}. Suppose for the sake of contradiction that for all t € T, {t, s2,...,8,} is not
algebraically independent. Then F(T) is algebraic over F(sa,...,s,). Since E/F(T) is algebraic, then
E/F(sg,...,8,) is algebraic. Thus s; is algebraic over F(sa, ..., s,), so S was not algebraically independent.
This is a contradiction, so there exists some ¢; € T such that {¢1, sa, ..., s, } is algebraically independent.
Suppose for the sake of contradiction that E/F(ty, s2, ..., sp) were not algebraic. Since E/F(s1,...,5p)
is algebraic, then E/F(s1, ..., 8p,t) is algebraic. Thus F(s1, ..., $p,t)/F(s2, ..., $n,t) is not algebraic, so s; is
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transcendental over F'(sa, ..., $n,t), 80 {81, ..., $n, t} is algebraically independent by the lemma. But ¢, is alge-
braic over F(sq, ..., S, ), and this contradicts the lemma. Thus E/F(t1, sz, .., $n) is algebraic, so {t1, s2, ..., Sn}
is a transcendence base.

By repeated application of this, we can replace all the elements of S with elements of 7. But the elements
of a transcendence base are always distinct, so in particular these elements of T' must be distinct, so |S| < |T].
One could also do this process going the other way, giving that |7 < |S|, so |T'| = |S| as desired.

O

Definition 28. The transcendence degree of E/F is the number of elements in any transcendence base for

Proposition 16. If E/F is a field extension, then E/F is algebraic if and only if Tr.deg(E/F) = 0.
Theorem 33. Let E/F/L be a tower of fields. Then Tr.deg(E/L) = Tr.deg(E/F) + Tr .deg(F/L).

Proof. Let S C E be a transcendence base for E/F and let T' C F be a transcendence base for F'/L. Note
that SNF =0,s0 SNT = 0. Thus [SUT| = |S|+|T| = Tr.deg(E/F) + Tr .deg(F/L).

Thus it suffices to show that S UT is a transcendence base of E/L.

We first show that E/L(SUT) is algebraic. We know that F' is algebraic over L(T), so F(S) is algebraic
over L(T)(S)=L(SUT). As E/F(S) is algebraic, E/L(S UT) is algebraic.

We now need to show SUT is algebraically independent over Lj Let f(x1, ..., Tm, Y1, ---Yn) € L[T1, ey Tony Y15 ---Yn)
and suppose f(S1, ..., Sm,t1,...t,) = 0 for some s; € S and ¢; € T. We need to show f = 0.

Write f = Zgj(yl,...,yn)h]—(ml,...@m). Then the hj;s are distinct monomials in x1,...,2m. Let

J

Hx1y s m) = f(T1, 0, Tmyt1, o tn) € L(T)[x1, ooy @] C Flzq,...;xp]. But I(s1,...,8,) = 0, and S is
algebraically independent over F'. Thus l(x1, ..., 2, ) = 0. Then Zgj(tl, wtn)hj(ze, ..., xm) = 0. As the hjs
are linearly independent over F, then g;(t1,...,t,) = 0 for all . As {ti1,...,t,} is algebraically independent
over L, g;(y1,...,yn) = 0 for all &. Thus f =0, so S U Tis algebraically independent.

Thus S UT is a transcendence base, so Tr.deg(E/L) = |[SUT| = Tr.deg(E/F) + Tr.deg(F/L) as
desired. O

9 Introduction to Rings and Modules
9.1 Day 20 - October 9

Definition 29. A ring has a multiplicative identity, but may not be commutative. You know the rest.

Example 20. (Matrix Rings) If R is a ring, then let M,,(R) denote the set of n x n matrices with entries
from R. Then M,,(R) is also a ring. Furthermore, if n > 2, this ring is noncommutative (except maybe for
R=0).

Example 21. (Group Rings) Let R be a ring (usually commutative), and let G be a group. Let R[G]
be a free R-module with basis G (i.e. it is the set of R-linear combinations of elements of G). Then
R[G] = @B cc Ry We also give R[G] a multiplication operation by defining (r1g1)(r292) = ri72(9192).-

For a particular example, consider R = Z and G = Cj, the cyclic group of 3 elements. Then R[G] = Z(C3).
If a is a generator of Cs, then (2 + 3a)(1 — a?) =2 —2a? + 3a — 3 = —1 + 3a — 2a>.

In general, R[G] is commutative if and only if G is abelian.

Example 22. (Skew Polynomial Rings) Let R be a commutative ring, and o : R — R be a ring homo-
morphism. Let R[z,0] = R[z] as a left R-module, but define multiplication in R[z,o] by (az™)(bx™) =
ac™(b)z™t".

In particular, if Char R = p, then f : R — rP is a ring homomorphism. Then R[z, f] is given by
az™b" = ab?" gt

Example 23. (Real Quaternions) Considering the following matrices in My(C): 1 = id, i = [i,0,0, —i],
j =10,1,-1,0], and & = [0,4,7,0]. We let H = R1 ® Ri ® Rj & Rk. In fact, H is a ring with the usual
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multiplication (it suffices to check that multiplication works out). One can check that i = 32 = EQ =ijk =
—1, so it is a ring.

In fact, H is a division ring. Since if a = rol + r1i 4+ roj + r3k, set @ = rol — 14 — roj — rgk. Then
aa= ¢ +ri+ri+ri)l,soat= %

Definition 30. Let R be aring. A left R-module is an abelian group (M, +) and an operation - : RxM — M
such that the usual axioms hold. That is,

1. (r+s)ym=rm+sm
2. r(lm+n)=rm+rn

3. r(s(m)) = (rs)m
4. 1-m=m

[Remark: some people do without the fourth property. To make it clear that we have the fourth property,
one might say it is a unital module.]

A right R-module is the same, but the operation is on M x R and obeys (m(s))r = m(sr) instead of the
third property.

Definition 31. If R is a ring, a left (respectively, right) ideal of R is just a left (respectively, right) R-
submodule of R. An ideal of R is a left ideal which is also a right ideal (a “2-sided ideal”).

Definition 32. Let R be a ring, and let M be a left R-module. M is called (left) Noetherian or (respectively,
(left) Artinian) if M satisfies the Ascending Chain Condition (respectively, the Descending Chain Condition)
on (left) submodules.

Recall that the ascending chain condition is that if Ny C N, ..., is a chain of submodules of M, then
there exists n such that N,, = N1 = ... (i.e. the chain stabilizes). [Remark: the notation implies that the
chain is countable, but countable chains stabilizing is equivalent to any chain stabilizing.] The decreasing
chain condition is the same but for decreasing chains of submodules.

A ring R is left or right Noetherian or Artinian if and only if it is that adjective as an R-module.

Definition 33. Let R and S be rings. We say M is an R — S bimodule if M is a left R-module, a right
S-module, and (rm)s = r(ms) for all r € R, m € M, and s € S.

Example 24. Let R and S be rings, and let M be an R — S bimodule. Let A denote the set of upper
triangular matrices (r,m,0,s) where r € R, m € M, and s € S. Then this is indeed a ring and all of the
stuff holds.

Exercise 8. Show that A is left Noetherian if and only if R and S are left noetherian and M is left
Noetherian.

Also show that the same statement holds if “left” is replaced with right, and/or “Noetherian” is replaced
by “Artinian”.

Example 25. Let A = (Q,Q,0,Z). Recall that Q is a field, so it is Noetherian (as a ring), and Z is a
Principal Ideal Domain, so it is Noetherian (as a ring). But Q is not Noetherian as a (right) Z-module. Thus
A is left Noetherian, but not right Noetherian.

If instead A = (R, R, 0,Q), then this is left Artinian but not right Artinian.

9.2 Day 21 - October 12

Review day!
This was a theorem from 818:

Theorem 34. Let E/F be algebraic, and let o : E — FE be a field embedding which fixes F. Then ¢ is in
fact onto. That is, o is an automorphism.
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Proof. One proof uses vector space dimension: E is an F-vector space, so if E/F is finite, then o is an
F-linear transformation, so since o is injective, it is also surjective. The infinite dimensional case can be
reduced to the finite dimensional case since E/Fis algebraic.

Alternatively, let o € E, and let f,(x) = Min(a, F). Let (4, ..., B, be the roots of f, € E. For each 1,
o(f;) = B; for some j, so if you restrict o to {51, ..., B, }, then it is still injective. Therefore it is a permutation
of the f3;s, so it is surjective. Since « is some §;, and « was arbitrary, then o is surjective. O

10 Exact Sequences

10.1 Day 22 - October 14

Back to rings:
Exact sequences!

Definition 34. A sequence of R-linear maps of left R-modules N; with f; : N; — N;11 (where N; is called
“degree 7”) is said to be exact in degree i + 1 if imf; = ker f;11. We say the entire sequence is ezact if it is
exact at in all of its degrees.

We often write our exact sequence as

.. > N; fé Ni+1 figl Ni—i—l — ...

Example 26. We have that 0 — A 4, B is exact if and only if ker f = 0 if and only if f is injective.
Example 27. Similarly, Ag — B — 0 is exact if and only if ¢ is surjective.

Example 28. By combining these, 0 — A — 0 is exact if and only if A = 0.
Example 29. Lastly, 0 - A ENY; JN 0 is exact if and only if f is an isomorphism.

Definition 35. An exact sequence of the form 0 — A LB ¢ = 0is called a short exact sequence. A
short exact sequence has the property that f is injective, im f = ker g, and ¢ is onto.

Example 30. Let N be a submodule of M. Then 0 — N inclugion.  p projegtion M/N — 0 is a short exact
sequence.

Example 31. Let M; and M5 be modules. Then 0 — M; i> M & M, EN M, — 0 is a short exact sequence
when f:u— (u,0) and g : (u,v) — v. This short exact sequence is called a split short exact sequence since
there are maps f': My & My — M, and ¢’ : My — My @ Mj such that fo f' =idy, and ¢’ o g = imyy,.

Example 32. The following short exact sequence is not a split exact sequence: 0 — Z i> VAN Z7/27 — 0,
where f(n) = 2n and g(m) = m.

Remark 24. We have been leaving off the word “left” a lot, but it should probably be around. Also, most
theorems give another theorem if you find /replace the word “left” with the work “right”.

Theorem 35. [Two theorems in one!] Let R be a ring and let 0 — L L M % N — 0 be a short exact
sequence of left R-modules. Then M is Noetherian (respectively, Artinian) if and only if both L and N are
Noetherian (respectively, Artinian).

Proof. We know that L = f(L), and N = M/ker g = M/f(L). Thus without loss of generality, we can
assume L C M and N C M/L.

If M is Noetherian (respectively, Artinian), ideals in L are ideals in M, so any descending (respectively,
ascending) chain stabilizes in L. Thus L is Noetherian (respectively, Artinian). Also, a chain in N = M/L
can be lifted to a chain in M, which must stabilize, and when we project back down, the result must stabilize.
Thus N = M/L is Noetherian (respectively, Artinian), as desired.
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Conversely, suppose both L and N are Noetherian (Artinian case will be identical, but not proven).
Let A D As D ... be a descending chain of left R-submodule of M. Then ANL; D ANLy, C ...is a
descending chain of L-modules. Since L is Noetherian, this chain stabilizes. Thus there exists a k such that
AkﬂL:AkHﬂLfor all ¢ > 0.

Also, Ai+ LD A+ LD ...,s0 % D % D ... is a descending chain in N = M/L. As M/L has the
descending chain condition, there exists an [ such that % = w for all ¢ > 0. But this is the case if
and only if Aj+ L= A;; + L.

Let j = max(k,l). We wish to show that Aj=Ajforalli > 0. Fixsomei >0. Letuec A; C A;j+L =
Aj+i+ L. Then u = ajy;+1;4; for some aj4; € Ajpyandl € L. Thenu—ajq; =1y € AiNL=A;4,,NL C
Ajti. Thusu € Ajy;,s0 Aj C Ajyy, s0 A; = Aj ;. Thus the chain has stabilized.

As remarked, the Artinian proof is similar. O

Corollary 10. If M, N R-modules, then both M and N are Noetherian (respectively, Artinian) if and only
if M @ N is Noetherian (respectively, Artinian).

Proof. Apply the previous theorem to 0 - M — M @& N — N — 0, which is a short exact sequence. O

Corollary 11. A module M is Noetherian (respectively, Artinian) if and only if M™ = @, M is Noethe-
rian (respectively, Artinian).

Proof. Apply the previous corollary over and over, and induct on n. O

Corollary 12. Let R be a left Noethereian (respectively, Artinian) ring, and let M be a finitely generated
left R-module. Then M is left Noetherian (respectively, Artinian).

Proof. Since M is finitely generated, then M = Rx; + ... + Rz, for some z1,...,x, € M. Then define and
R-linear map ¢ : R™ — M by (r1,...,ry) — Y. 7ix;. Note that ¢ is onto.
Since R is left Noetherian (respectively, left Artinian), then R™ is left Noetherian (respectively, left
Artinian), so M = R"/ker ¢ is Noetherian.
O

Remark 25. Let ¢ : R — S be a ring homomorphism (including the restriction that ¢(1) = 1). Then ¢
defines a left- and right- R-module structure on S. In particular, for r € R and s € S, define r - s = ¢(r)s
and s-r = s¢(r). If im ¢ C Z(S) = {t € S|at = ta for all a € S} (the so-called “center” of S), then S is
called an R-algebra.

Remark 26. Let ¢ : R — S be a ring homomorphism. Suppose R is left Noetherian (respectively, Artinian)
and suppose S is finitely generated as a left R-module. Then S is left Noetherian (respectively, Artinian),
as a ring.

Proof. By Corollary S is left Noetherian (respectively, Artinian) as an R-module. But every left S
module is a left R-module because of ¢. Thus S satisfies the ascending chain condition on left ideals, since
such left ideals are left R-modules. O

Example 33 (Don’t got time for this!).

Remember, no class on Friday!

11 Notherian Rings

11.1 Day 23 - October 21

More rings!
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Example 34. Recall that if R is a commutative ring, and G is a finite group, then R[G] is the group ring
generated by R and G. As a module, it is a free module over R with basis G. We define multiplication the
logical way to make it a ring.

Define ¢ : R — R[G] by r — r- 1. Then ¢ is a ring homomorphism and im¢ C Z(R[G]).

Therefore, R[G] is an R-algebra. Note that R[G] is a finitely generated left and right R-module.

Therefore, if R is Noetherian, R[G] is (left and right) Noetherian as a ring. Similarly, if R is Artinian,
R[G] is left and right Artinian.

Proposition 17. Let R be a ring, and let M be a left R-module. Then the following are equivalent
1. M is (left) Noetherian.
2. Every (left) R-submodule of M is finitely generated.

3. Every nonempty subset of (left) R-submodules of M has a maximal element. (I.e. there exists an
A € A such that if A< B and B € A, then A = B.

Proof. (1 implies 2) Let N be a submodule of N. Choose x; € N, and let Ly = Rxy C N. If N # Ly, choose
an x9 € N\ Ly, and let Ly = Ly + Rxzo. Note L; C Ly C N.

We repeat this process: if L, # N, then take some x,11 € N\ L,,, and let L, y; = L,, + Rx,,11. This
gives us L1 C Lo C Lg C .... If for all n, L, # N, this would give us an infinite strictly increasing chain,
contradicting Noetherian-ness. Thus N = L,, for some n, but N = Rxy+...+ Rx,, so N is finitely generated.
Thus every submodule is finitely generated, as desired.

(2 implies 3; actually, not 3 implies not 2) Suppose A is a nonempty collection of submodules with no
maximal element. Then there exists an infinite an infinite ascending chain of submodules Ny C Ny C N3 C ...

For all i > 2, choose some z; € N; \ N;_1, and let N denote the module generated by x2, x3,... Note

that N C U N;. If N were finitely generated, then all of its generators would come from some Nj. Thus
i=1
x; € Ny, for all 4, so in particular zp; € Ni, which is a contradiction. Thus NV is not finitely generated, as
desired.
(3 implies 1) If Ly C Ly C ..., then let A = {L;|i € N}. Then A has a maximal element L. That is, the
chain stabilizes at L.
O

Remark 27. If a ring is Noetherian, condition (3) from this proposition means we don’t have to worry
about citing Zorn’s lemma! Condition (3) is really powerful!

Example 35. Let F be a field, and let o : F' — F be a nonzero field homomorphism which is not surjective.
(For example, it might be that ' = Q(t), where t is an indeterminant, and we define o : F — F by
FIORNG (Gl
g(t) g(t?)”

Then we have Flx; o] is left Noetherian, but not right Noetherian. (We will prove this.)

(Hold up, what the heck is Flz;0]|? As an F-vector space, F[r;0] = Flx]. We give it a different

multiplication though: (a,z™)(bpz™) = ano™(by, )z ™.)

Before we prove the claim from the example, we prove a lemma.

Lemma 15. Let f(z), g(z) € Flz;0], with g(x) # 0. Then there exists g(x), r(z) € F|z;o] such that
f=qg+r,and deg r < deg g.

Proof. Let f(x) = ama™ + ... + ap, and let g(z) = b,a™ + ...bg. If m < n, we are already done, since we can
let g=0,and r = f.

But if m > n, then consider f — a,,(c™ "(b,))"1z™ ™. Observe that this has no degree m term, so its
degree is strictly less than m. Then proceed by induction to strip away all the degrees. O
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Proof. (Of the claim in the example)

Let R = Flz;0].

We first show that every left ideal of F[x;o] is principal. Let I # 0 be a left ideal of F[x;c]. Choose
g € T\ {0} of minimal degree. Then certainly Rg C I. If f € I, then by the lemma, there exists a quotient
and remainder such that f = gg 4+ r, so r = f — qg. Since I is a left ideal, then r € I, but r has degree
strictly less than the degree of g, so r = 0. Thus f = qg, so f € Rg. Thus Rg = I, so all left ideals are
principal.

Thus in particular, all left ideals are finitely generated, so F[z; 0] is left Noetherian.

We now wish to show that R is not right Noetherian. We shall do so by constructing an infinite ascending
chain of right ideals. Since o is no surjective, choose some b € F'\ o(F). Let My = bxzR, and for all For all
i >0, let M; = x'bxR + M;_,. Certainly, bz € M;. We wish to show that z"bx ¢ M,,_;.

Suppose for the sake of contradiction that z"bx € M,_;. Then z"bx = z" tbaf, 1(x) + ... + bx fo(x)
for some fn_1,..., fo € R. Then bz fo(z) = zg(x) for some g(x) € R. Let r = deg fy = deg g¢.

If fo=a;2" + ... +ag, and g1 = ¢, 2" + ... + o, then bo(a,) = o(c,). Thus b = o(:=) € o(F), which is
a contradiction. Thus My C M; C My C ... is a strictly ascending chain of right modulés, so R is not right
Noetherian. O

Recall the Hilbert Basis Theorem, in all of its glorious generality:

Theorem 36 (Hilbert Basis Theorem). Let R be a left Notherian ring, and let X be a variable. Then
RJx] is left Noetherian.
By induction, R[x1, ..., 2] is left Noetherian for commuting variables 1, ..., .

Remark 28. Subrings of Noetherian (or Artinian) rings are not necessarily Noetherian or Artinian.

Example 36. Note Z C Q, and since Q is a field, it is Artinian. But Z is not Artinian.

12 Simple Rings and Modules

12.1 Day 24 - October 23

Definition 36. Let R be a ring. An ideal in R is a left ideal that happens to be a right ideal as well. That
is, I is an ideal if (I,+) is a subgroup of (R,+), and I C I and Ir C I for all »r € R.

Definition 37. The two trivial ideals of a ring R are (0) and R.
A ring R is simple if it has no nontrivial ideals.

Example 37. Let R = M3(Q). Then I = {( Z 8

Another example is R = M3(Z). Let I = {2A|A € R} = M3(2Z). Then [ is a nontrivial ideal.

) ’a, b € Q} is a left ideal but not a right ideal.

Remark 29. Any division ring is simple. By a homework problem [edit: see immediately below], M, (D) is
simple whenever n > 1 and D is a division ring.

Homework Problem 6. Let n € N, let R be a ring, and let S = M,,(R). Then there is a natural bijection
between the two-sided ideals in R and the two-sided ideals in S given by I <> M, (I).

Example 38. If ¢ : R — S is a ring homomorphism, then ker ¢ is an ideal of R.
If R is simple, every such ¢ : R — S is either 0 or injective.

Example 39. Let M be a (left) R-module, and let Anng M = {r € R|rM = 0}. Then Anng M is a
(two-sided) ideal of R. This is the case because if r € Anng M, and s € R, then (sr)M = s(rM) =s-0=0,
and (rs)M =r(sM) CrM =0.

Aside 1. Let z € M. Then Anng x = {r € R|rz = 0}. Then Anng x is a left ideal, but not necessarily a
right ideal. However, Annp Rz is an ideal.

Definition 38. Let R be a ring. An R-module M is called simple if M # 0, and M has no non-trivial
submodules.

38



Remark 30. A simple ring is not necessarily simple as a left R-module. For instance, take M(Q). We
showed that this is simple, but it had a nontrivial left ideal. Therefore it is not simple as a left R-module.

Proposition 18. An R-module M is simple if and only if M = R/I for some maximal left ideal I.

Proof. (<) Suppose M = R/I for some maximal ideal I. Recall that the submodules of R/I are in one-to-one
correspondence with the submodules of R containing I. As I is maximal, the only submodules containing
I are R and I. So the only submodules of R/I are R/I and I/I = 0. Thus M = R/I is simple (as a
R-module), as desired.

(=) Let x € M, x # 0. Then Rz is a submodule of M, but it is nonzero, so Rz = M since M is simple.
Define an R-homomorphism ¢ : R — Rz = M by r — rx. Then by an isomorphism theorem, M = R/I,
where I = ker ¢. Since R/I is simple, I is maximal as a left ideal. O

Remark 31. If R is commutative, then left ideals are precisely two-sided ideals, so M is simple if and only
it M = R/m where m is a maximal ideal. But R/m is a field, so the only simple R-modules are fields.

If R is a local ring (i.e. there is a unique maximal ideal), then this implies that for all simple R-modules
are isomorphic.

Example 40. For the complex numbers, things are nicely behaved by Hilbert’s Nullstellensatz.

For a not-algebraically-closed field, things need not be very nice. For instance, let R = Rz]. Let
my = (z). Then R/my = R. Let ma = (2% +1). Then R/m? = R(i) = C. Thus two simple modules have
led to different fields.

Example 41. Let D be a division ring, and let R = M, (D), where n > 1. Consider M = D" =
a1
{] : a; € D}. Then M is a left R-module by matrix multiplication.
Qnp
We claim that D" is a simple R-module. It suffices to show that Ru = D" for all w € D™\ {0}. Note that
D™ is generated by the vector (1,0,0,...,0). This vector is generated by any vector of the form (ay,0,...,0)
(where a; # 0) since we can divide by a;. But this is generated by any nonzero vector by multiplying by
the right matrix which kills all-but-one term, and also the right row swapping matrix.

Example 42. Let R = Ss, let R = C[S3] (or any algebraically closed field of characteristic not equal to 2
or 3). Recall that R=C1® C(12) ¢ ...  C(132).

Let I; = C(1+(12) 4 (13) 4+ (23) + (123) + (132). This is a C-vector space, at least. But also, multiplying
by any element of S3 will only permute the terms, so it is a left R-module.

Also, as a vector space it is dimension 1, so there are no nontrivial submodules (which would be subspaces).
Thus I; is a simple left R-module.

Let uy = (1) + (12) and let ug = (23) + (132) and let uz = (13) + (123). Let v; = uy — uz and let
V2 = U1 — U3.

Let Iy = Cv; + Cvy. We can check that v; and wvs are linearly independent, so this has dimension 2, as
a C-vector space. Also, by checking left multiplication, I5 is a left ideal.

Finally, by a complicated argument that will remain a secret, but apparently involving character theory,
I> has no nontrivial submodules. Thus I is is simple as a left module.

13 Semisimple Rings and Modules

13.1 Day 25 - October 26

No homework was posted yet, since Tom was at a conference!
(Recall that an ring is simple if it only has two (two-sided) ideals. A module is called simple if it is
nonzero and has no proper submodules.)

Definition 39. An R-module M is called semisimple if every submodule N of M is a direct summand of
M (i.e. there exists N’ C M such that M = N @ N’ (i.eie. M =N+ N and NN N’ =0)).
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Aside 2. Let {N,}xer be a collection of submodules of M. Then Z N = {finite sums of elements of Nys}.
el
This is a submodule of M, and is the smallest such submodule containing all of the Nys.
We write ZNA = @NA if for all x € N, there exist unique a) € N, for each A € I such that z = Za)\

el AeT AET
(that is, each element can be written uniquely as a sum). This is called the internal direct sum.

The external direct sum is the set of ordered I-tuples such that all but finitely many entries are nonzero,
with termwise addition.
Exercise: The sum is direct if and only if the sum is isomorphic to the external direct product.
Exercise: The sum is direct if and only if for all A € I, Ny N (Z Ns) = (0).
S#A

Remark 32. A simple module is always semisimple. A simple ring is not always semisimple (as a module).

Claim 1. Let D be a division ring. Then any D-module is semisimple.

Proof. Let M be a D-module, and let N be a submodule. Let 8 be a basis for N, and extend to a basis 8’
of M. Let N' = Spanp(p'\ §). hen M = N @& N'. O

Lemma 16. Any submodule of a semisimple module is semisimple.

Proof. Let M be semisimple and let A be a submodule of M. Let B be a submodule of A. As B is a
submodule of M, M = B @® N for some N.

We wish to show that A = B@® (NN A). Certainly, B+ (NNA) C A. Let a € A. Then a € X, so
a=>b+n, forsomebe B,neN. Butn=a—-be A Thusn € NNA. Thus A C B+ (Nn A), so
A=B+(NnNA).

Finally, we wish to show that this sum is direct. Note that BN(NNA) C BNN = (0), so B and (NN A)
are disjoint. Thus the sum is direct, from the second criterion in the aside. O

Remark 33. If M is semisimple, then so is M/N. This is the case because M/N = (N + N’)/N = N’|
a submodule of M. Thus M/N is isomorphic to a submodule of M, so it is semisimple by the previous
lemma.

Proposition 19. Every nonzero semisimple module contains a simple submodule.

Proof. Let M be a nonzero semisimple R-module. Let x € M be a nonzero element. Then Rx is semisimple
since it is a submodule of a semisimple module. We then wish to show that Rz contains a simple submodule.

Let A = {A|A C Rz,x ¢ A}. Note that A # () since (0) € A. Also, for any chain C' C A, by taking the
union of the elements of C, we get a new submodule of Rz, and since each term in C' does not contain z,
the union does not contain x. Thus the union is in A, so every chain in A has an upper bound in A.

Thus by Zorn’s Lemma, there exists a maximal element of A, which we shall call B. Since Rz is
semisimple, Rx = B ® B’.

Suppose for the sake of contradiction that B’ is not simple. Then there exists L C B’ such that L # 0.
Note x € B+ L, or else B+ L = Rx. Let ¥ € B’. Then b = b+ 1, for some b € B, 1 € L. Then
b=b —-1€eB NB. ThusV =1,s0 B'=L. Thus B+ L € A, s0 BC B+ L, since L # 0. This contradicts
the maximality of B, so this is a contradiction.

(Alternatively: If B’ is not simple, it is still semisimple, so B’ = L& L’. Thus R=B & (L L) =
(B®L)® L'. Then B ® L is strictly larger, contradicting maximality of B.)

Thus B’ C Rx C M is simple.

O

Theorem 37. Let M be an R-module. The following are equivalent:
1. M is semisimple.
2. M is the sum of a simple submodule.

3. M is the direct sum of simple submodules.
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(Proof is long, and will be done on Wednesday.)

Definition 40. A ring R is called left semisimple if R is semisimple as a left R-module.
Similarly, it is called right semisimple if R is semisimple as a right R-module.

Remark 34. Much later on, we will see that a ring is left semisimple if and only if it is right semisimple.
In this case, we just call the ring semisimple.

Claim 2. A ring R is left semisimple if and only if it is the (direct, or not direct) sum of finitely many
simple left ideals.
There is an analogous statement for right semisimple.

Proof. (<) If R is the sum or direct sum of finitely many simple left modules, then by the theorem, R is
semisimple.
(=) By the theorem, R = Z I where I are simple left ideals. Write 1 = ay, +...4+ax, for A1,..., A\p € J,

xeJ
ay; € Iy;. Since R = R -1, then R = Ray, + ...+ Ray, C I\, +...+ 1, CR.

ThusR:IAl—i—...—&—I)\k. O

Exercise 9. Generalize the previous claim to finitely generated modules.

Show that any division ring is semisimple.

Let D be a division ring, and let R = M, (D). For k = 1,...,n, let I}, denote the set of matrices which are
zero except in the k-th column. Then each I & D™, which is a simple left R-module. Also, R=1®...®1,,
so R is left semisimple.

13.2 Day 26 - October 28

Recall the following theorem from last class. We will prove it now:

Theorem 38. Let M be an R-module. The following are equivalent:
1. M is semisimple.
2. M is the direct sum of a simple submodule.

3. M is the direct sum of simple submodules.

Proof. If M = 0, these are all true. Suppose for the rest of the proof that M is nonzero.

(1 = 2) Suppose M is semisimple. Let T'= {E|E C M, E is simple}. Since M # 0, then by a theorem
from the previous class, M contains a simple submodule. Thus T # ().

Let A={J CT|Y pc;E = ®pes}. Certainly, for each t € T, {t} € A, so A # 0. Note that the union
of a chain is still in A for the following reason: the union would fail to be a direct sum if some element could
be written two different ways. But this would only involve finitely many elements, so some element of the
chain would not be in A, a contradiction.

Thus we can apply Zorn’s Lemma. Let J be a maximal element of A. Then Z E = @ E. Let

EeJ EE€J
N = Z E.We wish to show that M = N. Certainly, N C M, so since M is semisimple, M = N & N’ for

EcJ
some submodule N’ of M. Since N’ is a submodule of a semisimple module, it is semisimple.

Therefore, if N’ is nonzero it contains a simple submodule E’. Note that since E'NN = (0), then E' & J.
But JU{E'} € A for the same reason. This contradicts the maximality of of J.

Thus N’ =0,s0 M = N. O
(2 = 3) Suppose M is the direct sum of simple submodules. Certainly, every direct sum is a sum, so M
is the sum of simple submodules. O
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(3 = 1) Suppose M is the sum of simple submodules. We have M = Z E for some collection T' of

E€T
simple submodules.

Let A be a submodule of M. We wish to find a submodule A’ such that M =A@ A'.
Let A ={J C T\(Z E)N A = 0}. Note that § € A, so A # 0. Also, the union of chains in A are in

EeJ
A for the following reason: a union would fail to be in A if some nonzero finite sum of elements were in A.

Then this finite sum would be in some element of the chain, a contradiction.
Thus we can apply Zorn’s Lemma. Let J be maximal in A, and let A’ = Z E. Certainly, A’N A = (0).

EeJ
Thus the sum A + A’ is direct. Let N = A + A’. We wish to show that N = M.

If N # M, then there exists a simple submodule E’ of M such that E' ¢ N. Since E’ is simple, then
E'NN = (0), so E' + N is direct. Suppose a = e + €’ for some a € A, e € N, and ¢/ € E’. Then
e =a—-ecNNE =(0). Thuse’ =0,s0a=e€ ANA = (0),s0a=e=0. Thus JU{E'} € A. since
E’ ¢ J, then this contradicts the maximality of J. Thus N = M, so M = A@® A’. Thus M is semisimple,
as desired. O

14 Filtrations and Length of Modules

Let’s move on to a new topic!

Definition 41. Let M be an R-module. A series for M is a finite chain (also known as a filtration) of
submodules of M such that 0 =M, C M,,_1 C ... C My = M.

The factor modules of this series are M;/M,11]i =0,...,n — 1} and we count them with multiplicity.

The length of a series is the number of non-zero factor modules (which is equal to the number of strict
inequalities).

A refinement of a series for M is another series for M which “contains” the original series as a subseries.
That is, if the original series is 0 = M,, C ... C My = M, and 0 = M}, C ... C M} = M is another series,
then the new series is a refinement of the original one if for each ¢ there exists a j such that M; = M]’

A proper refinement is a refinement which strictly increases the length.

We say two series for a module are equivalent if there exists a bijection between the two sets of nonzero
factor modules, such that the corresponding factor modules are isomorphic.

Example 43. Let R = Z and let M = Z. Then (0) C 18Z C 18Z C 3Z C Z. Then the factor modules are
18Z,0,Z¢, Zs.

A refinement of this series might be (0) C 72Z C 18Z C 18Z C 9Z C 3Z C 3Z C Z. Then the factor
modules are 727, 74,0, 74, 73,0, Z3.

Another series might be 0 C 727 C 247 C 127 C 47 C Z. Then the factor modules are 727, Z3, Zo, 73, Z4.
Thus the third series is equivalent to the second. Note that the third series is not a refinement of the first.

Theorem 39. (Schreier Refinement Theorem) Let M be an R-module. Then any two series for M have
refinements which are equivalent.

We will prove this next class. For now, we prove a lemma.
Lemma 17 (Zassenhaus Lemma). Let M be an R-module, and let A C A" and B C B’ be R-submodules
A+ (A NnB') _B+(ANB)
f M. Th = .
© NAYANB)  Br(AnDB)

A'NB
ANB+ANB"
A+(ANB) A'NB
A+ (A'NB)  ANB+ANB"

Proof. We will first show both modules are isomorphic to By symmetry, it suffices to show

this is true for just one of the modules. That is, it suffices to show that

A'NB
Let — 22 _p
CANBYAND
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Define ¢ : A+(A’NB’') — L by a+u — u. We need to show this is well-defined. Suppose a1 +u1 = as+us.
Then u; —us =as —a; € ANA'NB' C AN B’. Thus U, = Us, so the function is well-defined.

We then need to check two things: first, that this function is surjective. This is straightforward.

Also, we need to check that ker ¢ = A + (A’ N B). This is left as an exercise. O

14.1 Day 27 - October 30

Homework will be due next Monday (November 9) instead of Friday!
Recall the following lemma from last class:

Lemma 18. (Zassenhaus Lemma) Let M be an R-module, and let A C A’ and B C B’ be R-submodules
A+ (A'NnB') B+ (ANB)

f M. Th ~ .

© A+ (ANB)  B+(ANB)

We will use it to prove this important theorem:

Theorem 40 (Schreier Refinement Theorem). Let M be an R-module. Then any two series for M
have refinements which are equivalent.

Proof. Let 0= M, C...C My=M and 0 = N; C ... C Ny = M be two series for M.

Fix i € {O, 17 77’2,} Let Mz',j = Mi.}rl + Mz N Nj for ] = O, ,t

(What does this look like? Well, M; o = M;y1 + M; N No = M1 + M; = M;. Also, M;; = M;1;. Also,
M; ; C M; j41 so we have “series” such that M,y = M;; C M;;—1 C ... C M; o= M;.)

Then we get a refinement of the first series by taking 0 = M,,; C My, +—1 C ... C Mo C Mpo =M.

Similarly, we define N; ; = N;11 + M; N N; for j € {0,...,n}. Thus we get a refinement of the second
series by takmg 0= Nt,n C ...N071 C N070 =M.

We now wish to show that these series are equivalent.

First we will show that that N;;/N; ;41 = M;,;/M; ;1. This follows from the Zassenhaus Lemma by
setting N; 11 = A, N;=A', M; = B, and M;, = B'.

There are also a few other links in the refined series, where something like M, C M, but this is in
fact equivalence, since these both equal M;,1, so the factor modules are 0, so we don’t need to pay attention
to them.

Thus the two series are equivalent, as desired. O

Definition 42. Let M be an R module. A composition series for M is a series in which all the nonzero
factor modules are simple modules.

Remark 35. A series is a composition series if and only if it has no proper refinement. (Proper, in this
case, means that we have inserted a strictly contained module).
A series is a composition series if and only if the series is equivalent to all of its refinements.

Proposition 20. Let M be an R-module. Then any two composition series of M are equivalent.

Proof. Take any two composition series of M. By the Schreier Refinement Theorem, these can be refined to
equivalent series. But they are composition series, so they are equivalent to their own refinements. Thus by

transitivity they are equivalent.
O

Definition 43. Let M be an R-module. If M has a composition series, the length of M, denoted A\r(M),
is the length of any composition series for M. (Note that this is well defined by the previous proposition.)
If M does not have a composition series, then we define Ar(M) = oc.

If Ap(M) < oo, then we say M is a finite length module.

Example 44. Let R = Z, and let M = Zy4. Then recall that simple Z-modules are simple abelian groups,
i.e. cyclic groups of order p. Then a composition series for Zs4 could be

12 6 @ 2

0% 50 21 & (1) & 29
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Then the factor groups are Zs, Za, Z2, and Zs. Thus Ag(M) = 4.

Example 45. Let D be a division ring. Then every D-module M has a basis 3, so M = @ D.
acpf
Then D is a simple (left) D-module. Suppose M = D" (i.e. dimp(M) = n, i.e. || =n).
Thenlet M; =D& D®..dDP0PH0D ... 0 C D", where there are n — i copes of D, and i copies
of 0. Then 0 = M,, € ... € My = M, and M;/M;;1 = D (which is simple as a left D-module). Thus
)\D(M) =N = dsz(M)

Remark 36. We use g M to denote M thought of a left R-module, and we use Mg to denote M thought
of as a right R-module.

Example 46. Let D be a division ring, and let R = M,,(D). For k =€ {1, ...,n}, we let I} be the subset with
zero entries off of the kth column. Then recall that each I is a simple left ideal of R, and R=11 ... B I,,.
By doing the same thing as before, we can see that Ag(rR) = n.

By symmetry (exchanging rows with columns), Ag(Rgr) = n as well. And since it is a D-vector space,
Ap(pR) =n?.

Proposition 21. Let M be an R module. Then Ar(M) < oo if and only if M is both Noetherian and
Artinian.

Proof. (=) Suppose Ag(M) < co. Then there is a composition series of length Ar(M) = r. Consider any
finite chain of submodules of M: 0= M, C ... C My = M.

By the Schreier Refinement Theorem, we can refine this chain of submodules into a composition series.
The refined chain will have r proper containments.

Note that a refinement can introduce new proper containments, but can’t destroy them. Thus every
chain of submodules has at most r proper containments. That is, any ascending and descending chain of
submodules of M stabilizes after at most r proper containments. O

(<) Suppose M is both Noetherian and Artinian. If M = 0, then we are done. If M # 0, then because
M is Artinian, we can choose a minimal nonzero submodule of M, which we shall denote N;. Note that Ny
is simple, since if it had a proper submodule, it would not be minimal.

Now we repeat this process: if N3 # M, choose a submodule that is minimal among all submodules
properly containing N7, which we shall denote Ny. Then No/Nj is simple as before.

Thus by repitition, we get 0 = No C N; C Ny C ...

Since M is Noetherian, this chain cannot go on forever. The only way it can stop is if some N = M.
Thus we have a composition series 0 = Ny C N3 C ... C N = M. Thus M has a composition series. O

14.2 Day 28 - November 2
Recall that homework will be due next Monday (November 9) instead of Friday!

Proposition 22. Claim: Let R be a ring, and let 0 - A — B — C' — 0 be a short exact sequence of
R-modules. Then, Ag(B) = Ag(A) + Ag(C).

Proof. Without loss of generality, we can assume A is a submodule of B and C' = B/A.

First we consider the case where there are infinite lengths. Recall that a module has finite length if and
only if it is Noetherian and Artinian. But also, we have proven that a quotient B is Noetherian (respec-
tively, Artinian) if and only if both its submodule A and its “supermodule” C are Noetherian (respectively,
Artinian). Thus Ar(B) = oo if and only Ar(A) = oo or Ag(C) = co. Thus if one of Ar(A),Ar(B), or Ar(C)
is infinite, then the claim holds.

Suppose instead that all the lengths are finite. Let n = Ag(A) and let m = Ag(C). Then there exists
composition series 0 = A, € ... € Ag = Aand 0 = B,,/A € ... € By/A = B/A = C for A and C,
respectively. Since these are composition series, A;/A;+1 and B;/B; 41 is simple for all appropriate j and <.

Then 0=A,, C ... C Ay = By, C ... € By = B is a series for B. Note that B;/B;11 & Blil‘?A is simple

for all 4. Thus this series is in fact a composition series. Thus Ag(B) = m+mn = Ar(A4) + Ag(C), as desired.
Thus in all cases, Ar(B) = Ar(A) + Ar(C).
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O

Remark 37. Recall that if A; and A, are modules, then 0 — A; — A1 ® Ay — Ay — 0 is a short exact
sequence. Thus A(A; @ A2) = M(A1) + A(42).
By induction, we have that )\(@ A;) = Z A(4;).
i=1 i=1
Example 47. Let K be a field, let R = K[z], and let M = R/(z%). We wish to show that 0 C Rz C M is

a composition series for M. Note that M/RT = (I;)//((ig) >~ R/(z) = K, which is simple.

We can also define f : R — RZ by r — rZ, which is a module homomorphism. Note that rz = 0 if
and only if 7Z = 0 which is the case if and only if rz € (22) which is the case if and only if r € (z). Thus
ker f = (x), so Rz/(0) =& RT = R/(z) which is simple. Thus Ag(M) = 2.

Also, R is a K-algebra, and A (M) = dimg (M) = 2, since {1,7} is a K-basis for M.

Example 48. Let R = R[z]. Let M = R/(z* + 1). Note that 2% + 1 is irreducible as a polynomial,
so (22 4+ 1) is maximal as an ideal. Thus this quotient is a simple R-module. Thus Ag(M) = 1, but
)\R(M) = dlm]R(M) = 2.

In general, length does not have to equal vector space dimension.

15 Classification of Semisimple Modules

Proposition 23. Let R be a ring. The following are equivalent
1. R is semisimple.
2. rR is a direct sum of finitely many simple left ideals.

3. rR is a sum of finitely many simple left ideals.

Proof. (1 = 2) Suppose R is semisimple. We know from the previous characterization of semisimple modules

that R is the direct sum of simple submodules, i.e. ideals. That R = @ 1,, for some simple left ideals I,,.

aEAN
Then we can write the multiplicative identity as 1 = iy, + ... + io, where each i,; € I,,;. Then for all

reR,r=riqg, +...+ 7, €Ilo, +...+1s,. Thus R=1,, +...+ 1,,. But R was the direct sum of the I,s,
so R = @ I,, . Thus R is the direct sum of finitely many simple left ideals, as desired. O
i=1

(2 —>?3) Suppose gR is the direct sum of finitely many simple left ideals. Then since every direct sum is
a sum, pR is the sum of finitely many simple left ideals. O
(3 — 1) Suppose gR is the sum of finitely many simple left ideals. Then by the previous characterization

of semisimple modules, we know that rpR is semisimple. That is, R is semisimple.
O

Remark 38. If R is left semisimple, then gkR = I} ® ... ® I,,, where each I; is simple. Thus for each j,
Ar(Il;) =1, s0 Ag(R) = Z Ar(I;) = n. Thus R is both left Noetherian and left Artinian.
j=1

Exercise 10. Generalize the previous proposition to any finitely generated module. Use this to show that
any finitely generated semisimple module has finite length.

Proposition 24. Suppose R is left semisimple. Then every (left) R-module is semisimple.
Proof. Let M be an R-module. Let {z,}a € A be a generating set. Then M = Z Rz,. Let F = @ R,

a€EN aEA
which is semisimple, since R is semisimple.
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Define ¢ : F — M by Y roeq — Y, TaZq. Note that ¢ is surjective homomorphism. Thus M 2 F/ ker ¢.
That is, M is the quotient of a semisimple module. By a previous theorem, the quotient of semisimple
modules is semisimple, so M is semisimple. O

Remark 39. (Prelude to the Artin-Wedderburn Theorem)
Recall that if D is a division ring and n is a positive integer, then M, (D) is left (and right) semisimple.
Recall also that Ry, ..., Ry are left semisimple, then so is Ry X .. X R;.
From these two facts, it follows that M, (D7) X ... X M, (D;) is semisimple for division rings Dy, ...D;.

Next time, we will prove the Artin-Wedderburn Theorem!

15.1 Day 29 - November 4
Let R be a ring, let I be a left ideal, and let M be a left R-module. Then IM = { Z aju;la; € I,u; € M}.

finite
Then IM is a left submodule of M.
In this case IR = I and RI = 1. Also, for x € M, IRz = Iz = {iz|i € I}, and this is a submodule of M.

Lemma 19. Let R be a ring, and I be a simple left ideal and M a simple module. If I % M then, IM = 0.

Proof. We prove the contrapositive. Suppose IM # 0. Then there exists some ¢ € I and v € M such that
tu # 0.

Define ¢ : I — M by a — au. Then we can check that ¢ is an R-module homomorphism. Note that
im¢ # 0 since ¢(i) = iu # 0. Also, ¢(I) is a submodule of M, so since M is simple, im¢ = M. That is, ¢ is
surjecive.

Also, ker ¢ £ I since ¢(i) # 0. But ker ¢ is a subideal of I, and since I is simple then ker ¢ = 0. Thus ¢
is injective, so ¢ is an R-module isomorphism. O

Proposition 25. Let R be a left semisimple ring. Then
1. Every simple R module is isomorphic to a simple left ideal.

2. There are only finitely many (up to isomorphism) simple R-modules.

Proof. (Proof of 1) Let M be a simple R-module. Choose v € M \ {0}. Define ¢ : R — M by r — ru. Note
that Ru # 0, and Ru is a submodule of M, so since M is simple, then Ru = M. Thus ¢ is surjective. As R
is left semisimple, R = ker ¢ @ I for some ideal I. Then for r € R, there exist unique a € ker¢ and b € I
such that » = a + b. But ¢(r) = ¢(a +b) = (a + b)u = bu. Then ¢| : I — M is an isomorphism. Thus
M=1]. !

Since M is isomorphic to I, and M is simple, then [ is simple, as desired. O

(Proof of 2) Since R is semisimple, we can write it as the finite sum of simple left ideals. That is,
R =1, + ... 4 I}, for some simple left ideals I;s. Let J be a simple left ideal of R. It suffices to show that J
is isomorphic to some I;.

Suppose J were not isomorphic to any I;. Then by the lemma, JI; = 0 for all j. But J = JR =
J(Iy +..Iy) = JI +..JI;; = 0. This is a contradiction, so J must be isomorphic to some I;. O

Theorem 41. Let R be a left semisimple ring. Let I, ..., I be representatives of the distinct isomorphism
classes of simple left ideals (that is, every simple left ideal of R is isomorphic to exactly one I;). For each 1,

let R; = Z L. Then

L left ideal
L],
1. For all ¢, R; is a ring with identity.
2. For all ¢, R; is a left semisimple with a unique (up to isomorphism) simple left ideal.

3. For all i, R; is simple.

46



4. Finally, R Ry X ... X Ry (as rings).

Proof. (Proof of 1) As R is semisimple, R = Z L=Ry+..+ Ry
L simple left ideal

Each R; is a left ideal of R, so R; is closed under + and -. We can write 1 = e +... + ¢ for some ¢; € R;.
We wish to show that e; is the multiplicative identity for R;.

First observe that for i # j, R;R; = ( Z Lo)( Z Lg) = Z LoLg= Z 0 = 0 (since non-isomorphic

Lo, LI, o,

simple ideals multiply to 0).

Let x € R. We can write x = 1 + ... + z for some x; € R;. Then z; = x; x 1 = x;(e; + ... +eg) =
xie; = (x; + ...x;)e; = xe;. Thus the z;s are uniquely determined for all i. Thus R = Ry @ ... ® Ry, (as left

R-modules).
Observe that z; = x; - 1 = x;(e1 + ... + eg) = w;e;, and similarly x; = 1 -2, = (e1 + ... + eg)z; = ;5.
Thus e; is a multiplicative identity for R;. Thus each R; is a ring with identity. O

(Proof of 4) Define ¢ : R — Ry X...x Ry, by © — (xeq,...zey) = x(eq, ..., ex). Certainly, ¢ is R-linear. Note
also that ¥ (zy) = (zyeq, ..., xyer) = x(e1, ..., ex)y(er, ..., ex) = ¥(x)(y). Thus ¢ is a ring homomorphism.

Also, suppose ¥(xz) = 0. Then ze; = 0 for all ¢, and = z(e1 + ... + ex) = 0. Thus ¢ is injective.

Finally, suppose (y1,...,yx € Ry X ... X Rg. Then let = y; + ... + yx. Then ¥(z) = (zeq,...,xzex) =
(Y1, .-y Yr), SO ? is surjective. Thus ¢ is a ring isomorphism. Thus R 2 Ry X ... X Ry.

(Proof of 2) Fix an 4. Then R; is a sum of left ideals, so R; is semisimple. Then by something Zorn-ish,
it contains a simple left ideal.

Suppose J is a simple left ideal of R;. We wish to show that J = I;.

Let K be a left ideal of R;. Note that RK = (Ry + ...+ Rp)K = R;K C J. Hence K is a left ideal of R.
Also, if K is a left ideal of R contained in R;, then certainly K is a left ideal of R;. Therefore the left ideals
of R; are precisely the left ideals of R contained in R;.

Thus since J is a simple left ideal of R;, then J is a simple left ideal of R;. Therefore J = I; for some j.
But J = R;J = R;I; =0 for all ¢ # j, so ¢ = j and J = I;. Thus there is a unique simple left ideal of R;,
up to isomorphism. O

(Proof of 3) Let J # 0 be a two-sided ideal of R;. Then J contains some simple left ideal of R;, which
we can denote L. Since R; is semisimple, R; = L ® L’ where L’ is another left ideal of R;. Then 1 = e + ¢/,
where e € L and ¢/ € L’. Thus e = e?e +ee’, so ee’ =e —e? € L’ N L = (0). Thus e = €.

Hence e? = e € Le # 0 (as e # 0). Since L is simple Le = L. Let K be a simple left ideal of R;. Thus
K>I;~2L. Let ¢ : L — K be an isomorphism. Then K = ¢(L) = ¢)(Le) = Li)(e) C J(e) C J (since J
is a right ideal). Thus J = R; = Z K.

KT,
O

Next time, we will prove the Artin-Wedderburn Theorem!

15.2 Day 30 - November 6

Next exam will be take-home.
Recall from last class the following powerful theorem:

Theorem 42. Let R be a left semisimple ring. Let I, ..., I be representatives of the distinct isomorphism
classes of simple left ideals (that is, every simple left ideal of R is isomorphic to exactly one I;). For each 1,

let R; = Z L. Then
L left ideal
L~I;

1. For all 7, R; is a ring with identity.
2. For all i, R; is a left semisimple with a unique (up to isomorphism) simple left ideal.

3. For all 4, R; is simple.
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4. Finally, R Ry X ... X Ry (as rings).

This leads to the following corollary:

Corollary 13. Let R be a left semisimple ring. Then R is simple if and only if R has a unique (up to
isomorphism) simple left ideal.

Proof. We write R = Ry X --- X Ry by the previous theorem.

Suppose R has a unique (up to isomorphism) simple left ideal. Then & = 1, so R = Ry, and by the
previous theorem, R; is simple. Thus R is simple.

Suppose instead that R is simple. Recall that each R; can be interpreted as residing inside R, and that
they are ideals in R (since R;R; = 0 for ¢ # j). In particular, R; is a two-sided ideal in R. Since R is simple,
and R; # 0, then R = R;. Thus R has a unique simple left ideal. O

Definition 44. Let R be a ring, and let R° = {r°|r € R}. We define + on R° by r° + s° = (r + 5)°, We
define - on R° by r°s° = (sr)°. We say that R° with these operations is the opposite ring of R.

Remark 40. Observe that R is commutative if and only if the map r — 7° is a ring isomorphism of R and
R°.

Note that I is a left ideal in R if and only if I° = {i°|i € I} is a right ideal in R°. Because of this, R is
left Noetherian (respectively, Artinian, semisimple, etc) if and only if R° is right Noetherian (respectively,
Artinian, semisimple, etc).

Finally, (R°)° = R.

Definition 45. Let M be an R-module. Define Endr(M) = {¢ : M — M| ¢ is a R—module homomorphism}.
Then Endr M is a ring under + and - (which in this case is composition). It has a multiplicative identity
element (namely, the identity function). We can also verify distributivity (but I won’t).

Proposition 26. Let R be a ring. Then Endr(R) (where we think of R as a left R-module) is isomorphic
to R°.

Proof. Define f : Endg(R) — R° by ¢ — ¢(1)°. Let us now check that this is an R-module homomorphism.
It is easy to verify that f(¢ +¢) = f(¢) + f(¥). Also,

fe) =

I
=X
N
<
—
~—
s}

Note that the fourth equality is because 1 is R-linear. Thus f is an R-module homomorphism. It is easy to
check that f is injective. For surjectivity, we can see that for r° € R°, we can define g : R — R by = +— ar.
Then g € Endgr(R), and f(g) = r°. Thus f is surjective, so it is bijective. Thus f is isomorphic to R°.

O

Exercise 11. Let M be an R-module. Then M is simple if and only if Endg(M) is a division ring.

Remark 41. Let M be an R-module, and let M"™ = M @& --- @ M (where we have n copies).
Fori=1,..,n,let f; : M — M"™ by v — (0,...,u,...,0) where the w is in the ith component. Also
define m; : M™ — M by (u1, ..., u,) +— u;. Note that 7;f; = 1as for all ¢, and 7; f; = 0 for all 4 # 0.
Let ¢ € Endgr(M™). Define ¢; ; = w1 f;. Note that this is a function M — M"™ — M™ — M. Thus
1;,; € Endg(M) for all 4, 5. Define [¢] := [¢); ;] € M, (Endg(M)).
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Claim 3. Let f: Endg(M™) = M, (Endgr(M)) by ¢+ [¢)]. Then f is a ring isomorphism.
Proof. This is left as an exercise for the reader. O
Corollary 14. If R is a ring, then Endz(R") = M,,(Endr(R)) = M, (R°).

Remark 42. Let M be an R module. We use R’ or R'(M) to denote Endg(M). Then M is an R’-module,
by the action ¢u = ¢(u) for ¢ € R’ and v € M (one can verify that this is indeed an R’-module).
Also, R” = R"(M) = Endr(M). For a € R, let v : M — M by u + ua. Then rM € R'(M). Let
IM: M — M by u au. Then M ¢ R'(M) in general.
However, we can show that [2 € R”(M). Let us do so. Note that [ (u+v) = a(u+v) = autav = l,(u)+
lo(v). Thus IM is additive. Also, for ¢ € R’, we can see that I (¢u) = IM (¢ (u)) = ad(u) = d(au) = ¢-I1M (u).
Let M be an R-module. Then there is a ring homomorphism A : R — R”(M) by a + M. One can again
verify additivity, and it is boring. Also, (IMIM)(u) = I, (bu) = abu = M u.
Next time, we will prove the following theorem due to Rieffel:
Theorem 43. Let R be a simple ring and let I be a left ideal. Then A : R — R”(I) is an isomorphism.
Note that we still have not proven the Artin-Wedderburn Theorem.

Theorem 44 (Artin-Wedderburn Theorem). Let R be a left semisimple ring. Then there exists unique
positive integers [, ny, ..., n; and unique division rings D1, ..., D; such that R = M,, (D1) X - -+ x M, (Dy).

15.3 Day 31 - November 9

Definition 46. Let R be a ring, and let S, T be nonempty subsets of R. Define ST = { Z sitils; € S,t; €
finite

T}. This is the product of S and T.

Remark 43. We have two elementary properties of these products: first, that (ST)U = S(TU), and that
if f: R — R’ is a ring homomorphism, then f(ST) = f(S)f(T). These are easy to prove, but we will skip
that.

Last time, we stated the following theorem:
Theorem 45 (Rieffel’s Theorem). Let R be a simple ring and let I be a nonzero left ideal of R. Then
A: R — R'(I) given by a — [; is an isomorphism.

Let’s prove it now!
Proof. Since A is R-linear (on both sides), then ker A is a two-sided ideal of R. Then A(1) = I; # 0 since
I # 0. Thus ker A # R, so since R is simple, then ker A = 0. That is, A is injective.

Note that IR is a two-sided ideal of R. Therefore IR = R.

We now wish to show that A\(I) is a left ideal of R”. Certainly, it is an additive subgroup. It then suffices

to show that if f € R” and [, € A\(I), then fl, € A(I). Fix some z € I, let r, denote the operation of right
multiplying by . Then r, € R’ = Endg(I). Therefore

(fla)(z) = fla(2))

= r(f
= fla)z
= lf(a) (.13)
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Therefore, A(I) is a left ideal of R, so R”A(I) = A(I). Then we have that

R’ = R'AR)
= R'AIR)
= (R'AI)AR)
= AIA(R)
= AIR)
= AR)

Therefore A is surjective, so A is a bijection. Thus A is an isomorphism.

Theorem 46. Let R be a simple ring. Then the following are equivalent:
1. R is left semisimple.
2. R is left Artinian.

3. R= My(D) for some n > 1 and some division ring D.

Proof. We have already show that (3) implies (1), and that (1) implies (2).

It then suffices to show that (2) implies (3). To that end, suppose R is left Artinian. Then R contains a
simple left ideal I. By Rieffel’s Theorem, R = R (I) = Endg (I). Since [ is simple, then R’ = Endr(I) = D
is a division ring.

Hence, R = Endp(I).

We now wish to show that [ is a finite dimensional D-vector space. Suppose for the sake of contradiction
that it is not. Then it would be infinite dimensional, so let {e1,es,...} be a countably infinite linearly
independent set in I. For each n > 1, let J,, = {f € Endr(I)|f(e;) = Owheneverl < i < n}. Observe that
each J,, is a left ideal of Endp (7). Additionally, note that J; D Ja2 D ....

Finally, for each n, we can construct g, : I — I with g, € Endp(I) such that g(e,) # 0 but g(e;) =0
for i # n (you can do this since we are working in a D-vector space). Then g, € J,—1 \ J,, so we have that
J1 2 J2 € ... Therefore Endp(I) is not left Artinian.

But R = Endp(I) is left Artinian, so this is a contradiction. Thus dimp(I) = < co. That is, I = D'.
Therefore R = Endp(D') = M;(D?°), as desired. O

Theorem 47 (Artin-Wedderburn, Part I). Let R be a ring. Then the following are equivalent:
1. R is left semisimple.
2. R is right semisimple.

3. R= M,,(D1) X ... x My, (Dy) for some positive integers n1, ..., ng and division rings Dy, ..., dy).

Proof. (1) = (3) Suppose R is left semisimple. We previously proved that R 2 R; X ... X Ry, where each R;
is a simple left semisimple ring. Then by the previous theorem, R; = M, (D;), as desired. O
(3) = 2) Suppose R is a product of matrices of division rings. We have shown that matrices of division
rings are semisimple, so their product is semisimple. O
(2) = (1). Suppose R is right semisimple. Then R® is left semisimple, so since (1) = (2) = (3), then R°
is right semisimple. Then R = (R°)° is left semisimple. O

Remark 44. Due to this theorem, a ring is left semisimple if and only if it is right semisimple. Thus we
refer to this as simply “semisimple”.

If R is a semisimple ring, then Ag(grR) < 0o and Ar(Rg) < 00, so R is both left and right Noetherian
and Artinian.
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Exercise 12. Let R = M, (Dy) X ... X My, (D), where each D; is a division ring. Then Agr(rR) =
)\R(RR) =ni+..+ng.

Remark 45. History time! Wedderburn came before Emmy Noether (he publish the result in 1907), so he
didn’t know about chain conditions. He proved the theorem for the case of rings that contain a field and are
finite dimensional over this field.

Artin came after Emmy Noether (he published in the 1920s) and generalized the result to rings satisfying
the descending chain condition.

Note that we still have not proven the Artin-Wedderburn Theorem.

Theorem 48. (Artin-Wedderburn Theorem) Let R be a left semisimple ring. Then there exists unique
positive integers [, ny, ..., n; and unique division rings D1, ..., D; such that R = M,, (D1) X - -+ x M, (Dy).

16 Weyl Algebra
16.1 Day 32 - November 11

Let’s look at an example of a ring that is simple, but not semisimple.

Example 49 (The Weyl Algebra). Let F be a field, and let x be a variable. Then F[z] is a polynomial
ring. Note that an F-basis for Flx] is {1, x,22,...}.

Let R = Endp(F[z]). Let f(z) € Flz], and let py : Flz] — F[z] by g — fg. Then py € R for all
f € Flz]. In fact, the map p : F[z] = R by f — py is an injective ring homomorphism.

Identify F[z] with image(p), so we can assume F|x] C R.

Define also d : F[z] — F[z] by d(27) = ja/~! for all j =0, 1,2, ... (and extending linearly to all of F|z].
Note that d is the derivative operator: d(f(x)) = f'(z). Therefore d € R.

Finally, the (first) Weyl algebra, denoted A;(F), is the subring of R generated by Fz], and d.

Because we are lazy, we will write A for A;(F).

Proposition 27. In the Weyl algebra, for any j > 1, do? — 2/d = jxi 1.

Proof. To check two operators are equal, we need only to check that they behave the same on all basis
elements. Therefore consider z! for some [ = 0,1,2, ....

Then
(da? — 2dd)zt = (dad)z! — (27d)a
= d(z7 — 2Tl
= (j+ DIt — ittt
_ jl‘j+l_1
= (j2' Y)(a")
for all I. Thus dz/ — 29d = jaz7 1. O

Proposition 28. The set B = {z'd’|i,j > 0} is an F-basis for A, if char F = 0.

Proof. Because of the previous proposition, for any expression involving xs and ds, we can move all the ds
to the right in each term. Hence B is at least a spanning set for A.

It then suffices to show that B is linearly independent.

Let ¢ : A — A be given by ¢(f) = foz — xf. Observe that ¢(f +9g) = (f + g9)z — a2(f + g9) =
fr—af+gx—xg=¢(f)+ P(g). Thus ¢ is additive. Since it also respects scalar multiplication by elements
of F', then ¢ is F-linear.
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Also,

o(fd) = (fd)z—=z(fd)
flzd+1) —zfd

= fad+f—afd
= f+(fr—af)d
= f4+o(f)d

That is, ¢(fd) = f + ¢(f)d. o o 4
By using this result and induction, we will show that ¢(z'd’) = jaid’~'. If j = 0, then ¢(z%) =
il — 2l =0, as desired. If j = 1, then ¢(z'd) = 2% + ¢(2%)d = x'. If j > 1, then

p(z'd’) = (a'd"'d)
= '@ 4 g(a'd)d
jald ™!

This completes the induction. By linearity, we can extend this to all polynomials f(x). That is, ¢(f(z)d’) =
jf(x)d?~! for all polynomials f(z).

Finally we can show that B is an F-basis for A. Suppose Z ai,jxidj =0.

finite

We can write this equation as f,(z)d" + f._1(x)d" ! + ... + fo(z) for some polynomials f;. Then
by applying ¢", we get that ¢"(fi(x)d’) = 0 for i < n — 1, and ¢"(f,(z)d") = n!f,(z). Thus 0 =
O(fu(z)d™ + ... + fo(x)) = nlfn(z). Since our field is characteristic 0, then n! # 0, so f,(x) = 0. Therefore
we can remove this term from our linear combination, and repeat until all terms are zero. Thus B is linearly
independent, so B is a basis. O

Proposition 29. If F is a field of characteristic 0, then A;(F) is a simple ring.

Proof. Let I # 0 be a (two-sided) ideal of A. If T # 0, then choose some nonzero g € I. Observe that for all
h e I, then ¢(h) = hx —zh € I.

We write g = fp(2)d™ + ... + fo(x), where f,(x) # 0. By applying ¢™ to g, we get that phi™(g) =
n!f,(x) € I. Therefore I contains some f(z) € F|z]\ {0}.

Now we repeat this process with d: df (z) — f(z)d = f'(z) € I. Continuing, we will get that I contains a
nonzero constant. Therefore, I contains a nonzero constant. Since F' is a field, then I = A;(F'). Therefore
the only two-sided ideals in A are A and 0, so A is simple. O

We now have a few exercises that are useful.

Exercise 13. A is neither left nor right Artinian.

Exercise 14. A is a domain.

Exercise 15. A is not semisimple. In fact, A does not contain a simple left ideal.
Now let’s move on to the Jacobson density theorem.

Remark 46. Let M and N be R-modules, and let f : M — N be an R-module homomorphism.

For n > 1, define f(™ : M™ — N™ by f™(uy,...,un) = (f(u1),..., f(un)). Then f(™ is an R-module
homomorphism.

Let E be an R-module. Let f € R"(E) = Endg/(E). That is, f : E — E such that f is additive, and
fo =o¢f for all € R = Endg(E). Then f(™ : E" — E™ is also also R'(E)-linear.

We claim that f(™) is R'(E™)-linear. That is, f(®) € R"(E™).

This is because R'(E"™) = Endg(E") = M, (Endr(F)) = M, (R'). We need to show that f("¢ = ¢f™
for all ¢ € R'(E™) = M, (R').
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We represent ¢ and (") as matrices. Then f(") = fIgn and ¢ = ¢i,; with each ¢; ; € R'(E). Then
f™e¢ = flgn o ¢ij = [foij] = [¢i,f] since f is R'-linear. This in turn equals [¢; ;] - fIp,. Thus f™ €
R"(E™) as desired.

16.2 Day 33 - November 13

Recall the following: suppose F is an R-module, R’ = Endg(F) and R” = Endg F, and f: F — E is in
R"(E). Then f : E" — E™ and f € R"(E").

Lemma 20. Let E be a semisimple R-module, and let f € R”(E). Let # € E. Then there exists a € R
such that f(x) = ax.

Proof. Certainly, Rz is a submodule of E. Then since F is semisimple, E = Rx@® N for some other submodule
N. Define 7 : E — E by r& +n — rz. Then 7 is R-linear, so 7 € R'(E). Also, n(z) =z, so f(x) = f(n(z)).
Since f is R'-linear, then f(n(z)) = n(f(x)) = ax for some a € R. Thus by transitivity, f(x) = ax for some
acR. O

Theorem 49 (Jacobson Density Theorem). Let R be a ring, let E be a semisimple R-module, and let
f € R'(E). Let 1, ...,x, € E. Then there exists an a € R such that f(x;) = ax; for all i.

Proof. We will use A\, to denote the map = + ax for some a € R.
We have that f(™ € R”(E™) by the result from last class. Also, E™ is semisimple since E is semisim-
ple. Let u = (21,...,z,) € E™. By the lemma there exists a € R such that f(")(u) = au. That is,

(f(x1), ..., f(xn)) = (az1, ..., azy). O

Corollary 15. Let R be a ring, and let E be a semisimple R-module, and suppose F is finitely generated
as an R’-module. Then X : R — R"(E) is surjective. That is, for all f € R”(FE), there exists an a € R such
that f = A,.

Proof. Since F is finitely generated as an R’-module, there exists a finite generating set {z1,...,z,}. Let
f € R'(E). By the Jacobson Density Theorem, there exists some a € R such that f(z;)\,(x;) for all 4.
n

If x € E, then v = Zsixi for some s; € R'. Then f(z) = f(z siw;) = Zsif(asi) = ZSMa(%‘) =

i=1

)\Q(Z 8ix;) = Ag(x). Thus f = A,. O

Corollary 16. Let R be a semisimple ring, and let E' # 0 be a free R-module (that is, F has an R-basis
{€a}acr). Then A : R — R"(E) is an isomorphism.

Proof. Let e be any basis element of E. Then R'e = E since one can define an R-linear map by sending
a basis to any set of elements in E. Therefore E is a finitely generated R’ module. Thus E = @R is
semisimple, since R is. Therefore, by the previous corollary, A : R — R”(FE) is surjective.

Suppose A(a) = 0. Then in particular ae = 0, so a = 0 since e is a basis element. Thus A is injective,
hence bijective. Thus A is an isomorphism. O

Corollary 17. Let D be a division ring and let E # 0 be a D-vector space. Then A : D — D”(FE) =
Endp/ (F) is an isomorphism.

Proof. Since D is a division ring, it is semisimple. Since E is a D-vector space, then it is a free D-module.
Then by the previous theorem, A is an isomorphism. O]

Corollary 18. Suppose M, (D) =& M,,(Ds) where D; and D are division rings and n1,ny are positive
integers. Then Dy = Dy and nqy = ns.
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Proof. Recall that for any ring, M, (R) = End o (R°)™. Since D¢ and D are also division rings, by renaming
D¢ to Dy and D§ to Dy, we will simply show that if Endp, D' = Endp, D52, then D; = Dy and n; = no.

Let R = Endp, Df"*. Recall that R is simple and semisimple. Therefore, R has a unique simple left
module (up to isomorphism). This simple left module is isomorphic to the rows of this matrix, which are of
course D{"*. Thus D! is a simple. R-module.

Similarly, D3? is a simple R-module. Therefore D' = D3y? as left R-modules. Thus Endg(D7') =
Endg(D5?) as rings. But by Corollary Endgr(D7*') 2 Dy and Endg(D5?) = Dy. Thus D; = Ds. But
DI = D32 = D72, so by taking dimensions, we can see that ny = na. O

Theorem 50 (Artin-Wedderburn, Part 2). Let R be a semisimple ring. Then R = M, (D) X ... X
M, (Dy) for division rings Di,..., Dy and positive integers nq,...,ng. Furthermore, the Dy,..., D) and
ni,...,ng that let you write R in this way are unique, up to reordering.

Proof. We have previously shown that there exist division rings and integers satisfying this. It then suffices
to show uniqueness.

By a homework problem [edit: see immediately below|, the number & is unique, and furthermore the
rings M,,,(D;) are unique up to reordering. But then by the previous corollary, since we know M, (D;), we
know what n; and D; are. Thus this decomposition is unique. O

Homework Problem 7. If A; x ... x A; = By X ... X By, where each A; and B; are simple rings, then k =1
and after rearrangement A; = B; for all i.

Definition 47. Let R be a commutative ring, and let S be a ring. We say S is an R-algebra if there exists
a ring homomorphism ¢ :— S such that ¢(R) C Z(S) = {s € S|st = ts for all t € S}.

Remark 47. Let R be aring, let E be an R-module, and let » € Z(R). Then A\, € R'(E), so there exists a
ring homomorphism A : Z(R) — R'(E) by r — A,

Remark 48. If F is finitely generated over Z(R) (that is, if E = Z(R)uy + ...+ Z(R)u,, for some uy, ..., u, €
E), then E = R'uy + ... + R'u,,. Thus F is finitely generated as a R’-module.

Remark 49. Suppose k is a field, and R is a finite dimensional k-algebra (that is, dimy(R) < 00).
Let E be a finitely generated semisimple R-module. Then A : R — R"(E) is surjective.

Proof. Since R is a finite dimensional k-algebra, then R = kv, + ... + kvs C Z(R)v1 + ... + Z(R)vs. However,
Z(R)v1 + ...+ Z(R)vs C R, s0 Z(R)v1 + ... + Z(R)vs = R.
Then by substitution, F = Ruj + ... + Ru; = Z Z(R)v;u;, so E is finitely generated as a Z(R) module.
—

J
Thus FE is finitely generated as an R’ module. Therefore, by Corollary A is onto.
O

17 k-Algebras
17.1 Day 34 - November 16

Let’s do examples of k-algebras!

Example 50. Let & be a field. Then the following are k-algebras: k[z1, ..., 2], k[x1, ..., zn]/I, k(z1, ..., T0),
A1 (k) (the first Weyl algebra), M, (k), and k[G] (the group ring). Of these, the finite dimensional ones are
klx1,...,xp]/I (for certain I), M,(k), and k[G] (if and only if G is finite).

Lemma 21. Let D be a division ring, and let k& be an algebraically closed field such that D is a k-algebra.
If dimy (D) < oo, then D = k.

Proof. Let a € D. Then k[a] C D. Since dimy(D) < oo, then there exists a linear dependence among
a,a?, a3, .... That is, there exists ky, ..., ko, not all equal to 0, such that 0 = k,a™ + ... + ko. That is, o is a
root of f(z) = kpa™ + ...ko. Thus a € k, so k = D. O
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Corollary 19. Suppose k is an algebraically closed field and R is a finite dimension k-algebra. Then R is
semisimple if and only if R 2 M, (k) X ... x M, (k).

Proof. Suppose R = M, (k) x...x M, (k). Then each of these matrix rings is semisimple, so R is semisimple,
as desired.

Suppose instead that R is semisimple. By the Artin-Wedderburn theorem, R & M, (D1) X ... x My, (Dy)
where D1, ..., D; are division rings.

Recall that D¢ = Endgr(E;), where E; is a semisimple R-module. Note that Endg(E;) C Endg(E;).
Then since E; is simple, E; = Rx; for any z; € F; \ {0}. Thus dimg(R) < oo, so dimy E; < oco. Thus
E = k™. Therefore Endy(E;) = M, (k).

But Endg(F;) C Endg(E;), so D¢ is finite dimensional as a k-vector space. But D¢ is also a division
ring, so by the lemma, D¢ 2 k. Thus D' 2 k° =k, so R = M, (k) x ... X My, (k), as desired.

O

Theorem 51 (Burnside). Let k be an algebraically closed field, and let V' be a finite-dimensional k-vector
space. Let R be a subalgebra of Endy (V). Then if V is a simple R-module, then

1. k =Endg(V)
2. R =End(V)

Proof. (Proof of 1) Certainly, since k C R, then Endr(V) C Endg(V). Since V is a finite-dimensional
k-vector space, then Endy (V) 2 M, (k), so Endg(V) is a finite dimesnional k-algebra. Also, Endg(V) is a
division ring, as V is a simple R-module. Therefore by the lemma, k& = Endg(V). O

(Proof of 2) By the last remark, from last class, the ring homomorphism R — R”(V) is surjective. But
R"(V) =Endgr/(V), and R’ = Endgr(V) 2 k, so R"(V) = Endi(V). But R C Endi(V), so A is injective as
well. Therefore A is an isomorphism, so R = Endy (V). O

Definition 48. Let R be a ring. An element x € R is nilpotent if ™ = 0 for some n € N.

Let I be a left ideal. Recall I™ is the left ideal generated by {a;...an|a; € T}. Then we say an ideal I is
nilpotent if I = 0 for some n.

A left ideal I is called nil if every element of I is nilpotent.

Remark 50. Every nilpotent left ideal is nil.
It need not follow that a nil ideal is nilpotent, even if the ring is commutative. An example of this is
given in the next exercise.

Exercise 16. Let R = k[z1,22,...]/(z1,23,23...), and let I = (T1,T2,...). Show that I is nil, but not
nilpotent.

Exercise 17. If I is a finitely generated ideal, then I is nilpotent if and only if I is nil.
If R is a commutative ring, then the sum of nilpotent elements is nilpotent.
However, if R is not commutative, the sum of two nilpotent elements may not be nilpotent. For instance,
(00 (01 9 9 (01
let A = (1 O)andletB <O O>' Then A = 0 and B (),b11tA—|—B<1 O) and
(A+ B)? =1, s0 A+ B is not nilpotent.

History time: Wedderburn’s actual result was classifying all finite dimensional R-algebras such that the
only left ideal which is nil is zero. The criterion of the only nil left ideal being zero is equivalent to a
finite-dimensional k-algebra being semisimple.

Artin later gave a more general condition in terms of chain conditions. Later still, Jacobson generalized
this to a statement about the intersection of all maximal left ideals. This was later named after him.

55



18 Jacobson Radical

Definition 49. Let R be a ring. The Jacobson radical is defined to be the intersection of all maximal left
ideals. We denote this by J(R).

Lemma 22. Let R be a ring and let y € R. Then the following are equivalent:
1. ye J(R)
2. 1 — zxy is left-invertible for all x € R

3. yM = 0 for every simple left R-module M.

Proof. (1 = 2) Suppose y € J(R). Suppose for the sake of contradiction that 1 — zy is not left invertible
for some z € R. Then R(1 — xy) is a proper ideal of R, so there exists a left-maximal ideal m such that
R(1—zy) Cm. Buty € m,s0 1 —xy +ay =1 € m. This is a contradiction, so 1 — xy is left invertible. [
(2 = 3) Suppose 1 —zy is left invertible for all x € R. Suppose for the sake of contradiction that yM # 0
for some simple module M. Then RyM = M, and in fact Ryu = M for some u € M. Therefore u = ryu for
some r € R, so (1 —ry)u=0. As 1 — ry is left invertible, then «w = 0. This is a contradiction, so yM = 0.
(3 = 1) Suppose yM = 0 for all simple left R-modules M. Let m be a maximal left ideal. Then R/m
is a simple left R-module. Then y - R/m = 0, so in particular y - 1 =% = 0. Thus y € m, so y is in every
maximal left ideals. Thus ¥ € (,,, maximal ™ = J (R). O

18.1 Day 35 - November 18

Recall from last class the definition of the Jacobson radical: the intersection of all maximal left ideals. We
denote it by J(R). Recall also this characterization from last class:

Lemma 23. Let R be a ring and let y € R. Then the following are equivalent:
1. y e J(R)
2. 1 — zxy is left-invertible for all x € R

3. yM = 0 for every simple left R-module M.

Definition 50. If R is a ring and M is an R-module, then the annihilator of M is Anng(M) = {r € Rlrm =
0 for all m € M}.

Remark 51. Let R be a ring and M is an R-module. Also let r € R, i € Anng(M) and m € M. Then
(ir)ym = i(rm) = 0 since i € Anng(M), and (ri)m = r(im) = r0 = 0 for the same reason. Thus Anng(M)
is a two-sided ideal.

Corollary 20. The Jacobson radical is always a two-sided ideal.

Proof. By the lemma, J(R) = {y € RlyM = 0 for all simple modules M}. Thatis, J(R) = (3 gimple ARRR(M).
Thus J(R) is the intersection of two-sided ideals, so it is a two-sided ideal. O

Proposition 30. Let R be a ring. Then y € J(R) if and only if 1 — zyz is a unit for all z,z € R.

Proof. Suppose 1 — xyz is a unit for all x,z € R. Therefore 1 — xy is left invertible for all x € R, so by the
characterization Lemma, y € J(R).

If instead y € J(R), then since J(R) is a two-sided ideal, then yz € J(R) for all z € R. Then by the
characterization Lemma, 1 — zyz is left invertible for all x € R.

let u be the left inverse of 1 — xyz. That is, u — uxyz = 1. Therefore u = 1 + uxyz. But J(R) is a
two-sided ideal, so zyz € J(R). Therefore, 1 + uxyz = 1 — (—u)zyz is left invertible by the characterization
lemma. Thus u = 1 + uzyz has a left inverse v. That is, vu = 1. But 1 — zyz = vu(l —zyz) = v so 1 — xyz
has u as both its left inverse and its right inverse. That is, 1 — xyz is invertible. O
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Corollary 21. If R is a ring, then J(R) = ﬂ m = m Annp(M).
it tdeal it tdeal
The proof of this is left as an exercise.
Definition 51. A ring R is called semiprimitive if J(R) = 0.
Example 51. Any simple ring has J(R) = 0, so a simple ring is semiprimitive.
Proposition 31. Let R be a semisimple ring. Then J(R) = 0.

Proof. Since R is a semisimple ring, we can write R = I; @ ... ® I;, where each I; is a simple left module.
Then we write 1 = e; + ... + e;, where each e; € I;. Let y € J(R). Then yI; = 0 for all j by the
characterization lemma. Thus y =y -1 =ye; + ... + ye; = 0. Thus J(R) = 0. O

Example 52. If F is a field and A;(F) is the first Weyl algebra, then J(A;(F')) = 0 since A;(F) is simple.
Since the maximal ideals in Z are generated by primes, and no number except zero is divisible by infinitely
many primes, then J(Z) = 0.
By a similar argument, if K is a field, then J(K[z1,...,z,]) = 0.

Theorem 52. Let R be a ring. Then R is semisimple if and only if R is left Artinian and semiprimitive.

Proof. We have already shown that if R is semisimple, then R is left Artinian. Today in the previous
proposition, we showed that if R is semisimple, then J(R) = 0. That is, R is semiprimitive, as desired.

Suppose instead that R is semiprimitive and left Artinian. That is, J(R) = 0. We will first show that R
is semisimple.

To this end, suppose I and L are left ideals of R such that I C L. Suppose also that [ is simple. Since
is simple it is nonzero, and since J(R) = 0, then I ¢ J(R). Thus there exists a maximal left ideal m, with
I ¢ m. But then I +m = R since m is maximal, and I N'm = 0 since [ is simple and m is maximal. Thus
R =1@® m. From this, one can verify that L = I @ (L Nm).

Note that if R is left Artinian, then every nonzero left ideal contains a simple left ideal (just extend the
chain as far as possible). Then if L; is any ideal in R, we find a simple left ideal I; C L;. Then there exists
an Lo such that L1 = 1 ® Lo. If Ly = 0, then we are done. If Ly # 0, then there exists a simple left ideal
I, C Ls.

We then repeat this process until some L,, = 0. If no L; were ever zero, then Iy C I ® I C ... is an
infinite extending chain, which contradicts the assumption that R is left Artinian. Thus there exists some
L, =0. Thatis, Ly = I; ® ... ® I,,. Then we are mostly done. [fix this up; we didn’t actually show its
semisimple. |

O

Proposition 32. Let I be a nil left ideal. Then I C J(R).

Proof. Let y € I, and let * € R. Then zy € I, so (zy)” = 0 for some n. Thus 1 — zy is a unit since
(1 —2y)1+ 2y + (zy)? + ... + (2y)" 1) =1 — (vy)" = 1. Therefore y € J(R). O

Theorem 53. Suppose R is left Artinian. Then J(R) is nilpotent.

Proof. Let J = J(R). Consider the descending chain J D J? D J3.... As R is left Artinian, there exists k
such that J*¥ = J¥*+1. Let T = J*, and note that I = I2.

Suppose for the sake of contradiction that I # 0. Then let A = {L left ideal|IL # 0}. Note that I € A,
so A # (. Since R is left Artinian, we can choose L € A minimal. Since L € A, then there exists some y € L
such that Iy # 0. Certainly, Iy C L since L is a left ideal. Also, I(Iy) = I?y = Iy # 0. Thus Iy = L.

Since y € L, then y = iy for some i € I. Therefore (1 — i)y = 0. but 1 — i is a unit since i € [ = J(R)*.
Thus y = 0, but this is a contradiction of the fact that Iy # 0. Thus I = 0, but I = J(R)*.

O

Corollary 22. If R is left Artinian (for instance if R is a finite-dimensional k-algebra), then J(R) is the
largest nil left ideal. Hence J(R) = 0 if and only if 0 is the only nil left ideal.

57



Proposition 33. Let M be a semisimple R-module. Then the following are equivalent
1. M is Artinian.
2. M is Noetherian.
3. M is finitely generated.
4. Ap(M) < 0.

Proof. First note that since R is semisimple, then M is semisimple. Write M = @MZ—, where each M, is
ieA

simple. ©

Note that Ag(M;) =1 for each i since M; is simple, so Ag(M) = |A|.

If Ar(M) = |A| < o0, then we have already shown that the first three propositions hold.

If A\(R) = |A| = oo, then note that M; & My © My C My © Mo @ M3 C ... is a strictly ascending chain of
infinite length so M is not Noetherian. Therefore it is not finitely generated. Similarly, M D M@ M3 B... 2
Ms @ ... D ... therefore M is not Artinian either. O

Note also that if R is semisimple, then every R-module is semisimple, so the previous theorem holds.

18.2 Day 36 - November 20
Tom just looked up this definition, so it probably isn’t important.
Definition 52. A ring R is left primitive if there exists a simple left R-module M such that Anng(M) = 0.

Remark 52. Recall that J(R) is the intersection of Anng (M) over all simple left R-modules M, so being
primitive implies that J(R) = 0. That is, a ring being primitive implies it is semiprimitive.

Also, R being simple (as a ring) implies that R is primitive.

Furthermore, if D is a division ring and V is a D-vector space, then one can show that Endp(V) is
primitive. Also, one can show that Endp (V) is simple if and only if dimp (V) < co. Thus if V is infinite-
dimensional, then Endp (V) is primitive but not simple.

We now forever leave behind primitive rings, and focus again on the Jacobson radical. Here we shall use
it to show that Artinian rings are Noetherian.

Theorem 54. Let R be a left Artinian ring, and let M be an Artinian left R-module. Then Agr(M) < occ.
In particular, R is left Noetherian.

Proof. Let J = J(R). Since M is Artinian, then J°M is Artinian for any i > 0 (with the convention that
J° = R). Therefore J'M/J**1M is Artinian.

But note that .J- (J:M/J*1M) = 0. Therefore J'M/J*1 M is an R/J-module by the action of 7-u = ru
fortTe€ R/J and u € J'M/JLIM.

One can also check (and I should do this) that J(R/J) = 0.

Since J(R/J) = 0, then R/J is semisimple. Therefore, by the last Proposition from last class, Ag/;(J*M/JH1 M) <
oo for all i. But one can check that Ag(anything) = Ag, j(anything), so Ag(J*M/J'""M) < oo for all i.

We will now show that Ar(M/J'M) < oo for all i. We will use induction for this. The base case is that
M/JM = J°M/J'M has finite length, and this follows from the last statement.

In the inductive case, we can make the following exact sequence of modules 0 — J*"'*M/J'M —
M/J'M — M/J M — 0. Since length is additive on exact sequences, J*"1M/J'M is finite length
by previous statement, and M/J*~'M is finite length by the inductive hypothesis, then M/J*M is finite
length. Thus by induction M/JM is finite length for all i > 0.

However, by a Theorem from last class, J" = 0 for some n, so M/J"M = M/0 = M is finite length. O

Now we will prove Nakayama’s Lemma, which is one of the most important claims built off of the Jacobson
radical.
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Theorem 55 (Nakayama’s Lemma). Let R be a ring, and let M be a finitely generated left R-module.
Suppose also that M = J(R)M. Then M = 0.

Proof. Let J = J(R). Suppose for the sake of contradiction that M # 0. Let n be the least number of
generators for M. Since M # 0, then n > 0.

Let M = Rxy + ... + Rx,, for some x; € M. Then JM = Jxy + ... + Jx,,. Since x,, € JM = M, then
Xy = J121 + ...jnTn where each j; € J. Then (1 — j,)z, = j121+ ... + Tp_12,—1. However, j, € J, so 1 — j,
is a unit in R. Thus z,, = (1 — j,) ‘zjixs + ... + (1 — jp) " Yjn_1Tn_1 € Rxy + ... + Ropy 1.

Therefore M = Rxy + ... + Rx,,_1, which contradicts our choice of n. Thus M = 0. O

Remark 53. Nakayama’s lemma fails for non-finitely-generated rings. For instance, if k is a field, and
R = k[[z]], then J(R) = m = (z). Then Q(R) = k((z)) is an R-module, and furthermore JQ(R) = Q(R).
However, Q(R) # 0, so Q(R) is not finitely generated.

This is an example of how Nakayama’s Lemma can let you show something is not finitely generated.

Remark 54. If R is a ring and M is an R-module, then we use the following notation. Define up(M) =
inf{n > 0|M = Rz1 + ... + Rz, for some x; € M}. That is, pr(M) is the minimal number of generators of
M.

Lemma 24. Let M be a finitely generatede R-module, let N C M be a submodule, and let J = J(R).
Suppose M = N + JM. Then M = N.

Proof. Note that M = N + JM if and only if M/N = (JM + N)/N =J-M/N. As M is finitely generated,
then so is M/N. Therefore by Nakayama’s Lemma, M/N =0, so M = N. O

Remark 55. The term “Nakayama’s lemma” is used loosely by mathematicians. The lemma has many
immediate corollaries, and mathematicians may refer to any of them as “Nakayama’s lemma”.

Proposition 34. Let M be a finitely generated R-module, and let z1,...,2, € M. Let J = J(R). Then
Z1,..., T, generate M if and only if Ty, ..., T, generate M/JM.

Proof. Certainly, if x1, ..., 2,, generate M, then their representatives in M/JM generate M/JM.
Conversely, suppose Ty, ..., T, generate M/JM. Let N = Rxy + ... + Rz,. Then (N + JM)/JM =
R% + ...RT, = M/JM. Therefore N + JM = M. By the previous lemma, N = M, as desired. O

Corollary 23. Let M be a finitely generated R-module, and let J = J(R). Then ur(M) = pr/;(M/JM).

Proof. By the previous proposition, generating sets for M as an R-module correspond to generating sets for
R/JM as an R/J-module. Thus their lengths are equal. O

18.3 Day 37 - November 23

Recall from last class the following named theorem:

Theorem 56. (Nakayama’s Lemma) Let R be a ring, and let M be a finitely generated left R-module.
Suppose also that M = J(R)M. Then M = 0.

Yet another corollary of Nakayama’s Lemma is the following.

Corollary 24. Let R be a commutative ring with a unique maximal ideal m (that is, R is a local ring). Let
M be a finitely generated R-module. Then pr(M) = dimg/, M/mM.

Proof. Since m is the unique maximal ideal, then J(R) = m. Therefore ur(M) = pgr/m(M/mM) =
dimp /p, (M /mM). O

Definition 53. Let # denote the short exact sequence 0 — A i> B % C — 0 and let ## denote the short

exact sequence 0 — L MM L N = 0. Bothof these are short exact sequences of (left) R-modules.
We say # and ## are isomorphic if there exists a commutative diagram [oh boy] (consisting of # above
#4, with arrows pointed down from A to L, etc, where each of those arrows is an isomorphism.)
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Definition 54. A short exact sequence of the form 0 — A % A@® B 5 B — 0 where p : a — (a,0) and
7 : (a,b) — b is canonically split.
We say a short exact sequence is split if it is isomorphic to a canonically split short exact sequence.

Theorem 57 (The Splitting Theorem). Let # denote the short exact sequence 0 — A ENY;JEN C — 0.
Then the following are equivalent

1. # splits.

2. There exists an isomorphism of commutative diagrams between # and 0 — A 4LoA eC 5 C =0

where the vertical arrows are 14 : A - A, h: B - A® C, 1¢ : C — C, and such that h is an
isomorphism.

There exists i : B — A such that if = 14.
There exists j : C'— B such that gj = 1¢.
There exists ¢ : B — A and j : C' — B such that 1 = fi + jg.

A

f(A) is a direct summand of B.

Proof. (1 = 5) Suppose # splits. That is, there exists an isomorphism between # and 0 — L Lr aMS
M — 0 (where the maps are labelled «, 3,~ respectively. Then define 7 : L & M — L by 7(I,m) = [ and
§: M — L® M by §(m) = (0,m). Then 1ygy = T + én. Finally, let i = o~ 173 and let j = 87167. Then

fi+ijg = foa 'tB+pB g
= B rB+ B o
= p7l(r+om)p
— 578

1p

as desired. 0

(5=4) [lost].

(4= 3) Let K =kerg =im f. Then f: A — K is an isomorphism. Let p: K — A where p = ?_1. Let
be B. Then g(b—jg(b)) = g(b) — g(b) = 0. Therefore (1p — jg)(b) =b—jb(b) € K so1—jg: B — K. Let
t=p(l—7jg):B— A Thenif =p(l—jg)f =pf=1a. O

(3= 2) Define h: B— A®C by h:b— (i(b),g(b)). Then one can verify that the appropriate diagram
commutes. It then suffices to show that h is an isomorphism.

We will now show that & is injective. First, note that if h(b) = 0 then g(b) = 0, so b € im(f). Let
b = f(a) for some a € A. Then 0 = i(b) = i(f(a)) = a, so a = 0 and therefore b = f(a) = 0. Thus h is
injective.

We will now show that h is surjective. Let (a,c) € A @ C. Since g is onto, then there exists some b € B
such that g(b) = c. Let ' = f(a) +b— f(i(b)). Then i(t') = i(f(a)) +i(b) — ifi(b) = a + i(b) —i(b) = a.
Also, g(b') = g(b), so h(b') = (a,c). Thus h is surjective.

Therefore h is bijective, so it is an isomorphism. Thus there exists the desired isomorphism of commutative
diagrams. O

(2 = 1) This is immediate, since such an isomorphism of commutative diagrams is a splitting of #. O

We have now shown that (1) — (5) are equivalent. It then suffices to show that (6) is equivalent.

(6 = 3) Suppose B = f(A) ® D for some submodule D of B. Define i : B — A by f(a) + d — a. This is
well-defined since f is injective and the sum is direct. Also, i(f(a)) =a, soif = 14. O

(2 = 6) Suppose h is an isomorphism from B to A ® C. Then h™!: A® C — B is an isomorphism.
Then B =h"1(A)@h~1(C), and h=1(A) = h=1p(A) = f(A). Thus B is a direct summand of f(A). O O

Corollary 25. Suppose 0 - A — B — C — 0 is split. Then B=Z A® C.
Proof. This is a direct result of (1 = 2). O
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19 Projective Modules

Definition 55. An R-module P is called projective if, given any exact sequence M i> N — 0 and map
g: P — N, there exists an h : P — M such that fh = g. (This can be represented with a diagram.)

Proposition 35. Any free R-module F' is projective.

Proof. Since F is free, there exists an R-basis {e,}. Suppose M 4N 0. And suppose g : F' — N. Then
since f is onto, for each «, there exists m, € M such that f(m,) = g(en). Then define h : F — M by
€q F> Mg. One can then verify that fh = g. O

19.1 Day 38 - November 30

We're back!
Recall the following definition from last time:

Definition 56. An R-module P is called projective if, given any exact sequence M i) N — 0 and map
g: P — N, there exists an h : P — M such that fh = g. (This can be represented with a diagram.)

Proposition 36. Let R be a ring, and let P be an R-module. Then the following are equivalent:
1. P is projective.
2. Every short exact sequence of the form 0 — L — M — P — 0 splits.

3. P is a direct summand of a free module.

Proof. (1 = 2) Take a short exact sequence 0 — L — M 1, P — 0. Since P is projective and embeds into
itself by 1p, then by the definition of projective, there exists a function j : P — M such that fj = 1p. Then
by one of the criterion for a splitting sequence, the short exact sequence splits.

(2 = 3) Suppose every short exact sequence with P in it splits. There exists a free module F and a
projection ¢ : F' — P which is free. Let K = ker ¢. Then 0 - K — F — P — 0 is a short exact sequence.
By (2), this short exact sequence splits. Therefore FF = P @ K. That is, P is a direct summand of a free
module.

(3 = 1) Suppose P is a direct summand of a free module. That is, there exists a free module F' and a
module @ such that P® Q = F. Define 7 : F — P by (p,q) — p and rho: P — F by p — (p,0). Note that
mp=1p.

Consider a diagram M i) N — 0, with g : P — N. Then there exists a function h : FF — M such that
fh=gr [why?]. Let h =hp: P — M. Then fh = fhp = gmp = g, so P is projective.

O

Theorem 58. Let R be a ring. Then R is semisimple if and only if every R-module is projective.

Proof. Suppose R is semisimple. Let M be an R-module. As always, there exists a free module F' and a

surjective map ¢ : F — M. Let K = ker¢. This gives a short exact sequence 0 - K — F %M 0.
Since R is semisimple, F' is semisimple, so K is a direct summand of F. Therefore the sequnce splits, so
F = M @ K. By the previous proposition, this is equivalent to M being projective, as desired.

Suppose instead that every R-module is projective. Let I be a left ideal of R. Then consider the short
exact sequence 0 - I — R — R/I — 0. Since R/I is an R-module, it is projective, so this sequence splits.
That is R~ 1 ® R/I, so R is semisimple. O

Theorem 59. Let R be a ring. Then R is a division ring if and only if every R-module is free.
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Proof. Suppose R is a division ring. Then R-modules are R-vector spaces. By elementary linear algebra,
every R-vector space is free.

Suppose every R-module is free. Then since free modules are projective, by the previous theorem R is
semisimple. That is, R = I; & ... & I,, where each I; is a simple left ideal. Then Ar(I;) = 1 for all j, since
I; is a simple left ideal. Thus Ag(R) = n. Since I; is simple, it is free, so I; = R’ for some n > 0. Thus
1= A(I;) = A(R) =In,so n=1. That is, R = I, and I; is a simple left ideal, so the only left ideals of R
are 0 and R. Thus R is a division ring. O

Example 53. Let D be a division ring and let n > 1. Let R = M,,(D), and let P = D™. Recall that P is a
simple R-module. (In fact, R~ P& ...@® P.) Then P is projective but not free.

We can see that P is projective either because it is a direct summand of R, which is a free R-module, or
because R is semisimple, so all its modules are projective.

However, P is not free since Ar(P) =1 < n = A(R).

Example 54. Let R = Z[v/—5]. Then I = (2,1 + /—5) is projective, but not free.

Example 55. Let R = R[x,y,2]/(2? + y*> + 22 — 1). Define ¢ : R — R by (r1,72,73) + T + 12 + r3z.
Note that ¢ is surjective since ¢(rZ,77,7Z) = r(T> + 72 +2%) =r-1 =T.

Let P = ker ¢. We have a short exact sequence 0 — P — R3 % R 0. As an R-module, R is free, so
R is projective as an R-module as well. Therefore this short exact sequence splits, so R* = P @ R. Thus P
is a direct summand of a free module, so P is projective as an R-module. However, P 2 R?, so P is not free
(this last assertion is nonobvious and the proof uses differential geometry).

Example 56. (Quillen-Suslin, 1976) Let k be a field and let R = k[x1, ..., 2] be a polynomial ring over k.
Then every projective R-module is free.

20 Group Rings are Semisimple

Recall what a group ring is: if R is a ring and G is a group, then R[G] is the group ring of formal sums of
elements of G.

20.1 Day 39 - December 2
We will now continue with the proof of Maschke’s Theorem.

Theorem 60 (Maschke’s Theorem). Let k be a field and let G be a finite group. Then R = k[G] is
semisimple if and only if char k1 |G]|.

Proof. Suppose char k {|G|. Let I be a left ideal of R. We need to show that 0 — I — R — R/I — 0 splits.

Since [ is an R-module, it is also a k-module. That is, I is a k-vector space, so R is a direct summand
as k-modules.

Let m: R — I be a k-linear function such that (i) =i for all ¢ € I.

Let g € G. We wish to show grg~! maps from R into I. Let a € R. Then 7(g~'a) € I, so gr(g~ta) € I
since I is a left ideal. Therefore gng~—' : R — I. Also, once can verify that gmg~" is k-linear.

Lastly, let ¢ = ﬁ Z grg~ ' : R — I. Here we used the fact that char k{|G|. Since this is the average

geG
of k-linear maps, this is k-linear. In order to show that ¢ is R-linear, it suffices to show that it respects

multiplication by h € G.
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Fix some h € G and a € R. Then

¢(ha) = T;Zgwg_l(ha)

geG

_ %:' >~ (hg)m(hg) ™" (ha)

hgeG

1
= h @~Zgﬂg(a)

hgeG
= h¢(a)

1
Also, for alli € I, ¢(i) = ﬁ Zgﬂgfl(i) = € Zz =1, s0 ¢ fixes I. Thussince 0 - I - R — R/I —
geG geG
0 splits, then R 2= I @ R/I. Since I was arbitrary, then R is semisimple.

Conversely, suppose char k;| |G|. Then char k # 0, so let p = char k.

Let z = Z g. Then = € k[G]. Also note that for all h € G, hx = Z hg =z = xh, so x € Z(k[G]).
9eG el

But also z - & = Z glz= ng = Z z = |G|z = 0 (the final inequality follows because p||G|.

geG geG geG
Thus 22 = 0, so Rz is a nilpotent left ideal. Therefore Rz C J(R), but Rx # 0, so R is not semisimple since
it has a nontrivial Jacobson radical. O

We can extend the statement of Maschke’s Theorem to infinite groups as well.

Proposition 37. Suppose k is a field and G is an infinite group. Then k[G] is not semisimple.

Proof. Let R = K[G] and define ¢ : R — K by Z agg Z ag. One can verify that ¢ is a homomorphism
geG geG

of rings [and I should do this].

Let L = ker ¢. Since ¢ is a homomorphism or rings, then L is an ideal of R. Also, L # 0 since 1 —g € L
for all g € G.

Suppose for the sake of contradiction that R is semisimple. Then there exists a left ideal J such that
R=L®J. Since L # R, J #0.

Let f be a nonzero element of J, and write f = Z agg. Let he G. Then1—he L,so (1—-h)feL

geG

and (1 —h)f € J. Since LNJ =0, then (1—h)f =0,s0 f =hf.

That is, f = Z agg = hf = Z ag(hg). By comparing coefficients, a;, = aj,-1, for all g € G. However,

geG geqG

our choice of h was arbitrary as well, so by the correct choice of h, we can show that a; = ay for all g, ¢’ € G.
Since Z ag9 must be a finite sum, then a, = 0 for all g. Thus f = 0, which contradicts our choice of f.

geG
Therefore R is not semisimple.
O

Let’s recap.

Remark 56. If R is both simple and semisimple as a ring, then R =1& 1 & ... & I for any simple left ideal
I. We will write R = nI to denote this, when there are n copies of I. Then D = Endg(I) is a division ring,
and R = Endp(I).
Furthermore, if R is an arbitrary semsimple ring, then there are finitely many distinct simple left ideals
up to isomorphism. Let us denote them Iy, ...,I;. For each j, let B(I;) = Z J. Then B(I}) is a ring,
Jeu;
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and is both simple and semisimple as a ring. Then R = B([;) X ... x B(l;) & ni[1 & ... ® nyly.  Also,
Endg(l;) = Endp(s,)(I;) = D; for some division ring D;. Therefore B(I;) = Endp, (I}).
We are interesting in figuring out what the n;s are.

Theorem 61. Let k be an algebraically closed field, and let R be a finite dimensional semisimple k-algebra.
Write R = nil; @ ... ® nyd, where the I;s are simple left ideals of R and distinct including isomorphism.
Then

1. n; = dimg(I;) for all 4.

t

2. dimg(R) = Zn?

3. k=Endgr(l;) forall j =1,...,t.

Proof. (Proof of 3) Let D; = Endg([};). Since Endg(I;) C Endg([;), then dimy(Dy) < dimy(End (1)) = n3.

Also, k C Z(Endg(I;)), so k C Z(D;). Thus D is a finite dimensional extension of k, but since k is an

algebraically closed field, D; = k. O

(Proof of 1) Let m; = dimy(f;) < dimg(R) < oo. We wish to show that m; = n;. Let B(I;) = n;I;.

Since D; = k, we have that n;I; = B(I;) = Endg(I;). By comparison of the vector space dimensions,

njm; = n%, so by cancellation, m; = n;. O
¢

t
(Proof of 2) then dimg(R) = Z n; dimg (I;) = Z n?.
i=1 i=1

20.2 Day 40 - December 4

Recall this theorem from last class:

Theorem 62. Let k be an algebraically closed field, and let R be a finite dimensional semisimple k-algebra.
Write R =2 n11; @ ... ® nyl; where the I;s are simple left ideals of R and distinct including isomorphism.
Then
1. n; = dimg(I;) for all 4.

t

2. dimg(R) =Y n?.

i=1
3. k=Endg(f;) forall j =1,...,¢.

Proposition 38. Let G be a finite group, and k be a field. Let C1, ..., C, be the distinct conjugacy classes
of G. For each i =1,...,7, let z; = Z g € k[G]. Then {z1,..., 2.} is a k-basis for Z(k[G]).
g€Ci

Proof. Let h € G and let C; be a conjugacy class. Then hC;h~! = C; since conjugation by A is a injective
and sends elements of C; to elements of C;. Therefore

hzih™' = h()_ gh”!
geC;

= > hgh™!

geC;

= 29
geC;
= Zi
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Therefore hz; = z;h for all h € G. Thus z; € Z(k[G]) for all 4, so {21, ..., 2.} C Z(k[G]).

Also, since C; N C; = () for all 4 # j, then {1, ..., 2} is linearly independent.

Now suppose w € Z(k[G]), and write w = Z agg. Then for all h € G, hw = wh, so hwh™ = w. Then
geG

Zagg = w

geG
= hwh™!

Z oz_qhgh_1

geG

= Z Apgh—19

geG

Then by comparing coefficients, ag = ajgp,-1 for all h € G. That is, for all g1, go which are conjugates of
each other, a4, = a4,. Thus w € span({z1, ..., 2, }, so {#1, ..., 2.} is a basis for Z(k[G]).
O

Proposition 39. Let G be a finite group, let & = k be a field such that char K { |G|, and let R = k[G].
Let Iy, ..., I; be the distinct (up to isomorphism) simple left ideals of R. Then ¢ is the number of conjugacy
classes of G.

Proof. By the Theorem from last class, we can write R = nly @ ...n:I;, where n; = dimy(I;).

Then if we write B(I;) = Z J, then R = B(I1) X ... x B(I}) & M,, (k) X ... x M, (k).

Jel;

Therefore Z(R) = Z(My, (k)) X ... x Z(My,(k)). One can verify that Z(M,,(k)) = kl,, (the center of a
matrix ring are the diagonals matrices with the same thing on the diagonal), so Z(R) = kl,, X ... X kl,,.
Therefore a k-basis for Z(R) is {1,,,...1,,} (where 1,,) represents the natural embedding of 1,, into R).
Thus dimg(Z(R)) = t.

But by the previous theorem, another basis for Z(R) is {z1, ..., 2}, so dimy(Z(R)) = t = r, where r is
the number of conjugacy classes. O

Remark 57. (Standard Hypothesis) The next several theorems have a “standard hypothesis” that G is a
finite group, k is an algebraically closed field, such that char K { |G|, and R = k[G]. Recall that by a
previous theorem, R is then semisimple. Recall also that we can write R =n1I; ® ... & ngly.

Then we can summarize the previous results into the following theorem:

Theorem 63. Suppose the standard hypothesis holds. Then

t
L |G| =) n?.
i=1

2. t is the number of conjugacy classes of G.
3. t is the number of simple left ideals of k[G].

4. If I, .., I; are the simple left ideals, then n; = dimy I; and this equals the number of times I; appears
in a decomposition of k[G] into simple left ideals.

Corollary 26. Suppose the standard hypothesis holds. Then the following are equivalent
1. G is abelian
2. t =G|
3. n; =1 for all ¢

65



4. Every simple left ideal in R has dimension 1 over k.

Example 57. Let G = S5 under the standard hypothesis. Then the conjugacy classes of G are {e}, {(12), (23), (13)}, {(123), (1
sot = 3. Also, |G| = 6 = n} + n3 = n3. Therefore n; = ny = 1 and n3 = 2. Then we can write

k[Ss] = I ® I & 215, where Iy, I5, I3 are simple left ideals in R, and dimg(l;) = dimg(ls) = 1, but

dimk(Ig) = 2.

21 Representaions of Finite Groups

Now let’s talk about linear actions.

Definition 57. Let G be a group and let X be a set. An action of G on X is a map G X X — X which we
denote by (g, u) — gu such that (g1g2)u = g1(g2u) and 1u = u for all w € X and ¢1,¢2 € G.

If V is a vector space, a linear action of G on V is an action of G on V such that g(u; + us) = guy + gus
and g(ku) = k(gu) forall g e G,u €V, and k € K.

Definition 58. Suppose G acts linearly on V. For each g € G, let ¢4 : V = V by u — gu. Note that
(pg) ™' = ¢py-1. Then ¢, € Endy(V)x = GLj(V) (this is the “general linear group”).

Define p : G — GLy(V) by g — ¢4. Then p is a group homomorphism. We call p a k-linear representation
of G.

Remark 58. Continuing the last definition, if p : G — GL,(V) is a linear representation, we can define a
linear action of G on V by gu = p(g)(u).
Therefore k-linear representations of G are in correspondence with k-linear actions of G on V.

Remark 59. Given a linear representation of p : G — GLg(V'), we can define a k[G]-module M, as follows:
The underlying set M, = V" as a k-vector space. For g € G and u € M, ho, we give the action of g on u
by gu = p(g)(u). We then linearly extend this to give an action of k[G] on M,,.
This makes M, into a k[G]-module.

Remark 60. Conversely, given a k[G]-module, we can make it into a group action. Let M be a k[G]-
module. Let Viy be M as the underlying k-vector space. For g € G, let ¢4 : Vay — V;, by u — gu. Then
¢g € GLE(V). Define par : G — GL(V) by p(g) = ¢g.

Then one can verify that pps is a k-linear representation of G.

Definition 59. Let p: G — GLg(V) be a linear representation of G. we say p is irreducible if and only if
M, ho is a simple k[G]-module.
Additionally, the degree of the representation p is dimy (V') = dimg(M,,).

Remark 61. It follows immediately from the definitions that if p has degree 1, then p is irreducible.
Additionally, under the standard hypothesis, G is abelian if and only if every irreducible k-linear repre-
sentation of G has degree 1.

21.1 Day 41 - December 7

Recall from last class that there are actions of groups on sets, and linear actions of groups on vector spaces.
Also, linear actions of a G on a vector space are in natural correspondence with the module actions of k[G]
on that vector space. If p is our group action, then we use M, to denote the group action. Alternatively, if
M is our module action, then we use pjs to denote the corresponding group action.

Definition 60. Let p, ¢ be two k-linear representations of a group G. Let p: G — GLi(V) and ¢ : G —
GLi(W). An isomorphism of representations between p and ¢ is a k-vector space isomorphism f:V — W
such that for all g € G and u € V, f(p(g)(v)) = ¢(f(u)).
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This is equivalent to f inducing a k[G]-module isomorphism between M, and M. In fact, we will
use the fact that p and ¢ are isomorphic as representations if and only if M, and M, are isomorphic as
k[G]-modules.

Remark 62. Recall that if p is a representation, we say that p is irreducible if and only if M, is simple as
a k[G] module. We also define deg(p) = dimy(M,.ho).
From this it immediately follows that degree 1 representations are irreducible.

Definition 61. We define the direct sum of two representations as follows: if p : G — GLg(V) and
¢ : G — GLE(W) are k-linear representations, then we say p@® ¢ : G — GL (VO W) by g — (p® ¢)(g) :

(v, w) = (p(g)(v), ¢(g)(w)). .
. . plg 0
As a matrix, we can represent this as .
P ( 0 ¢(9) )
Alternatively, one can “define” p @ ¢ by M,ge = M, © M.

Example 58. (Trivial representation) Let G be a group, and k be a field. Then define p : G — k* = GL(k')
by g — 1. Since deg p = dimy k = 1, then p is irreducible.
Then M, = k, and the module action is defined by gow = « for all g € G and « € k.

Example 59. Let G be a finite group, and k is an algebraically closed field such that char k t |G|. Let
p be any representation of G. Then M, is simple by a previous theorem [which one?], and since k[G] is

semisimple, then M), is isomorphic to a simple left ideal. Let w = Z g. Then hw = w for all h € G (since
geqG

left multiplication by h simply permutes the elements of G).

Let R = k[G], and I = Rw. Since hw = w for all h € G, then Rw = kw. Therefore I is a simple left
ideal, so I = M,. Therefore I is the simple left ideal corresponding to the trivial representation.

In fact, since dim I = 1, then in the decomposition of k[G] into the direct sum of simple left ideals, there
is only one copy of an ideal isomorphic to I. That is, I is the unique simple left ideal isomorphic to the
trivial representation.

Example 60. (Regular Representation) Let G be a group, and let k be a field. Let V = Z kg = k|G] (as
geG

a k-vector space). Define p : G — GLy(V) by g — ¢4, where ¢, : V — V is given by u — gu. That is, we
have given p by p = pya)-

Then degp = dimg(k[G]) = |G|. Then, given the standard hypothesis, p is irreducible if and only if
G ={1}.

Under the standard hypothesis, we can write k[G] = n1I; @ ... ® nJy where the I; are simple left ideals
with I; # I; for all j # 1.

Then we can write p = priq) = n1pr, @ ... ® nypr,. Here, each py; is irreducible since [I; is simple as a
module.

Since every simple k[G]-module is isomorphic to one of the I}, then every irreducible representation of G
is isomorphic to one of the p;s. Hence every irreducible representation of G' occurs as a direct summand of
the regular representation.

Example 61. (Cyclic groups) Let G =< a >2 (),. Assume the standard hypothesis. To find the number
of irreducible representations, it is the number of conjugacy classes. Since C,, is abelian, then this is simply

t
n. But at the same time, |G| = an, so each n; = 1.
i=1
Then we can explicitly give the representations by p; : G — GL (k) = k* by a — X;. Since a™ = 1, then
A" = p;(a)™ = 1. Therefore, A\; must be an n-th root of unity, and since char k t n, there are n distinct roots
of unity. Thus the representations are a — (;, where (,, is a primitive n-th root of unity and 1 <i <n.
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21.2 Day 42 - December 9

Let us continue our example from last class. Last time we dealt with it as a linear representation of a group,
but we can do it with group rings instead. Let us do so now.

Example 62. (Cyclic groups) Let G =< a > (). Assume the standard hypothesis. Then define ¢ :
klx] = k[G] by x — a, so f(z) — f(a). Note that ¢ is surjective.

Note also that 2 — 1 € ker ¢, so we can mod out by ™ — 1. Then consider ¢ : k[z]/(z" — 1) — k[G].
Note that ¢ is still surjective, and the dimensions on both sides are n. Therefore, since ¢ is a k-linear
transformation, it has no kernel as a linear transformation. Thus ¢ is injective as a ring homomorphism.
Thus ¢ is a ring isomorphism.

But by the Chinese Remainder Theorem, k[G] = k[z]/(z™ — 1) & k[z]/(z — A1) x ... X k[z]/(z — A\p,) =
kx..xk.

Remark 63. For this statement, we used the Chinese Remainder Theorem, which is the following statement
for rings:

Let R be a commutative ring, and let Iy, ..., I,, be ideals in R such that I; + I; = 1 for ¢ # j. Then
R/(I;..I,) = R/(I1n..N1I,) 2 R/I; X ... x R/I,. Furthermore, this isomorphism is given by 7 — (7, ..F).

Remark 64. Let H << G and let p be a representation for G/H. That is, p : G/H — GLi(V) is a group
homomorphism.

Then, if 7 : G — G/H is the natural projection, then p: G — GL(V) is a group homomorphism. That
is, it is a representation.

Claim 4. Let H < G and let p be a representation for G/H. Let p : G — GLi(V) be the induced
representation on G. Then the p-submodules of V' are exactly the p-submodules of V.

Proof. Let W be a k[G/H]-module of V. Then giW C W for all § € G. But note that the action of g on W
from the induced representation is given by gW = gW. Therefore W is a k[G] submodule of V. Similarly,
if W is a k[G] submodule of V', then W is a k[G/H] submodule of V. O

Corollary 27. Let H < G and let p be a representation for G/H. Let p : G — GLy(V) be the induced
representation on G. Then p is irreducible if and only if p is irreducible.

Proof. Recall that an irreducible representation is one with precisely two submodules, namely the whole
space and the zero space. Since the p-submodules and p-submodules are the same set, then p is irreducible
if and only if p is irreducible. O

Remark 65. We have a special case if H << G such that [G : H] = 2. Then G/H = Cy =< @ >. Then
there are exactly two one-dimensional representations, p; : G/H — k* by @ — 1 and py : G/H — k*
by @ — —1. This gives two irreducible representations of G, the trivial one p and also py : G — k* by
lifge H
—lifge H

Example 63. Let G = S,, and H = A,,. Then [S,, : A,] = 2, so the sign sgn* : S,, = k* by o — (—1)%9"°
is the sign representation.

Remark 66. Let’s do another construction of a representation. Let H < G with [G : H] = n. Let C1,...,C,,

be the two left cosets of H in G. For each i = 1,...,n, let u; = Z g. For every g € G, gC; = Cj; for
geCr

some j, so gu; = u;. Thus I = kuy & ... & ku,, is a left ideal of k[G]. Then I is irreducible (if n > 1) since

kE(uy + ... + uy,) is a left subideal. (Recall that k(uy + ... + uy) is the trivial representation.)

Example 64. Let G = S5, and assume the standard hypothesis. Let ¢ be the number of irreducible

representations of G. Then ¢ is the number of conjugacy classes of GG, which happens to be 3 in this case.
3

Since Zn? =6, then n;y =1, no = 1, and ng = 2.
i=1
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Let us consider the representations associated with each of these. For ny, this is the trivial representation.
For ns, this is the sign representation, discussed earlier.

What about the n3 = 2 representation? This would be a representation in dimension 2. Let H =< (12) >.
Then we shall do the previous construction on H < G.

The three cosets of H are C; = H, Cy = (23)H, and C3 = (13)H. Let u; = Z o. Then I =

oeCy
kuy @ kug @ kussubsetk[Ss]). Then, as before, k(u; + uz + ug) is an invariant submodule, so we can write
I = k(uy + uz + u3) @ J for some invariant submodule J. Note that J is a left ideal of dimension 2.

We wish to show that J is irreducible. Note that if J does reduce, then it would reduce into one-
dimensional representations. But we have already found all of the one-dimensional representations, and they
had multiplicity one, so they can’t appear again! Therefore J is irreducible.

Therefore J = I/k(uy + us + uz) = kuy @ ks where u3 = —u; — Us.

We can give this explicitly by ¢ : S3 — GLi(k*) = GLa(k). Then (12) < (1) :} ) and (123) —

( :i (1) > and this defines what ¢ does for the whole group.

21.3 Day 43 - December 11

How do you do problems 3 and 4 on Test 27

Claim 5. (Exam problem 3) Let R be a left Artinian ring. Then R has only finitely many two-sided ideals
containing its Jacobson Radical.

Proof. Recall that for any ring R and any ideal I, there is a natural bijection between {ideals in R containing I}
and {ideals in R/T}.

Then we can use this correspondence for the Jacobson radical J(R), so consider the two-sided ideals in
R/J(R). Since R is left Artinian, then so is R/J(R). Also, J(R/J(R)) = 0 for some reason. Therefore
R/J(R) is semisimple.

Then we can write R/J(R) = My, (D1) X ... x My, (D;) as the product of matrix rings. But each matrix
ring is simple, so it has only two left ideals. In the finite product, the ideals of the product are products of
ideals, so there are 2¢ two-sided ideals. O

Claim 6. (Exam problem 4) Let R be a left Artinian ring and let M, N be simple R-modules such that
Anng(M) = Anng(N). Then M = N.

Proof. Let J = J(R). Then JM = 0 for all simple modules M. Therefore every simple module is an R/.J
module by the action 7 - u =r - u.

One can verify that M = N as R-modules if and only if M = N as R/J-modules.

However, R/J is a semisimple ring for the same reasoning above. Therefore the problem reduces to the
case of a semisimple ring. Therefore assume without loss of generality that R is semisimple.

It was a theorem that simple modules over semisimple rings are isomorphic to simple left ideals of the
ring. That is, M =2 I and N = L for some simple left ideals of R.

Now consider the decomposition of R into matrix rings given by the Artin-Wedderburn Theorem. If
1 % L, then they would have different annihilators, so M 2 N. This is a contradiction, so M = N. O
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Chapter 2

MATH 902

1 Representation Theory

1.1 Day 1 - January 11

What we’ll cover this semester is representation theory, commutative algebra, and maybe a dash of category
theory.

Definition 62. Let A be an n x n matrix with entries for a ring R (usually, R is commutative). Let the

n
entries be denoted A = [a; ;]. Then we say Tr(A) = Z a;,; is the trace of the matrix.
i=1

Remark 67. One can easily verify the following facts:
1. Tr(A+ B) = Tr(A) + Tr(B).
2. Tr(cA) = ¢T'r(A) for any c € R.
3. If R is a commutative ring, then Tr(AB) = Tr(BA).

4. If R is a commutative ring, then Tr(PAP~!) = Tr(A) for all invertible matrices P.

Using these facts, we can make the following definition.

Definition 63. Let k be a field and let V' be a finite dimensional k-vector space. For a linear transformation
f 'V =V, define the trace of f to be Tr(f) := Tr([f]s) for any basis 5 of V. Note that the trace is
independent of our choice of basis by part 4 of the previous remark.

Remark 68. From the previous remark, we get that Tr : Endg (V) — k is a linear functional.

Definition 64. Let k be a field, let R be a finite-dimensional k-algebra, and let M be a finitely generated
(left) R-module. (Note that this implies that M is a finite dimensional k-vector space.)

For each r € R, note that the map r,, : M — M by u > ru is k-linear. Define the character x.,, (of R)
associated to M by x., : R — K by r — Tr(ry,).

We say that the degree of x,, is dimy M.

Theorem 64. We have the following results:
1. xm(1) = dimg (M) - 1 (and if char k = 0 then this equals deg x,,).

2. Xm : R — k is a linear functional.

3. If B is a k-basis for R, then Y, is determined by x,, 5

70



4. XMoN = XM T XN-

5. Suppose M = N as R-modules. Then xp = xn-

Proof. (of part 2) xm(r+5) = Tr((r + 8)m) = Tr(rm + sm) = Tr(rm) + Tr(sm) = xm (1) + Xm(s). Similarly,
if ¢ € k, then xpm(cr) = exm(r) for all r € R. O
Proof. (of part 4) Identify M, N as submodules of M & N, and let 8; and Sy be bases for M and N
respectively. Then 81U Qs is a basis for M @ N. Let r € R. Then [ryan]s,us, = < [Twé]ﬁl ir O] ) Thus
N1B2
Tr(ryen) = Tr(rar) + Tr(ry). But at the same time the lefthand side equals x4 x5 (7) and the righthand
side equals xas(r) + xn (7). O

Proof. (of part 5) Let ¢ : M — N be a k-linear isomorphism. Let § be a basis for M. Then ¢(5) is a basis

for N. Let 8 = {u1,...,un}. Let » € R. Let [rap]g = [a;;]. Then ras(u;) = ru; = Zai,juj. If we apply ¢

j=1
to both sides, we get that ry(p(u;)) = ré(u;) = ¢(ru;) = Zaw(b(uj).
j=1
Therefore [rn]s) = [ai;]. Hence xar(r) = Tr(ry) = Tr(ry) = xn(r) for all 7 € R. O

Example 65. Let R = k[z]/(2?) (note that R is not semisimple). Let M = R. A basis for R is 8 = {1,z}.

1 0 0 0
Then [1p]p = ( 0 1 ), so xm (1) = 2. Also, [zpm]s = ( 1 0 > Thus xar(z) = 0.

Let N = R/(z) ® R/(z). Then [ly]|s = ( (1) (1) ) and [zy]g = ( 8 8 ) Thus xp(1) = 2 and
XM (SC) =0.
Therefore the characters of both of these are equal, but the modules are not isomorphic. After all,

N =0, but zM # 0.

Proposition 40. Let R be a semisimple finite dimensional k-algebra such that char k = 0. Let M, N be
finitely generated modules. Then x,; = xn if and only if M = N.

Proof. We have already shown that M = N implies xp; = xn-

Conversely, suppose xp = xn. Thenlet R = nl1 ®...¢n I, = B(I1) X ... x B(I;) where the I; are distinct
simple left ideals. Recall that this is the unique decomposition given by the Artin-Wedderburn theorem.

We can write M 2 mql1 & ... & myl; and N Zr1I; & ...r;1;. Then M = N if and only if m; = r;.

Let e; be the identity element of B(I;). Recall that e;I; = 0 for all j # ¢. Then (e;)ar : M — M by
u + e;u. Therefore (ei)M) = 0 for j # ¢. However, (ei)m‘ = 1y, 1,- Thus xp(e;) = (dimg(m;1;)) -

m;il; ’I’TLriIi

1 = m; dimg (L) - 14 ”

Similarly, xn(e;) = 7; dimg(I;)-k. Then we can set these equal to zero, and since 15 # 0 and dimg (I;) # 0,
we can cancel by these and get that m; = r;. Since i was arbitrary, then M = N. O

Note that this makes us really excited. Now, a finitely generated semisimple ring is uniquely determined
by its character.

Definition 65. Let R be a finite dimensional k-algebra. Then a character for R is a x s for some R-module
M. A character x # 0 is irreducible if, whenever xy = x1 + X2, with both the y;s being characters, then
either x;1 = 0 or x2 = 0.

Corollary 28. Suppose R is a semisimple finite-dimensinal k-algebra with char k = 0. Then a character
X = X 18 irreducible if and only if M is simple.

Proof. Suppose M = Ny @ Ny. Then xar = xn, + Xn,. Note that xn, = 0 if and only if IV; = 0. Therefore
any decomposition of the character leads to a decomposition of the module, and vice versa. O
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1.2 Day 2 - January 13

Recall the following theorem:

Theorem 65. Let R be a semisimple, finite-dimensional k-algebra (where k is an algebraically closed field
of characteristic 0). Then R = nil; & ... & nyl; where I; # I for i # j. Let x; = x, for i =1,...,t.
Then

1. {x1,..., Xt} is the complete set of all irreducible characters from R.

2. Every character y for R can be expressed uniquely in the form mqy; + ...msx: where each m; > 0.

4. xr =x1()x1 + - +xe(1)xe-

Proof. (Proof of 1) As proved last class, x = xas is irreducible if and only if M is simple. But this is the
case if and only if M 2 I; for some 4, and this is the case if and only if xa; = X7, (since isomorphic modules
have the same character). O

(Proof of 2) Let x = xas where M is a finitely generated R-module. Then M = my I ®... & mI; for some
m; > 0. (This decomposition is unique by the Jordan-Holder Theorem). Then xpr = mix1 + ... + myxe. If
XM =7r1X1+ ... +7exe, then M 2y & ... &1 ly, so m; = r; for all 7. O

(Proof of 3) Recall that x;(1) is the trace of the map given by left multiplication by 1. But this is the
identity, and the trace of the identity is the dimension of the vector space. That is, x;(1) = dimg(l;) = n;. O

(Proof of 4) By decomposing R into the direct sum of simple modules and using the fact that xygn =
XM + xn, we get that xg = nix1 + ...nexe- Then applying part 3, we know that n; = x;(1), so xgr =
x1(1)x1 + ...xe(1)xe, as desired. O

Recall the following things about linear representations:

Remark 69. We will usually work under a common set of hypotheses: that k is a field, V is a finite
dimensional vector space over k, G is a finite group, and p: G — GL(V) is a (k-linear) representation for
G. The character x, of p is defined by x, : G — k by g — Tr(p(g)).

Let M be the k[G]-module corresponding to p. That is, M has an underlying set equal to V', with the
k-vector space structure. We define the action of G on M by p, thereby making M a k[G]-module. Then
Xp(9) = xa(g), so we get a one-to-one correspondence between characters of k[G] modules, and characters
of k-linear representations of G.

Remark 70. We will often work under the following hypotheses:

Let k be an algebraically closed field. Let G be a finite group such that char k 1 #G. Then k[G] is a
semisimple ring, so we can decompose it into k[G] = B(I1) X ... x B(I;) 2 niIy & ... ® n I;. Let x; = xy, for
i=1,..,t.

Let e; € B(I;) be the identity element. Let ¢y, ...,¢; denote the distinct conjugacy classes of G. Let
m; = |¢;|, and let z; = Z g € k[G]. Then Z(k[G]) = ke1 X ... x ke, = k21 D ... D kz.

geC;
These hypotheses will be referred to by (#).

Theorem 66. Let y be a character of a representation p : G — GLg(V). Let ~ denote the equivalence
relation on G given by “is conjugate to”. Then whenever g ~ h, then x(g9) = x(h). (Such functions are
called class functions.)

Proof. 1f g = xha™", then p(g) = p(zha™") = p(x)p(h)p(z~"). So x(g9) = Tr(p(g)) = Tr(p(h)) = x(h). O

|G| ifg=1

Lemma 25. Suppose (#). Let ¢ = xx[¢). Then ¢(g) = {O g1
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Proof. Note that ¢(g9) = xjc)(9) = Tr(grie)). We can use any basis, so let’s use the basis given by the
elements of g. If g = 1, then gyg) is the identity, so ¢(g) = |G|. If g # 1, then gh # h for all h € G,
so multiplication by g permutes the basis elements without fixed points. Thus the matrix corresponds to a

permutation matrix with no 1s on the diagonal, so ¢(g) = 0.
O

Theorem 67. Suppose (#). Then

1 e = |T(L;i| ZXi(gil)g

geG

)

t
2. zi =my Z X;&ej for any g € ¢;.

j=1

Proof. (Proof of 1) Recall that e; € k[G], so e; can be written unique as a linear combination of elements of
g- Thus let e¢; = Zagg (where each a4 € k. It suffices to show that a, = %x(gil).

Let h € G. Then, let ¢ = xy(q], we have that p(e;h™t) = (;S(Z aggh_l) = Z ag¢(gh_1) = ap|G|. But

geG geG
e;h™'I; = e;I; = 0 when j # 4. Thus y;(e;h™!) =0 for j # .
But on the other hand,
dlesh™) = (nix1+ ... +nexe)(esh™)
nixi(eih™")
= nixi(h™)
Thus ap|G| = n;x(h™1), so ap, = %X(}fl) O

1.3 Day 3 - January 15

Recall the following set of hypotheses:

Remark 71. We will often work under the following hypotheses:

Let k be an algebraically closed field. Let G be a finite group such that char k 1 #G. Then k[G] is a
semisimple ring, so we can decompose it into k[G] = B(I1) X ... x B(I) 2 ni1Iy @ ... ® ne ;. Let x; = xy, for
i=1,..t.

Let e; € B(I;) be the identity element. Let ci,...,¢; denote the distinct conjugacy classes of G. Let
m; = |ci|, and let 2 = » g € k[G]. Then Z(k[G]) = key x ... x ke, = kzy @ ... @ k2.

ge€ci
These hypotheses will be referred to by (#).

Recall also this theorem, which we previously stated and proved the first half of:

Theorem 68. Suppose (#). Then

Loei=1 Y xilg g

geG

~ ,(9)
2. zi:mi; ]nj e; for any g € ¢;.

j:

We will now prove the second half of this theorem:
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Proof (Proof of 2) Note that from the first half of the theorem, since no e; is 0, then n; # 0 in k, since

= Z xi(g~Y)g. Thus char k{n; for all 4.

geG
t

Since z; € k[G] =n1l1 & ... B nely, then z; = ZUjej for some w;. Then
j=1

xi(zi) = Xl(z uje;)

t
= Y wley)
j=1

Ui X1 (el)
= un

Note that the penultimate equation is true since x;(e;) = 0 for all j # [, and that the last equation is
true since x;(e;) = Tr(idy,) = dimg(f;) = n;. Then z; = Z g, SO
geC;

xiz) = xi(d_ 9

geC;

Z xi(9)

g€eC;
m;xi(9)

For any g € C;.

Therefore u; = mlix(g), and this completes the proof.
O

Corollary 29. Suppose (#). Then

1. For all 7,5 € {1, ...,t}, we have that sz )X (g™ =i 4]G|.

geG
t
2. For all g, h € G, we have that in(g)xi(h_l) = 04.4|Cc(9)|-
i=1
Proof. (Proof of 1) Recall that e; = |G| Z xi(g™1)g, s0 nidi ; = x;(ei) = Z . By multi-
geG eq

plying by +- u we get the desired equation. O

(Proof of 2) Recall that

~ ,(9)
“ = my
= mlzxy |G|ZXJ

heG

= Z ZXJ “)h

hEGj 1
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Also, by definition we have that z; = Z h, so we shall compare coefficients. By doing so, we get that

heC;
t t

. - s _ _ G
if h € C (that is, if g ~ h), then 72> " x;(g)x;(h ") = 1,50 > x;(9)x;(h™") = |mJ = |Calg)]. On the

j=1 j=1 ¢

t
other hand, if h & C;, then ij (g)xj(hfl) =0, as desired. O
j=1

t
Remark 72. A special case of interest to us of part (2) in the corollary is that for all g # 1, Z X;(9)x;(1) =
j=1
0.
Definition 66. A function f : G — k is called a (k-) class function if f(g) = f(h) whenever g ~ h. Let
Fr.(G) = {f| f is a k-class function on G}.
Then Fi(G) is a k-vector space.

Remark 73. Let f; : G — k be defined by f;(g) = 1if g € C; and f;(9) =0 if g € C;. Then {f1,..., f} is
a basis for Fj(G). Therefore dimy, Fi(G) = t (that is, the dimension is the number of conjugacy classes of
G).

Definition 67. Let V be a vector space, and f : V x V — k be a function. We say f is a bilinear form if,
whenever you fix one component, f is linear in the other component.
We say a bilinear form f is symmetric if f(z,y) = f(y, z).

Definition 68. Suppose (#). Define the following bilinear form (—, —) : Fi(G) x Fx(G) — K by (¢,9) =

I—é‘ Z (9)¢(g~h) for all phi,p € Fx(G). One can verify that this is also symmetric.
geG

Proposition 41. Suppose (#). Then (x;, x;) = di,j, 50 {x1,..., x¢} is a basis for Fj(G).

t
Proof. Suppose ¢1x1+...+cext = 0. Then 0 = (x;,0) = (x4, cix1+--+eexe) = Zci(XivXj) = ¢;. Therefore
j=1
X1, ---, Xt 18 linearly independent. One call also verify that they are spanning, hence a basis. O

Lemma 26. Suppose (#) and that k = C. For all i € {1,...,t} and g € G, we have that x;(¢7') = x:(g)
(meaning the complex conjugate).

Proof. Recall that x;(g) = Tr(gs,). Let n = |G|. Since g™ = 1, then (g;,)" = 17,. Hence, the minimal
polynomial of g;, divides 2™ — 1, and thus has distinct roots. Hence g¢;, is diagonalizable as a matrix, so

A 0
gr, ~ ( B \ >, where each A, is a distinct n-th root of unity, and r = dim¢ I;. Let [; be the integers
T
2mil . —_
such that Aj = e = . Then A;' = e 2™lin = X},

Then Tr(g; ") = A7" + o+ A7 =X+ o+ A = (l9))-

Definition 69. Suppose (#) and let & = C. We can define the Hermitian inner product < —,— >:
Fo(G) x Fe(G) = Chy < 6,00 >= & >~ d(g)v(g).
geG

Remark 74. The Hermitian inner product has some perks. It is sesquilinear. We have that < ¢, ¢ >= 0 if
and only if ¢ = 0. Also, < ¢, >= < Y, >.
This is an inner product.

Proposition 42. Suppose (#) and that k = C. Then < x;, x; >= 0 ;.
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- 1 _
Proof. Note that < X, x; >= & > xi(9)x;(9) = @l > xil@xi(gh) = (xirxg) = 6ij- O

geG geG

From this we can conclude that {x1,..., x¢} are in fact an orthonormal basis for Fr(G).

1.4 Day 4 - January 20

We are now working under the following assumptions:
Let G be a finite group, k = C, x1,...x: the set of irreducible characters of G. For ¢, ¢ € Fr(G) (the set

of class functions), we define < ¢, >= ‘—él Z #(9)¥(g). Then we have that < x;, x; >= 0; .
geG
Let ¢ : G — GL,(C). Let x(g9) = Tr(¢(g)). If x is a character of a representation of G, then y =
mix1 + ... + mexs where m; > 0 and m; € Z for all :. Furthermore, m; =< x, x; >,
Also, < x,x >=m3 + ... +m?, so < x,x >= 1 if and only if x = y; for some i.
We can now move onto character tables. This is a table of characters y; and elements of conjugacy classes
gj, whose entries are x;(g;)-

|1 g1 . g
x1| 1 1 .. 1
X2 | N2
Xt | Mt

Example 66. Let G = C'3 =< a >. Then there are 3 conjugacy classes of elements in G, so t = 3. Thus there
are 3 irreducible representations, all of degree 1. If w = e%, then they are given by ¢; : C5 - GL(C) = C*
by a — w’. Then x;(a) = Tr(¢;(a)) = w;. Then the character table is
‘ 1 a a2
Xo|1 1 1
1|l w w?
2|1l w2 w
Note that columns are always orthogonal because of the orthogonality relation.

Example 67. Let G =V, = {1,a,b, ¢}, the Klein 4-group. Recall that if H <G and p: G/H — GL,(C)

is a representation, then p : G — GL,(C) given by p : G > G/H % GL,(C) is also a representation.
Furthermore, p is irreducible if and only if p is irreducible.

In our case, let H =< a >. Then G/H = Cy, so let Tho : G/H — C* by b+ —1. Then the induced
representation p: G — C* is given by 1 = 1, a — 1, b — —1 and ¢ — —1. Then let us make our character
table:

1 a b c
x1 |1 1 1 1
x2 |1 1 =1 -1
x3 |1 -1 1 -1
xa|1 -1 -1 1

Example 68. Let G = S5. Then there are 3 conjugacy classes (corresponding to 1-cycles, 2-cycles, and
3-cycles). This gives us the following table:
‘ 1 (12) (123)

i1 1 1
2|1 -1 1
3|2 0 -1

The second row corresponds to modding out by (123) to get Cs, and the last row comes from orthogonality
with the previous ones.

Remark 75. Unfortunately, there exist distinct groups with the same character table. We will talk about
what they are later (after the homework).
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Example 69. Let G = Ay. Then H = {(1),(12)(34), (13)(24), (14)(23)} is normal in G. Then there are
four conjugacy classes: (1), H \ {1}, (123)H, and (132)H. We can then build the following character table:
|1 (12)(34) (123) (132)

x1 |1 1 1 1
xe | 1 1 w w?
X3 | 1 1 w? w
X4 | 3 -1 0 0

(Where w is a primitive 3rd root of unity. The first three rows are given by the three representations of
G/H = (5. The last one is given by the columns’ orthogonality relation.

1.5 Day 5 - January 22

Let’s do the character table for the quaternions!

Example 70. Let G = Qs (the quaternion group). The conjugacy classes of G are {1}, {-1}, {£i},
{£j} and {£k}. Since H = Z(G) = {£1} < G, then we get characters from G/H = Vj. This gives us three
characters, and we get the trivial character for free. Then the final row can be computed by the orthogonality
relation.

1 -1 i j k
vl 1 1 1 1
2|1 1 1 -1 -1
3|l 1 -1 1 -1
vall 1 -1 -1 1
X512 =2 0 0 0

In fact, x5 is the charcter from the representation of p : Qs — GL2(C) by ¢ — ( _01 (1) > and j — 0::0

i 0
andk:—><0 z)

Example 71. Let G = S4. The conjugacy classes are the distinct cycle types (represented by) (1), (12), (12)(34), (123), (1234).
We will find characters by looking at a normal subgroup. Let H = {(1), (12)(34), (13)(24), (14)(23)}. Then
H < S4. Furthermore, S; has no elements of order 6, so Sy/H has no element of order 6. Therefore
S4/H = S3. From last class, we know that S3 has three conjugacy classes, giving us three characters for
free.
Also, we know that the sum of the squares of the first column add up to 24, and the first three entries
are 1,1,2, so the last two entries must be 3, 3. This gives us:

1 (12) (123) (12)(34) (1234)
a1 1 1 1 1
Yo |l -1 1 1 —1
vsl2 0 -1 2 0
Xa |3
X5 | 3

We can get another representation from the action of Sy on V' = Ce; ©Cey © Cez @ Cey by 0 : €1 — e5(4)-
Note that W = C(e; + e3 + e3 + e4) is fixed under o, so let’s instead consider the action of G on V/W =
Cey @ Ce; @ Cez. Then this gives another representation, which happens to be irreducible because its inner
product with itself is 1. The last row we can get by orthogonality relations. Thus we get this completed
character table:

1 (12) (123) (12)(34) (1234)
1|1 1 1 1 1
|1 -1 1 1 ~1
|2 0 -1 2 0
4|3 1 0 -1 -1
Xs|3 -1 0 ~1 1
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2 Spectrum of a Ring

We now emerge from group theory to commutative algebra!
Let R be a commutative ring with unity with 1 # 0.

Definition 70. An ideal p # R is prime if for all a,b € R such that ab € p, then a € p or b € p.
Remark 76. One can show that p is prime if and only if R/p is a domain.

Exercise 18. If p is a prime ideal and p D I; N...N I, then p D I; for some 1.
From this, prove that if p D I115...I,,, then p D I; for some 4. In particular, if p D I"™, then p D I.

Exercise 19. Show that maximal ideals are prime.
Definition 71. The prime spectrum of R is Spec R = {p|p is a prime ideal of R}.

Example 72. Let F be a field. Then Spec F' = {0}. If R is a ring with Spec R = {0}, then in fact R is a
field.
Also, (0) € Spec R if and only if R is a domain.

Example 73. Spec Z = {(0)} U{(p)|p € Z is a prime number}.
Let F be a field. Then Spec Flz] = {(0)} U{(f(z))|f(x) € F[z] is irreducible}.

2.1 Day 6 - January 24

Recall from last class the definition of a prime ideal, and the definition of the spectrum of a ring.

Proposition 43. Let R be a ring, and ay,...,a, € R. Define ¢ : R[z1,...,z,] = R by f(z1,..,2,) —
f(ai,...,a,). Then ¢ is a surjective ring homomorphism and ker ¢ = (z1—ay, ..., p—ay), and R[z1, ..., x,]/(z1—
A1y ooy Ty — Gp) = R.

Proof. Certainly, (z1 — a1, ..., &, — ay) C ker ¢. To show the other direction, we will use induction on n.

For n = 1, f(x) € R[z], so by the division algorithm, f(z) = (z — a)g(z) + r for some r € R. Then
f(a) =0 if and only if » = 0. Therefore f(a) =0 if and only if f(z) € (z — a).

For the inductive case, suppose the claim holds for n — 1. Suppose f(zi,...,z,) € Rlz1,...,z,] and
that f(a1,...,an) = 0. Let g(z1) = f(z1,...,a2,...,a,) € R[z1]. Then g(a;) = 0. By the n = 1 case,
g(@1) = (z1 — a1)l(z1).

Consider h(x2,...,2n) = f(21,....,xn) — g(x1) € S[za,...,2,], where S = R[z1]. Then h(asz,...,a,) =
(z1,a2,...,an) — g(x1) = 0. By the n — 1 case applied to S, we get that h(xs,...,x,) € (X2 — ag, ..., Ty —
an)S[Ta, ..., Tpl.

Therefore f(z1,...,2n) — g(z1) = (x2 — a2)uz(z) + ... + (x5, — ap)u(z). Therefore f(z1,...,2,) = (z1 —
a)l(z1) + ... + (xn — an)un(z) € (T1 — a1,y ooy Ty, — ap).

Thus ker ¢ = (z1 — a1, ..., Tn — ay). The remainder of this theorem follows from the first isomorphism
theorem. O

Corollary 30. Let k be a field. For any c1, ..., ¢, € k, we have that (x1 — 1, ...,xn — cn) = {f(z1,...,2,) €
klx1,...,zn]|f(c1,...;en) = 0}, and that this ideal is maximal in k[zq, ..., z,].

Remark 77. If k is an algebraically closed field, then every maximal ideal of k[z1, ..., 2] has this form (this
is the Nullstellensatz).

Exercise 20. For any ¢y, ...,¢;, € k (with m < n), we have that (x1 — ¢1, ..., Zym — ) is a prime ideal of
klx1, ..., zpn]. (In fact, k[z1, ..., xn] (21 — €1, ooy T — Cm) ZE[Tmi1, o, Tn)l.

Example 74. From the previous results, we have that SpecClz,y] = {(0)} U{(z — ¢,y — d)|¢,d € C} U
{(f(z,9))|f(z,y) irred}.

Definition 72. For p € Spec R, define the height of p by ht(p) = sup{n|there exists a chain in Spec R with p =
Dn 2 o 2 pO}
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Example 75. In C[z,y], we have that ht((xz,y) > 2 as (z,y) D (z) D (0). On the other hand, ht(x) > 1
since (z) D (0).

Definition 73. Let R be a ring. The dimension of R is dim R = sup{ht(p)|p € Spec R}.
Definition 74. Let I be an ideal of R. Define V(I) = {p € SpecR|p D I}.
Proposition 44. Let I, J, and I, be ideals in a ring R. Then

1. V(I UV(J)=V(INJ).

2. Naea V) = V(D La).

aEAN

3. V((0)) = Spec R, and V(R) = 0.

Definition 75. We can define the Zariski topology on Spec R by saying a set F' C Spec R is closed if and
only if FF = V(I) for some ideal I. The fact that this satisfies the axioms of a topology is given in the
previous proposition.

Proposition 45. The Zariski Topology is Ty but not 77 (in general).

Proof. Let p # q € Spec R = X be two distinct ideals in Spec R. Then one of these ideals does not contain
the other, so let p C gq. Let U = X \ V(p). Then p € U, but ¢ € U. Thus the Zariski topology is Tp.
However, if p D ¢, every open set containing g also contains p, so X is not 77. O

Proposition 46. The Zariski topology is compact (although sometimes this is called “semi-compact” be-
cause algebraists use outdated terminology).

Proof. Let X = J,cp Ua, where each U, = X \ V(I,,) for some ideal I,.
Then the fact that the U, cover X implies that N,V (I,) = 0, and by a previous proposition, then

V(Z I,) = 0. Since every proper ideal is contained in a maximal ideal (and maximal ideals are prime),

then it must be that Z I, =R.

n

Thus 1 € Z["" 50 1 =iq, + ...iq, for some ai,...,a, € A. Thus ZI‘” =R, so V(Z I,,) = 0. Thus
i=1 i=1

NV(I,) =0,s0 X =, Us,. O
Definition 76. A nonempty subset S of R is multiplicatively closed if for all a,b € S, ab € S.

Proposition 47. Let S be a multiplicatively closed set of R and assume 0 ¢ S. Then there exists a
p € Spec R such that pN S = 0.

Proof. Let A = {I|I is an ideall NS = (}}. Note that (0) € A, so A # 0. Note that A is partially ordered by
subset.

Also, if C is a chain in A, then I¢ = (J;.o [ is an ideal. It is also disjoint from S, so I¢ € A. Finally, I¢
is an upper bound of C.

Thus Zorn’s lemma applies to C. Let p be a maximal element in A. We wish to show that p is a prime
ideal.

Suppose for the sake of contradiciton it is not. Then [something] and we get a contradiction. O

2.2 Day 7 - January 27
Recall from last class the following theorem:

Proposition 48. Let S be a multiplicatively closed set of R and assume 0 ¢ S. Then there exists a
p € Spec R such that pN .S = 0.

We can use this to prove (one of) Krull’s Theorem(s):
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Theorem 69 (Krull’s Theorem). Let R be a commutative ring. Then Nilrad(R) = ﬂ D.
peSpec R

Proof. Let « € Nilradical(R). Then 2™ = 0 € p for any p € Spec R. But since p is prime and -z -...-z € p,

then x € p. Thus x € n D.
peSpec R
Conversely, suppose © ¢ Nilrad(R). Then 0 ¢ S = {2"},>1. By the proposition, there exists a
p € Spec R such that pNS =10, so z & p.
O

Proposition 49. Let R be a commutative ring, and let I # R be an ideal in R. Then the map f: V(I) —
Spec(R/I) by p +— p/I is a bijection. (In fact, f is a homeomorphism).

Definition 77. Let I be an ideal in a ring R. Then the radical of I is /T = {r € R| r™ € I for some n €
N}.
This theorem is also called Krull’s theorem:

Theorem 70. Let I be an ideal in a ring R. Then VI = ﬂ p.
peVv(I)

Proof. Observe that v/T/I = +/(0), where (0) is I/I in R/I.
Then by Krull’s theorem about nilradicals and the previous proposition, vT/I = 1/(0) = Npevnp/I =
(Npev(np)/1. Then by lifting to R, we can see that VI = ﬂ p O
peVv ()

Definition 78. Let p € Spec R. We say p is a minimal prime of R if ht(p) = 0.

We denote the set of minimal primes by Ming(R) = {p € Spec R| ht(p) = 0}.

Let I be an ideal of a ring R, p € Spec R, and suppose I C p. Then we say p is minimal over I if
ht(p/I) = 0.

We denote the set of minimal primes over I by Ming(R/I) = {p € V(I)|ht(p/I) = 0}.

Exercise 21. Let R be a commutative ring, and let I be an ideal of R with I # R. Let p € V(I). Then
pDqforall g€ Ming(R/I).

Proof. We apply Zorn’s lemma to A = {q € V(I)|q C p} (with the partial order of reverse inclusion). O
Corollary 31. If I is a proper ideal of a ring R, then /I = ﬂ p.
peMing(R/I)

Exercise 22. If R is Noetherian, then Mingr(R/I) is a finite set.

Remark 78. By combining the previous exercise and previous corollary, we get that in a Noetherian ring,
each proper radical ideal is the finite intersection of prime ideals.

Theorem 71. Let R be a commutative ring, and let X = Spec R. Then X is connected if and only if R
has no nontrivial idempotents. (A trivial idempotent is 0 and 1).

Proof. Recall that X is disconnected if and only if it can be partitioned into two open sets. But if those sets
are both open, then they are both closed.

Thus X is disconnected if and only if X = V(I)UV (J), where V(I) and V(J) are nonempty and disjoint.
But if they are disjoint then § = V(I) NV (J) = V(I + J). Since V(I + J) =0, then I + J = R. But since
V(I) and V(J) are nonempty, then I # R and J # R.

Furthermore, X = V(I) UV (J) = V(IJ). Thus X = V(IJ), so every prime ideal contains I.J. Thus
1J c \/(0).

Thus we have translated the topological property of disconnectedness into finding two ideals I, J such
that I # R, J# R,and I +J = R, and IJ C \/@ We now wish to show that the existence of such ideals
is equivalent to the existence of nontrivial idempotents.
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Suppose that e is a nontrivial idempotent. Then e? = e. Furthermore, 1 — e is also an idempotent. Let
I =(e) and J = (1 —e). Note that I = R if and only if e is a unit. But e = e, so if e were a unit,
then e = 1. Since e is a nontrivial idempotent, this is not the case, so I # R. Similarly, since 1 — e is a
nontrivial idempotent, then J # R. Furthermore, 1 = e+ (1 —¢,s01 € I +J. Thus R = I 4+ J. Finally,
IJ=(e)(1—¢)=(e(1—¢e))=(0)C+/(0).

Conversely, suppose we have two ideals satisfying the previously described properties. Then R =1+ J,
so 1 =i+ j. Since ij € IJ C 1/(0), then there exists an n € N such that (ij)" = 0.

Consider the ideal (™) + (j™). If this ideal were strictly contained in R, there would be a maximal ideal
m such that (i) + (™) C m. Since m is maximal, it is prime, and since i" € m, then so is ¢. Similarly,
jem,so R = (i) + (j) C m. This is a contradiction of the fact that m is a maximal ideal, so we know that
(") + (4") = R.

Thus 1 = 74" + s5™ for some r,s € R. Let e = ri". Then e(1 —e) = (ri")(sj™) = rs(ij)" = 0. Thus
e? = e. However, ife =1,then 1 € I. If e = 0, then 1 = 1 — e € J. Either way, this is a contradiction. Thus
e is a nontrivial idempotent.

O

Example 76. If R is a domain, then it has no nontrivial idempotents, so its spectrum is connected.

If R = R; X Ry, where both Ry and R, are rings with unit, then R has nontrivial idempotents (such as
(1,0)), so its spectrum is disconnected.

If R is a local ring then R is connected.

Exercise 23. Show that if R is a local ring, then Spec R is connected.

Proposition 50. If R is a ring, and e is an idempotent in R, then ¢ : R — (e) x (1 —e) by r — (re,r(1—e))
is an isomorphism of rings. (Note that (e) is indeed a ring with unit, because e acts as the multiplicative
identity on it.)

From this we can conclude that a ring R has a disconnected spectrum if and only if it can be factored
into the product of two rings with unit.

2.3 Day 8 - January 29

Theorem 72. Let R be a commutative ring. Then R is Artinian if and only if R is Noetherian and
dim R = 0.

Proof. Suppose R is Artinian. Then we have already shown that R is Noetherian. We then have to show
that R has dimension 0. Recall that the dimension of a ring is the length of a maximal chain of prime ideals.
Therefore a ring is dimension 0 if and only if no prime ideals are contained in any other prime ideals.

To this end, let p be a prime ideal. Then R/p is a domain. Furthermore, since R is Artinian, then R/p is
as well. We have previously proven that Artinian domains are fields, so R/p is a field. Thus /p is a maximal
ideal. Thus no prime ideal contains another one, so dim R = 0.

Conversely, suppose R is Noetherian and that dim R = 0. Therefore Spec R = min R = max R. Since
R is Noetherian, then by homework problem #5 on problem set 2 [edit: see immediately below], min R is
finite.

Then let Spec R = {my,...,m;} (where each m; is maximal and minimal).

Let J = N!_,;m;. Then J is both the Jacobson radical (the intersection of maximal ideals) and the
Nilradical (the intersection of prime ideals) of R.

Note that for ¢ # j, we have that m; +m; = R. Therefore by the Chinese Remainder Theorem, we have
that R/J = R/(m; N...Nmy) = R/my X ... x R/m; as rings. Since the righthand side is the finite product
of fields, then R/J is semisimple, so it is Artinian.

We now wish to show that R/J* is Artinian for all 4, using induction on i.. We have just shown this claim
is true for i = 1, completing the base case. Now suppose R/J'~! is Artinian. Then consider the R/J-module
Ji=1/Jt. Since R is Noetherian, then J? is finitely generated. Hence J*~1/.J¢ is also finitely generated. Since
R/J is semismiple, then J*~!/J? has finite length. Hence J*~!/J? is Artinian.

Furthermore, the sequence 0 — Ji=1/J¢ — R/J" — R/J""! — 0. is exact. Then since J*~1/J% is
Artinian, and R/J*"! is Artinian by induction, then so is R/J? (as an R-module). Therefore R/J* is
Artinian as a ring.
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But J is finitely generated, so let J = (a1, ..., a,). Since J is also the nilradical, then there exist n; such
that a;* =0. Let n =Y _n;. Then J* =0, so R/J = R. Thus R is Artinian.
O

Homework Problem 8. Let R be a Noetherian ring, and let I be a proper ideal of R. The the set of
minimal primes over I is finite.

Example 77. Consider R = Z/100Z. Since Z is Noetherian, so is R. Recall that dimZ = 1, but all such
chains contained (0). Since (0) is not a prime ideal in R, then dimZ/(100) = 0, so it is Artinian.

3 Localization

Let’s talk about localization.

Definition 79. Let R be a commutative ring (with 1 # 0). Let S be a multiplicatively closed set of R. Let
R xS ={(r,s)|r € R,s € S}. Define a relation ~ on R x S by (r1,s1) ~ (r2, s2) if and only if there exists
t € S such that t(sar1 — s172) = 0 (or equivalently tsor; = ts1ra).

Proposition 51. The relation ~ defined above is an equivalence relation.

Proof. We will only verify transitivity (the other two properties are easy to check).

Suppose (r1,81) ~ (r2,s2) and (ra, s2) ~ (73, s3). Then there exists a t € S such that tsory = tsyre, and
there exists a u € S such that ussre = usars.

Let p = utss. Since u,t,so € S, and S is multiplicatively closed, then p € S. Furthermore,

pSsry = uls28371

uss(tsar

= usz(tsire

)
)
= ts1(ussrs)
= ts1(usars)
= utsy(s1r3)

psi1T3

Thus (r1, s1) ~ (rs, s3).

Remark 79. We will use £ to denote the equivalence class of (r, s).

Definition 80. Let Rg = {%|r € R,s € S}. Sometimes we instead denote this by S™'R.

We furthermore define two operations on Rg by :—1 + Z—; = S2MdSiT2 apd T T2 — TiT2 - Qpe can verify

8182 S1 82 S182
that these operations are well-defined.
Theorem 73. The two operations given above make Rg a commutative ring with identity.

Remark 80. From now on, we will assume that 1 € S. We will usually assume 0 ¢ S, but it will be possible
for this to be the case.

Remark 81. If z € R, and we let s = {z"},>0, then we will write R, for Rg.
If p € Spec R, then we write R, for Rg, where S = R\ p.

Example 78. Let R = Z, and let S = {2"},,>0. Then Zy = {5k|a € Z,n > 0} C Q.
Also, Zzy = {¢la,b € Z,b is odd} C Q.

Example 79. Let R = Z/(6)Z. Let S = {2"},>0. Then 5 = {5%|a € Z/(6),n > 0}. Then we can do a lot
of collapsing, and show that Rs = Z/(3).
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3.1 Day 9 - February 1

Recall that if R is a commutative ring, and S is a multiplicatively closed set, then we use Rg to denote the
ring of fractions.
Recall that we, without loss of generality, let 1 € S.

Remark 82. We have a natural map ¢ : R — Rg by r +— 7.
Note that this map may have nontrivial kernel, as ker ¢ = {r € R| there exists ¢t € S such that Tr = 0}.
Therefore ¢ is injective if and only if S contains no zero divisors.

Remark 83. All of these constructions work in the noncommutative case, so long as S C Z(R).

Proposition 52. Let R be a ring, and let S be a multiplicatively closed set in R. Let f: R — T be a ring
homomorphism such that f(s) is a unit for all s € S.

Then there exists a unique ring homomorphism v : Rg — T such that the ¥ o ¢ = f, where ¢ is the
natural map as before.

Proof. “Define” (%) = f(r)f(s)~'. We wish to show that this is well defined.

Suppose ;1 = 2. Then there exists t € s such that tsorq = tsira. Then f(2)f(s2)f(r1) = f(t)f(s1)f(r2).
By multiplying both sides by f(¢)=!f(s1) 7! f(s2)™!, then we get that f(ri)f(s1)™! = f(r2)f(s2)~t. Thus
1 is well defined.

One can then verify that ¢ is a ring homomorphism.

Suppose that another v’ meets the required properties. Then for all r € R and s € S,

fr) = 4'(3)

Since f(s) is a unit in 7', then ¢/(%) = f(r)f(s) ™' = ;E;; That is, ¥’ = 1. This completes the proof of
uniqueness. O

Exercise 24. Suppose g : R — Ais aring homomorphism with the following propoerty: givenany f: R — T
such that f(s) is a unit for all s € S, there exists a unique homomorphism ¢ : A — T such that f = og.
Then there exists a unique isomorphism h : Rg — A such that g = ¢ o h.

Remark 84. We use the following notation:
If f(R) — T is a ring homomorphism, then T is naturally an R-module via r-¢:= f(r)t. If I is an ideal
of R, then IT = {> iytx|ir € I,tx € T} is an ideal of T. In particular, IT is the ideal of T generated by

fa).
Proposition 53. Let S be a multiplicatively closed set of R. Let I be an ideal of R, and let ¢ : R — Rg

be the canonical map. Define I := {i|i € I, s € S}. Then
1. I¢s = IRg (so Ig is an ideal of Rg)

2. Every ideal of Rg is of the form Ig, for some I <1 R

3. Is = Rg if and only if IN.S # 0.

Proof. (Proof of (1)) Let £ € Ig, wher i € Ig and s € S. Then £ =i-1. Since i € I and 1 € Rg, then
i € IRg. Thus Is C IRs.
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Let Z ikr—k € IRg, where each i € I, each r, € R, and each s € S. Without loss of generality, we can

Sk
change everything to a common denominator, so s; = s; for all ¢ and j. Then we will call all denominators
s. Then szf - ZW’“ € Is. Thus Is = IRs. 0

(Proof of (2 )) Let J be an ideal of Rg. Let I = “1(J) ={a € R|$ € J}. We wish to show that Iy = J.
Ifé € Is, where i € I and s € §, then { € J, so % = %% € J. Thus Is C J. Conversely, let = € J. Then
T =1%¢€J. Therefore r € I, so % € Is. ThusIS—J O

(Proof of (3)) Suppose Is = Rg. Then 1 € I, so 1 = £ for some i € I and s € S. Therefore there exists
at € S such that ti = ¢s. Then ti € [ and ts € S, so ti €INS. Thus INS # (). Conversely, if i € I NS,
then1=%€Is,SOISZR5. L]

Example 80. Ideals of Rg are always of the form Ig, but the ideal I which makes this happen might not
be unique. For instance, if R =S = Z, then Rg = {0}, and every ideal in R maps down to the same ideal
in Rs.

Corollary 32. If R is Noetherian, so is Rg for any multiplicatively closed set S.

Proof. Let J be in ideal of R. Then J = Ig = IRg for some ideal I of R. Since R is Noetherian, then
I = (a1, ...,an)R. Therefore J = (ay,...,an)Rs = (%, ..., 5). Thus J is finitely generated. O

Exercise 25. If R is Artinian, so is Rg for all multiplicatively closed sets S.
Exercise 26. If S consists of units, then the map R — Rg by r + {.is an isomorphism.

Proposition 54. Let R be a commutative ring, let S be a multiplicatively closed set, and let I be an ideal
in R. Let S = {5+1I[s € S}. Then S is a multiplicatively closed set of R/I. Then the map Rs/Is — (R/I)g
by £+ £ is an isomorphism.

s

Proof. Let m : R — R/I by 7+ 7, and let ¢ : R/I — (R/I)g. Then, by composition, f = ¢ o7 is a ring
homomorphism, and f(s) = 5 is a unit for all s € S. x* By the universal property that we proved earlier,

there exists a ¢ : Rg — (R/I)g where ¢(%) = ;8 = i Furthermore, 1) is a surjective ring homomorphism.

Then one can show that kery = Ig, so by the first 1som0rphlsm theorem, we know that Rg/Is = (R/I)g.
O

3.2 Day 10 - February 3

Recall the following notation: if R is a ring, and S is multiplicatively closed set, then Rg is R localized at
S, and ¢ : R — Rg is the natural map given by r — 1.

Proposition 55. Let J be an ideal of Rg. Then ¢~1(J)s = J.

Proof. Let £ € J. Then § € J,sor € ¢~*(J), s0 £ € ¢~ '(J)s. Thus J C ¢~ *(J)s.
Conversely, if = € #~1(J)s, then without loss of generality we can assume 7 € ¢~1(J). Then 1 €J,s0
LeJ. Thus J = ¢ 1(J)s. O

Remark 85. Let q € Spec Rg. Then ¢~ !(q) € Spec R.

Proposition 56. With the notation as above, there is an inclusion-preserving bijection between {p €
Spec R|pN S = 0} «+ Spec Rg given by p > ps and q — ¢~ 1(q).

Proof. If q¢ € Spec Rs, then ¢~!(q) € Spec R by the second remark. Convervsely, if $~1(q) NS # 0, let
s€p (q)NS. Then § € q, 50 ¢ = Rg, as { is a unit. Thus prime ideals (and only prime ideals) in Rg are
taken to prime ideals i 1n R which are dlsJ01nt from S.

Suppose instead that p € Spec R, and pN S = (). Notice that Rg/ps = (R/p)g, where S = {s+pl|s € S}.
As PNS =0, then0¢S.

Since R/p is a domain, then (R/p)g is a subring of the field of fractions of R/p. Hence (R/p)g is a
domain, so pg is a prime ideal.

It follows directly from the definition that these maps are inclusion preserving.
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Also, we proved in the previous proposition that ¢~1(q)s = q. It therefore suffices to show that ¢~ (pg)
p. To this end, let a € p. Then ¢ € pg, so a € ¢~ (ps). Now let b € ¢~ '(ps). Then % € pg, so % =
for some a € p,s € S. Therefore there exists t € S such that tsb = ta € p. Since ts € S, then ts € p, s

bep.

Swia |

O

Remark 86. This map above, given by p — pg is a homeomorphism (for the Zariski topology).

Remark 87. We have a special case when S = R\ p, where p is a prime ideal. Recall that R, denotes Rg.
Then ¢ NS = 0 if and only if ¢ C p. Then Spec R, = {q, = qRp|q € Spec R, q C p}. Thus R, has a unique
maximal ideal, namely p, = pRs.

Furthermore, Ry /py = (R/p)5 = (R/p) ). This is the field of fractions of R/p.

Definition 81. A quasi-local ring is a commutative ring R with a unique maximal ideal m. To emphasize
this, we write it as (R, m).

The residue field of R is R/m.

A local ring is a ring which is both Noetherian and quasi-local.

Example 81. If R is Noetherian, then R, is a local ring for all p € Spec R.
Example 82. With R = Z and p = (2), then Spec Z9) = {(0)(2), (2)(2)}. Therefore Z,) is a local ring.

Definition 82. (Localization of a module) Let M be an R-module, and let S be a multiplicatively closed
subset of R. Let A = {(m,s)|m € M,s € S}. Define a relation ~ on A by (mq, $1) ~ (ma, s2) if there exists
at € S such that t(somq — syms) = 0.

By the same proofs as before, ~ is an equivalence relation. Let =* denote the equivalence class of (m, s).

Then let Mg (sometimes instead denoted by S~*M be the set {Z|m € M, s € S}.

We then define 5 + 72 = W, and - - 7% = 712, These are well-defined, thereby making Mg
and Rg-module.

Proposition 57. Let M be an R-module. Then the following are equivalent:
1. M=0
2. M, =0 for all p € Spec R

3. My = 0 for all maximal ideals m.

Definition 83. We will often use colon-ideals: if I and J are ideals of R, then (J :g I) = {r € R|rI C J}.
It is a theorem that (J :g I) is an ideal of R containing J.

Proof. (1 =2, 2 = 3) Certainly, if M = 0, then M, = 0 for all ideals p, including the prime ones. This (1)
implies (2). Since every maximal ideal is prime, then (2) implies (3).

It then suffices to show that (3) implies (1). To this end, suppose My = 0 for all maximal ideals m. Let
x € M. Then whenever m is a maximal ideal of R, § € My = {%}, so there exists a t, € R\ m such that
tmx = 0.

But Anng(z) = {r € R|jra = 0} is an ideal of R. Therefore t,, € Anng(z) for all m, so Anng(x) ¢ m
for all m. But the only ideal not contained in any maximal ideal is R itself. Thus Anng(x) = R, so = = 0.
Thus M = 0.

O

Theorem 74 (Nakayama’s Lemma). Let (R, m) be a quasi-local ring. Then m is the Jacobson radical
of R. Let M be a finite generated R-module. Then the following are all referred to as Nakayama’s Lemma;:

1. M =0 if and only if M = mM.
2. If N C M then M = N if and only if M = N +mM.
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3. For z1,...,x, € M, we have that z1,...,2, generate M if and only if Z1, ..., T, spans M/mM as an
R/m-vector space.

4. M = Rzy + ...Rx, if and only if {x1,...,2,} contains a basis for M/mM. Therefore pr(M) =
dimp/m M/mM. (Recall that ug(M) denotes the minimal number of generators for M as an R-
module.)

Definition 84. We say {x1,...,x,} is a minimal generating set for M if M = Rxy + ... + Rz, and n =
R (M).

Proposition 58. Let (R, m) be a quasi-local ring, and let P be a finitely-generated projective module. Then
P is a free R-module (that is, P 2 R" for some n € N).

Proof. Since P is finitely generated, then let n = pr(P) = dimp/n(P/mP). Let xi,...,2, be a minimal
generating set for P.

Define ¢ : R® — P in the natural way. That is, ¢ : e; — x;. Certainly, this is a surjective ring
homomorphism.

Let K = ker ¢. Then we get a short exact sequence

05K —R" 3P0

Then by a theorem about projective modules, the sequence splits. Thus R™ = P& K. Then R"/mR" 2
(P @ K)/m(P & K). Therefore (R/m)* = P/mP @& K/mK. By comparing dimensions, we have that
dim K/mK =0, so K =mK, so K = 0 by Nakayama’s Lemma. O

3.3 Day 11 - February 5
When life gives you Lemmas, make Lemma-nade!

(All of these lemmas will be stated without proof, but are easy to prove. Also, they will be stated for
modules, but they can also be applied directly to rings.)

Lemma 27. Let S be a multiplicatively closed set of a commutative ring R. Then

1. (@ Ma> =P, (My)s (as Rg-modules).
o s
2. Suppose S C T, where T is also a multiplicatively closed set. Then (Ms)% = Mr as Rp-modules
(where L = {L|t e T,s € S}.
3. For a,b € R, M, = (Ma)% as Rgp-modules.
4. For a € R, M, = Mg». (This could be considered a corollary to the previous result.)

5. Let q C p be prime ideals. Then R\ p C R\ ¢, so (M), = M,.

This lemma is pretty important:

Lemma 28. Let M be an R-module, and let S be a multiplicatively closed set. Then,
1. If AHDRM ns 75 @, then MS =0.
2. If M is finitely generated, then the converse to 1 holds. That is, if Mg = 0, then Anng M N S # (.
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Proof. Suppose Anng M NS # (. Then there exists some s € Anng M N S. That is, there exists an s € S
such that sM =0. Then s-m-1=s-0-tforallme M and t € S, so %:% Thus Mg = 0.

Conversely, if M is finitely generated, we can write M = Rxy + ... + Rx,. Then 5 = 0 in Mg for all 4.
Therefore, for each x;, there exists s; € S, such that s;z; = 0. Let s = s1...5,,. Then s € S and sz; = 0 for
all ¢. Therefore sM = 0. O

Let’s look at some not-finitely-generated examples where this fails.

Example 83. Let R = Z, and let M = @Z/(Z”) Then Anny M = 0, but My = 0.

n>1

Example 84. Let R = k[z] (for some field k). Then let M = k[z,2~']/k[z]. Then Anng M = 0, but
M, = 0.

Proposition 59. Let R be a commutative ring, S be a multiplicatively closed subset, and let P be a
projective R-module. Then Pg is a projective Rg-module.

Proof. Since P is projective, there exists an R-module such that@ such that P& Q = Z R. Then Ps®Qg =

«@
®aRs. Therefore Psg is a direct summand of a free Rg-module. In other words, Pg is a projective Rg-
module. O

Note that usually Pg will not be a projective R-module.

Corollary 33. Let P be a finitely generated projective R-module. Then for all g € Spec R, P, is a free
R4-module.

Proof. By the previous proposition, P is a finitely generated Rg-module. But finitely generated projectives
over quasi-local rings are always free. O

Remark 88. If I is a finitely generated free R-module, then F' = R™ for a unique number n. We call n the
rank of F', and write n =rk F.

Combining these two results, for each finitely generated projective P, we have a function fp : Spec R — Ny
by q — rk P,.

Remark 89. If f : M — N is an R-homomorphism and S is a multiplicatively closed set, then { : Mg — Ng
defined by %(m) = %m) is an Rg-homomorphism.

s
Note also that { 04 = %. Also note that 1 = 1,/,.
These properties combined make localization a functor.

i g
Proposition 60. (Localization is exact) If L LS Nis exact, then so is Lg = Mg - Ng (where R is
a commutative ring, S is a multiplicatively closed subset of R, and L, M, and N are R-modules).

i
Suppose ™ € ker 4. That is, 9(m) _ 0, so there exists a t € S such that tg(m) = 0. Since g is an

S

R-module homomorphism, then g(tm) = 0. Thus ¢tm € ker g = im f. That is, there exists an [ € L such that

f() =tm. Then {(ﬁ) = % =t — % Hence im{ D ker ¥.

Thus im{ = ker 4, so the sequence is exact. O

Proof. We know that % =0,s0 {o L= % =0. Thus im ¢ C ker ¢.

Remark 90. Recall that we use V(I) to denote the set {p € Spec R|p D I'}. Then every closed set is V(1)
for some I, but we don’t have a similar notation for open sets.

We can (partially) fix that: for a € R, let D(a) = Spec R\ V((a)) = {p € Spec R|a & p}. Then D(a) is
open.
Theorem 75. Let P be a finitely generated projective R-module. Give Ny the discrete topology. Then the
map f : Spec R — Ny by q — 1k P, is continuous.
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Proof. Since Ny has the discrete topology, then the singletons are a basis for the open sets. Therefore
continuity is equivalent to the preimage of every singleton being open.

Let n € Ng. If f=1(n) = (), then this is open, so suppose instead that f=!(n) # (. Then let q € f~1(n).
We'll show that there exists an a € R such that q € D(a) C f~!(n).

Since rk Pq = n, then Py = Ry. Then let {4, ..., {*} be an Rg-basis for Py. Then each s; ¢ q for all i.
However, bases are invariant under multlphcatlon by unit scalars, then {%, ..., %=} is also a basis.

Define ¢ : R* — P by e¢; — wu;. Then £ TRy — Pyis an 1somorphlsm. Let K = ker¢, and let
C = coker ¢ = P/im ¢.
Since % is exact, then Ky = Cy = 0. Since P is finitely generated, then so is C. By the lemma, we know
that Anng CN R\ q # 0. That is, there exists a b € q such that bC' = 0. Thus C}, = 0.

[Proof to be finished later.] O

3.4 Day 12 - February 8
Recall from last class that we had started the following proof:

Theorem 76. Let P be a finitely generated projective R-module. Give Ny the discrete topology. Then the
map f : Spec R — Ny by q — 1k P, is continuous.

Proof. Since Ny has the discrete topology, then the singletons are a basis for the open sets. Therefore
continuity is equivalent to the preimage of every singleton being open.

Let n € Ng. If f=!(n) = (), then this is open, so suppose instead that f=!(n) # (. Then let q € f~(n).
We'll show that there exists an a € R such that q € D(a) C f~1(n).

Since tk Py = n, then Py = Ry. Then let {{, ..., i} be an Rg-basis for P,. Then each s; ¢ q for all 7.
However, bases are invariant under multlphcatlon by unit scalars, then .., %2} is also a basis.

Define ¢ : R® — P by e¢; — wu;. Then 2 TRy — Pyis an 1somorphlsm. Let K = ker¢, and let
C = coker ¢ = P/im ¢.

That is, we have the exact sequence 0 - K — R" 4p C — 0.

Since % is exact, then K; = Cy = 0. Since P is finitely generated, then so is C. By the lemma, we know
that Anng C N R\ q # 0. That is, there exists a b & q such that b6C' = 0. Thus C}, = 0.

Then by localizing the above exact sequence, we get that 0 — K, — R} — P, — 0 — 0.

[This is where we stopped last time.]

From a theorem from last class, since P is projective as an R-module, then P, is also projective as an
Rp-module.

Therefore K is finitely generated Note that (K3)q, = Kq = 0. Then, since K is finitely generated,
then by the lemma there exists a ;% € R \ qp such that ;5 Kj = 0. Thus {Kp = 0.

Thus (K3)e = 0. But since localization is assomatlve we know that Kbc = 0. Let a = be. Since b & q
and ¢ ¢ q, and q is a prime ideal, then a € q. Therefore K, =0 and C, = (Cp)= = 0.

Suppose p € D(a). Then p, € SpecR,, so P, =2 (P,),,. Since K, = C, = 0, then the exact sequence
localized at a is 0 — R} — P, —. Thus P, = Ry. Substituting this in, we get that P, = (Rg),, = Ry.
Thus rk P, = n.

Therefore D(a) C f~1({n}), so f is continuous. O

Definition 85. Let P be a finitely generated projective R-module. Then P is said to be of constant rank
if rk Py = rk P, for all p,q € Spec R.

Theorem 77. Let R be a commutative ring. Then every finitely generated projective R-module has constant
rank if and only if R has no nontrivial idempotents. (And as we showed before, having no nontrivial
idempotents is equivalent to Spec R being connected.)

Proof. Suppose R has no nontrivial idempotents. Then as we showed before, Spec R is connected. Let P be
a finitely generated projective R-module.

As before, let f : SpecR — Ng by q — 1k FP,;. Suppose n € im f. Then since Ny has the discrete
topology, then {n} is both closed and open. Thus f~!({n}) is both closed and open. But since Spec R is
connected, then either f~1({n}) is either Spec R or the empty set. But since n € im f, it is nonempty. Thus

~1({n}) = Spec R. That is, f is constant, as desired.
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Conversely, suppose there exist a nontrivial idempotent e € R. Let I = (e) and J = (1 — e). Note that
R =1I@®J. Also, I and J are finitely generated (they are generated by a single element), and they are
projectives.

Extend I to a maximal ideal ¢ € Spec R. Then (1 —e) ¢ q. Furthermore, (1 —¢e)I = 0 since (1 —e)e = 0.
Therefore I = 0. Thus f(q) = 0. Now extend J to a maximal ideal p. Then I ¢ p, so I, = R,, so f(q) > 0.
Thus f is not constant. O

4 Tensor Products

Now let’s talk about tensor products.

Definition 86. Let R be a ring with unit (not necessarily commutative). Let M be a right R-module, let
N be a left R-module, and let A be an abelian group.

A function f: M x N — A is called R-biadditive if for all m,my,ms € M, n,ny,ny € N, and r € R,
then we have that

1. f(m,ny +mng2) = f(m,n1) + f(m,ns)
2. f(m1 +ma,n) = f(my,n)+ f(ma,n)
3. f(mr,n) = f(m,rn)

Example 85. One example is f : (R X R) — R by (r,s) — rs.

Another example is f : R2 x M — M? by ((r,s),m) — (rm, sm).

A third example works for any right ideal I. Let f: R/I x M — M/IM by (F,m) — 7m.

Another example works for any multiplicatively closed set S which is in the center of R. (Note that we
haven’t actually defined how to localize in a non-commutative ring, but one can image that it is doable.)
Define f : Rg x M — M, by (%, m) — 2.

We now define tensor products using a universal property.

Definition 87. Let R, M, and N be as above. An abelian group M ®g N together with an R-biadditive
map h: M x N - M ®gr N is called the tensor product of M and N if it has the following property (which
we call the universal property): For any abelian group A and R-biadditive map f : M X N — A, there exists
a unique group homomorphism g : M ®g N such that f =go h.

Remark 91. The tensor product (if it exists) is unique, up to isomorphism.

We can show this by supposing there exist two “tensor products” 77 with map h; and To with map hs.
Then since hy and hsy are biadditive maps, there exists ¢ : 71 — T5 such that hg o ¢ = hy and hy o ¥ = ho.
Then hj oidy, = hy o1 o ¢. But we assumed there was a unique group homomorphism which makes the
diagram commute, so idy, =1 o ¢. Thus T1 = Th.

4.1 Day 13 - February 10
Recall that we “defined” the tensor product last class in the following way:

Definition 88. Let R be a commutative ring, let M be a right R-module and let N be a left R-module.
An abelian group M ®pr N together with an R-biadditive map h: M x N — M ®pr N is called the tensor
product of M and N if it has the following property (which we call the universal property): For any abelian
group A and R-biadditive map f : M x N — A, there exists a unique group homomorphism g : M ®r N
such that f = go h.

We showed last time that M ®g N is unique (up to isomorphism), if it exists.
We will now show existence:

Proposition 61. With R, M, and N, as above, M ®pr N exists.
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Proof. Let F be the free abelian groupwith basis of cardinality |M x N|. That is, we write F' = @ Z.
(m,n)eM XN
Let [m,n] denote the basis element of F' corresponding to (m,n).
Then every element of F' can be uniquely written in the form Z ri[ms, n;] where r; € Z.
finite

Let S be the submodule of F' generated by all elements of the form
1. [m,nq1 + n2] — [m,n1] — [m, no] for any m € M and ny,ny € N.
2. [mq + ma, n] — [my,n] — [ma,n] for any my,me € M and n € N.
3. [mr,n] — [m,rn] for any m € M, n € n, and r € R.

Then let M @g N = F/S. For m € M and n € N, let m ® n denote [m,n] + S € F/S/ Hence, every
element of M ®pg N is of the form Z ri(m; ® n;) for r; € Z. Note that there may be more than one way
finite
to write an element now.
Note also that

1. m® (m+n2) =men; +meng for all m € M, ny,ns € N.
2. (m1+m2)@n=m1 @n+ms@n for all m;,ms € M and n € N.
3. (mr)@n=m® (rn) forall m € M, n € N and r € R.

These follow from the elements generating our submodule.

Finally, define h : M x N - M ®g N by (m,n) — m ® n. By our previous observations, this map is
R-biadditive.

Finally, we must show that M ®pr N satisfies the universal property. Suppose f: M ® N — A is any
R-biadditive function.

Define a group homomorphism g : F — A by [m,n] — f(m,n). Since f is R-biadditive, then each of
the generators for S live in the kernel. Hence S C kerg. Therefore we get an induced group homomorphism
g:F/S— Aby m®n— f(m,n) (and this is well-defined).

But then f(m,n) = g(m®n) = g(h((m,n)), so f =goh.

It then suffices to show that this is the unique group homomorphism g for which this is true. To this
end, suppose g1 : M ® g N — A is a group homomorphism such that g; oh = f. Then g;(m ®n) = f(m,n),
so g1 = g on all generators of M ®g N. Thus g; = g, so ¢ is unique.

O

Example 86. Consider Z ®7 Z/(2). Consider the element 1 ® 1.

Definition 89. Let R, S be rings. An R— S bimodule is an abelian group M such that M is a left R-module
and a right S-module, and for all r € R, s € S, and m € M, we have that (rm)s = r(ms).

Example 87. Let k be a field, and let n and m be positive integers. Then let R = M,,(k), S = M, (k), and
M = M, xn(k). Then M is an R-S bimodule.

Example 88. Any ring R is an R-R bimodule.

Example 89. Let R be a commutative ring. Let M be a (left) R-module. Then M is an R-R bimodule,
where the action on the right is defined to be the same as the action on the left.

Example 90. Suppose R is a commutative ring, M is an R-module, and I is an ideal such that IM = 0.
Then M is an R/I-module. That is, M is an R/I-R bimodule (or and R-R/I bimodule).

Example 91. Let R be a commutative ring, with Char R = p (a prime). Let M be a left R-module.
We can consider M as an R — R bimodule via the actions r - m = rm, m - r = rPm. This makes it and
R-R bimodule. This is called the Frobenius bimodule structure.

Proposition 62. Let M be an S-R bimodule and N a left R-module. (so N is an R-Z bimodule). Then
M ®pg N is a left S-module by the action s- (m ®n) = (sm) @ n.
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Proof. We first need to verify that this is well-defined. Fix an s € S. Defineamap fs: M x N - M ®gr N by
m,n — (sm) ® n. One can check that f, is R-biadditive. Then there exists a unique group homomorphism
fs:M®p N — M®gN by mxn— (sm)®n. Hence the multiplication is well-defined!

It is then easy to see that the rest of the module properties hold. O

4.2 Day 14 - February 12

Recall from last time that if M is an S — R bimodule, and N is a left R-module, then M ®g N is a left
S-module via the action s(m ® n) = (sm) @ n.

Similarly, if N is an R — S bimodule, and M is a right R-module, then M ®z N is a right S-module via
the action (m ® n)s = m ® (ns).

Remark 92. We can use this property of tensor products for a “base change”. If ¢ : R — S is a ring
homomorphismm, then we can give S an S — R bimodule structure by the standard method: S acts on the
left my multiplication, and r € R acts on the right by multiplication by ¢(r). Then if M is a left R-module,
then S ®p M is a left S-module via s'(s @ m) = (s's) @ m.

Example 92. Suppose H < G are are groups, and k is a field. Then k[H] < k[G] is a ring homomorphism.
Given a left k[H]-module M, k[G] ®z) M is a left k[G]-module.

Proposition 63. Let R be a ring. Then
1. If M is a left R-module, then R @p M = M as left R-modules (with the map r ® m — rm).

2. Let I be a two-sided ideal of R, with M a left R-module. Then R/I®rM = M/IM as left R/I-modules
(with the map 7 ® m +— 7m).

3. Let S a multiplicatively closed subset of Z(R), and let M be a left R-module. Then Rs ®p M = Mg
as left R-modules (with the map * — ™).

4. If R is commutative, and M and N are R-modules, then M ® g N 2 N ® g M as R-modules (with the
map mQen —nQm).

Proof. For all of these, we define homomorphisms in both directions, and verify that they are inverses of
each other.

(Proof of (1)) Define f : R x M — M by (r,m) — rm. Then f is R-biadditive, so by the universal
property there is a unique group homomorphism f : R @z M — M by r ® m ~ rm. Furthermore,
f'(rem)) = f((r'r) @m) = (rr')m = r'(rm) = r' f(r ® m). Thus f is an R-module homomorphism.

Now define g: M - R@r M by m— 1®m. Then g(rm) =1® (rm)=1-r@m =r(1 @ m) = rg(m).

One can verify that gf and fg are the identity, and this completes the proof. 0O

(Proof of part of (2)) Define g: M — R/I ® M by m — 1® m. Then one can see that ¢ is an R-module
homomorphism.

For alli € [ and m € M, g(im) =1®im =1 x m =0 x m = 0. Therefore IM C ker .

This is the only hard part of the proof, and the rest is left as an exercise to the reader. O

The proof of (3) is a homework problem. O

(Proof of part of (4)) Define f : M x N — N®gr M by (m,n) — n®m (note that this is heavily dependent
on R being commutative, or this would make no sense). Then we can get that f is an R-biadditive group
homomorphism. Then there exists a unique R-module homomorphism f : M@N — N®M by m@n — n®@m.

Similary, one creates a g : N x M — M ®g N by (n,m) — m ®n, and once gets an g. Then fg and gf
are the identities on the appropriate things. Thus M ® g N 2 N ®r M.

O

Proposition 64. Let M be an R-S bimodule, let NV be an .S — T bimodule, and let P be a left T-module.
Then (M ®s N)@r P = M ®g (N ®r P) as left R-modules.

Omitted. O
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Remark 93. Here is an application of tensor products. Let R be a commutative ring, and let M and N be
R-modules. Let I C R such that IM = 0 (this implies that M is naturally and R/I-module).
Then

Il

M&N = (M®g;R/I)@pN
(M ®g/1 (R/I®RN)

M ®p/ NJIN

I

1%

As R/I-modules. If IN =0 as well, then M @p N = M ®p,; N.
This leads to the following theorem:

Theorem 78. If F and G are free R-modules, with bases {fi}, {g;} respectively, then F' ®g G is free, and
a basis for it is {e; ® f;}.

4.3 Day 15 - February 15

Remark 94. Let R be a ring, and let f : M — A and g : N — B be homomorphisms of right R-modules
and left R-modules, respectively. Then we can define f x g: M x N - A®g B by (m,n) — f(m) ® g(n).

Since f and g are homomorphisms, then f x g is is R-biadditive. Then by the universal property, there
exists a unique group homomorphism f® g: M g N - A®r B by m®@n +— f(m) ® g(n).

Remark 95. We can expand the previous example to give a module homomorphism under the following
conditions: If M and A are S — R bimodules, and f is an .S — R bimodule homomorphism, then f ® g will
be an S-module homomorphism.

Remark 96. We also get a nice result if f and g are isomorphisms. Namely, if f and g are isomorphisms,
then f ® g is an isomorphism, since (f ® g)~! = f~! ® g~!. [This makes use of the easily-verified fact that
(foglo(hel)=fh®gl]

Hence if M 2 A and N &£ B, then M g N 2 A®g B.

Remark 97. Let R be a commutative ring, and let M and N be R-modules. If {m,} is a generating set
for M, and {ng} is a generating set for N, then {m, ® ng} is a generating set for M ®p N.

Proposition 65. Let R be a commutative ring, and let F' and G be free R-modules with bases { f, } and {gs},
respectively. Then FQgG is a free R-module with basis { fo®gg}. (So rank(FQrG) = rank(F)-rank(G).)

Proof. By the previous remark, we know that {f, ® gg} generates F' ®r G. It then suffices to show linear
independence.

Suppose Zm,gfa ®gsg=0. Fixani €I and j € J. We wish to show r; ; = 0.

1 ifpg=j
0 otherwise’

1 ifa=1

Define ¢ : FF — R by fo — { . Similarly, define ¢ : G — R by gg — {

0 otherwise

Then we get an R-module homomorphism F' ®r G —+ R ® RR SR by fo ® g8 — ¢(fa) @ ¢(g95) —

| fa—iBei
d(fa)d(gs). In other words, fo ® gg — na Z_’ﬂ ].
0 otherwise

Then 0 = (¢p®1)(0) = (¢®¢)(Z Ta,8fa®gp) = 7ij. Thus 0 = r; j, so these are linearly independent. [

Corollary 34. Suppose K is a field, and V and W are k-vector spaces. Then dimg V @ W = (dim; V) ®
(dimy W). In particular, V @, W =0 if and only if V =0 or W = 0.

Proposition 66. If R is a commutative ring, and I and J are ideals, then R/I g R/J = R/(I + J).
In particular, if I = m; and J = mg, a pair of distinct maximal ideals, then R/I # 0 and R/J # 0, by
R/I®r R/J = 0.

Proposition 67. Let A be a right R-module, and {f,}acr be a collection of left R-modules. Then A ®p
(B, Ba) = D, (A®R Ba).
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Proof. For i € I, let p; : B; — @, Pa be the inclusion map, and let II; : 8, — f; be the projection map.
Define ¢ : Ax @, fa = B(A®R Ba) by (a,v) — (a®II,(v). Then ¢ is R-biadditive, so by the universal
property we get an induced map ¢ : A ® P Barightarrow & (A Qg Ba) by a @ v = (a @ I, (v)).
Also, define ¢, : A X By, = A®g (BBy) by (a,b) = a ® pa(b). 3
Then by the universal property, this gives a group homomorphism ¢, : A ® By — A @ (®B,) by

4 ®b— a® pa(b). Define ¢ : (A @ Ba) %5 Ao (©Ba) by (ua) = ($a(ua))-
Then one can check that ¢ o) =1 and 1 o ¢ = 1, and this completes the proof. O

Exercise 27. How many elements are in the Z-module Z/(100) ®z Z* @z Z4 ® Z/(150).

First, we can recall that Z/(100) ®z Z/(150) = Z/(50).

Furthermore, Z/(50) KRz Z4 = Z4/(5)Z4 = Z4/(25)Z4 = (Z/(QS))Z = Z/25

Finally, by the previous theorem, Z/(25) ®z Z> = (Z/(25) ®z Z)® = (Z/(25))3. Therefore this module
has 25% elements in it.

4.4 Day 16 - February 17

Great googly-moogly, it’s time for an application! This is apparently used for quantum physics.

Remark 98. Let R be a commutative ring, let A be an m X n matrix, and let B be a an r X s matrix.
Define the tensor product (or Kronecker product) A ® B to be the mr x ns matrix with the form:

aLlB alﬁnB
a27lB
am1B ... amnB

Let F} and F; be free modules of rank n and m, respectively. Fix bases 81 and (3, for F} and F5. Let
n
b1 ={e1,....,em} and Ba = {f1,..., fn}. Define ¢ : F1 — F; by ¢; — Zai,jfi- Thus [¢]gf = A

i=1

Let ¢ : G; — G2 be defined similarly with bases 8] and 5. Then as we showed in last class, ¢ ® v :
F1 ® G1 — 5 ® G is a well-defined function.

Furthermore, 51 ® B} is a basis for F; ® G; and similarly 5> ® f5 is a basis for F» ® Go. Order the bases
lexicographically. Then A ® B is the matrix for ¢ ® ¥ with respect to these matrices.

5 Category Theory and Functors

Now let’s move on to the opposite of an application: categories!

Definition 90. A category C consists of the following:

1. A “class” of objects objC

2. For any two objects A and B of C, we have a set of morphisms Hom¢(A, B) (we sometimes write
f:A— Binstead of f € Hom¢(A, B)). These morphisms are sometimes called arrows.

3. For objects A, B,C of C, there is a function o : Home(B x C) x Home(A, B) — Home(A,C). We
write (f,g) — fog = fg, and we call this function composition. Composition satisfies the following
axioms:

e For all appropriate f,g,h, (fg)h = f(gh).

e For each object A of C, there exists a 14 € Hom¢ (A, A) such that f14 = f and 149 = ¢ for all
f:A—= Bandallg: C — A
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Example 93. Let C denote the class of all sets, with morphisms being all functions. Then C is a category,
and we denote it by ((Sets)).

Example 94. Let C denote the class of all groups, with morphisms being all group homomorphisms. Then
C is a category, and we denote it by ((Groups)).

Example 95. Let C denote the class of all topological spaces, with morphisms being all continuous functions.
Then C is a category, and we denote it by ((T'op)).

Example 96. Let R be a ring (not necessarily commutative) and let C denote the class of all left R-modules,
with morphisms being all homomorphisms of left R-modules. Then C is a category, and we denote it by
({R — mod)).

We also use ((mod — R)) to denote the category of right R-modules, and ({S — R mod)) to denote the
set of S — R bimodules.

Example 97. Let C denote the class of all short exact sequences, with morphisms being all commuting stuff
(chain complexes?). Then C is a category, and we denote it by ((s.e.s.)).

Definition 91. Let C and D be categories. A covariant functor F : C — D is the the following:
1. For each object A of C, there is a unique object, denoted F'(A) in D.

2. For every pair of objects A, B of C, there is a function taking Hom¢(A, B) — Homp(F(A), F(B)) by
f = F(f), such that F(14) = 1pa) and F(fg) = F(f)F(g) whenever fg makes sense.

A contravariant functor is the same thing, but we make two modifications. First, F' : Hom¢(A, B) —
Homp(F(B), F(A)) (i.e. we switched F'(B) and F(A)). Second, F(fg) = F(g9)F(f).

Example 98. Define F : ((Groups)) — ((Sets)) by taking the underlying set. Then F is a covariant
functor, which we call the forgetful functor.

Define F : ((S — R — bimod)) — ({(Z — mods)) by taking the underlying abelian group. Then F is a
covariant functor, which we also call the forgetful functor.

Example 99. Define F' : ({(comm rings)) — ((Top)) by F(R) = SpecR. Then F is a contravariant
functor.

Example 100. Let R be a commutative ring, and S a multiplicatively closed set. Then define F : ((R —
mod)) — ((Rg — mod)) by F(M) = Mg. Then F is a covariant functor which we call the localization
functor.

Example 101. Let R be a commutative ring, and let I be an ideal. Then F': ((R—mod)) — ((R/I —mod))
by F(M) = M/IM is a covariant functor.

Example 102. Let R be aring, and let M be a right R-module. Define a functor FF = M®— : ((R—mod)) —
((Z — mod)) by F(N) = M ®g N. Then F is a covariant functor.

If N is an S — R bimodule, then F(N) is in the category of S-modules. In particular, if R is commutative,
then our M ® — maps into the category of R-modules.

In fact, the previous two examples were secretly this one.

5.1 Day 17 - February 19

Definition 92. A functor of R-modules, F, is called additive if, for all f,g € Homg(M, N), we have that
F(f+g)=F(f)+F(g)

Example 103. Let M be an S— R bimodule. Let F' = M ®pg—. Then observe that F(f+g¢) = 1y Q(f+g) =
Iy ®f+1y®g=F(f)+ F(g). Therefore F is additive.

Definition 93. A functor of R-modules, F, is called multiplicative if, for all r € R and R-modules N, we
have F(pr,N) = pir,p(ny- Where pi, n : N — N is given by n +— rn.
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Example 104. Let M be an R-module (where R is commutative). Then let F = M ®p —. Then p, n :
N 5 N, and 1 ®@pr N : MRrN - M@rN by m@n — m@rn=mr@n=r(men) = lr Mo,N(MmOn).
Thus F' is multiplicative.

Definition 94. Let F' be an additive covariant functor on module categories. We say F'is exact if whenever
AL B % Cis exact at B, then F(A) iy F(B) g F(C) is exact at F(B).
Example 105. As we previously showed, the localization functor is exact.

Definition 95. Let F' be an additive covariant functor on module categories. Then we say F is left exact
if, whenever 0 - A — B — C'is exact, then 0 — F(A) — F(B) — F(C) is exact.

Similarly, we say F'is right exact if, whenever A - B — C — 0 is exact, then F(A) - F(B) — F(C) —» 0
is exact.

Exercise 28. If F' is an additive covariant functor on module categories, then F' is exact if and only if F' is
both left exact and right exact.

Theorem 79. Let M be an S — R bimodule. Then M ®p — : ((R —mod)) — ((S —mod)) is right exact.

Proof. Let A 5 B % ¢ = 0 be an exact sequence in ((R —mod)). Apply M ®g —, to get: M @ A 1ef

MorBY MagC 0.

First we will show that 1 ® g is onto. Let m ® ¢ € M ®p C. Since g is onto, then there exists a b € B
such that ¢g(b) = ¢. Then (1® g)(m ® ¢) = m ® c¢. Thus 1 ® g is onto, so the sequence is exact at M ®@p C.

We now need to show that im1® f =kerl ® g.

Note that since F' is additive, then F(0) = 0 (this is a statement about the zero map). If gf = 0, then
0= F(gf) = F(g)F(f) (the last equality is due to the fundamental property about composing functors).
Thus im F(g) C ker F(f). [Note that if we stop here, this shows that a functor F takes complexes to
complexes.] But F(¢9) =1y ®g,and F(f) =1y ® f,soim1® f Ckerl ® g.

It then suffices to show that kerl ® g Cim1® f.

Now define h : M x C - M ® RB/im(1 ® f) by (m,c) — m @b, where b is any element such that
g(b) = c¢. We will first show that h is well defined. Suppose g(b1) = g(bs) = ¢. Then g(b; — b3) = 0, so
by — by € kerg = im f. Let a € A be an element such that f(a) = by —ba. Then m ® by — m @ by =
me (b —by)=m® fla) =1 flim®a) eim(lR f). Som®b; =m by in M ®r B/im(1® f).

Furthermore, it follows immediately from the definition of i that h is R-biadditive. Therefore there is an
induced S-module homomorphism A : M ®r C — M ® RB/im(1® f) by m ® ¢ — m @ b (where g(b) = ¢).

Let z = Zml- ®b; € M ®g B, and suppose = € ker1 ® g. Then
i=1

o
I
>

(0)

= h((1®g)(Y_mi@b))
= B mi®g(b:))

= S Rl 0 g(b1)

= Zmi@)bi

Therefore, z € im(1 ® f). That is, ker(1 ® ¢g) C im(1 ® f).
Thus ker(1 ® g) = im(1 ® f), so the sequence is exact at M Qg B, so it is exact.
O

Example 106. Consider the short exact sequence 0 — Z 27 7/27 — 0. Applying Z/27 ®7 —, we get
7)27. % 7.)27. % 7,/2/Z — 0, which is no longer exact.
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Definition 96. Let R be a commutative ring. Then an R-module M is called flat if M ®r — is an exact
functor.

Example 107. Let R be a commutative ring. Then R is flat as an R-module. Also, Rg is flat. Also, any
projective R-module is flat.

5.2 Day 18 - February 22

Remark 99. If R is a commutative ring, and A C B and C C D are R-modules, then we know that
AxC C BxD. We also know that A ® C C B ® D. However, it need not follow that A @ g C C B ®pg D.
There certainly is a function form the former to the latter, but that function need not be injective, because
tensor products can be tricky.

Definition 97. Let R be a ring, and let M and N be left R-modules. Then we define Homp(M, N) to be
Homgr(M,N)={f: M — N|fis a homomorphism of left R-modules}.

Remark 100. We always know that Hompg(M, N) is an abelian group. Furthermore, if R is commutative,
then Hompg(M, N) is an R-module in the natural way:

Forr € R,and f: M — N, define rf : M — N by rf(m) = f(rm) =rf(m).

More generally, suppose M is an R—S bimodule. Then Hom g (M, N) has the structure of a left S-module.
That is, for s € S and f: M — N, define sf : M — N by (sf)(m) = f(ms).

Similarly, if N is an R — T bimodule, then Hompg(M, N) is a right T-module. That is, for ¢ € T and
f: M — N, define (ft)(m) = f(m)t.

Remark 101. We like Hom because it lets us do a change of base. Let ¢ : R — S be a ring homomorphism,
and let N be a left R-module. Recall that S has the structure of an R — S bimodule.
Then Hompg(S,N) is a left S-module.

Definition 98. Let M be an R—S bimodule. Then define a hom functor F = Homg(M,—) : ({(R—mod)) —
((S —mod)) by N — Hompg(M,N).

Remark 102. Let’s verify that F' is indeed a functor. By the previous remarks, F' does indeed take objects
from ((R —mod)) to ({S —mod)). Let’s check that F' behaves well on arrows. If f : N; — N», then we have
that F(f) = f«: Homg(M, N1) = Homp(M, N3) by g — fg. Then one can verify that this satisfies all the
other requirements of a functor.

Proposition 68. We have the following properties about the Hompg (M, —) functor.
1. The Hompg(M, —) functor is covariant.
2. The Hompg(M, —) functor is additive.

3. If R is commutative, then the Hompg (M, —) functor is multiplicative.

(Proof omitted.)

Definition 99. Let N be an R — T bimodule. Define a contravariant functor G = Hompg(—,N) : ((R —
mod)) — ({(mod —T) by M — Hompg(M,N).

Remark 103. As before, we can verify that this is a contravariant functor.
Also, G is additive, and if R is commutative then G is multiplicative.

Proposition 69. Let M be an R — S bimodule. Then Hompg(M, —) is left exact.
Proof. Let 0 — A 1 B % C be exact. We need to show that 0 — Homp(M, A) Iy Homp(M,B) &
Hompg(M,C) is exact.

First we will show that f, is injective. Suppose f.(h) = 0. Then fh = 0. Since f is injective, then h = 0.
We will now show that im f. C ker g.. We can see that g. f. = (9f«) = (0). = 0.
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It then suffices to show that ker g, C im f.. Let h € ker g.. Then gh = 0. Therefore imh C ker g = im f.
Let m € M. Then h(M) = f(a,) for some a,, € A. Since f is injective, then this a,, is unique. Define
a: M — Aby m— a,. Then « € Homgr(M, A). Note that f.(a) = h. In other words, fa = h. Hence
h € im f,. O

Definition 100. Let F be a contravariant functor (in ((R — mod))). Then F' is sait to be left exact if,
whenever A -+ B — C — 0 is exact, then 0 — F(C) — F(B) — F(A) is exact.

Exercise 29. Let N be an R — T bimodule. Then Hompg(—, N) is left exact.
Let’s list some properties of the Hom functors.

Proposition 70. Let M be a left R-module. Then Homp(R, M) = M (as left R-modules).

Proof. Define ¢ : Homg(R, M) — M by f +— f(1). For m € M, we have that f : R — M by r — rm is in
Hompg (R, M). Therefore ¢ is surjective.

Also, if ¢(f) =0, then f(1) =0, so f is the constant 0 map. Thus ¢ is surjective.

Finally, ¢(rf) = rf(1) = r¢(f). Thus ¢ respects multiplication by elements of R. Thus ¢ is an
isomorphism of left R-modules. O

Proposition 71. Let R be a commutative ring. Let I be an ideal of R. Then Homg(R/I, M) = (0 :ps I).
(Recall that (0:p7 I) = {m € M|Im = 0}.

Proposition 72. If {4;}? , is a set of R — S bimodules, then HomR(@ A;, B) = @HomR(Ai,B) (as
i=1 i=1
left S-modules).
Proposition 73. If {B;}? , is a set of R — T bimodules, then HomR(A,@Bi) = @HomR(A, B;) (as
i=1 i=1
right T-modules).

Example 108. If R is commutative, then Hompg(R"™, M) = @ Homp(R, M) = M".
i=1
If R is commutative, Hompr(R™, R™) = (R™)™ & R™".

Next time: Homs and Tensors and Lions, oh my!

5.3 Day 19 - February 24
Proposition 74. Let P be a left R-module. Then Hompg(P, —) is exact if and only if P is projective.

Proof. Suppose P is projective. We showed last time that Homp (M, —) is always left exact. It then suffices

to show that if M %5 N — 0 is exact, then Hompg (P, M) Iy Hompg(P,N) — 0 is also exact.

That is, it suffices to show that f, is surjective. Let g € Hompg(P, N). That is, g : P — N is an R-module
homomorphism. Since P is projective, then by the definition of projective, there exists an h : P — M such
that fh = g. Thus g = f.«(h), so f. is onto. Thus Hompg(P, —) is exact.

Conversely, suppose Hompg(P,—) is exact. Choose a free module F' and a surjective R-module homo-
morphism ¢ : F' — P. Then

05 KSFAP 0

is exact, where K = ker ¢. Apply the functor Hompg(P—) to this whole thing. Then we get that

0 — Hompg(P,K) > Homg(P,F) % Homg(P,P) — 0

is also exact. As ¢, is onto and 1p € Hompg(P, P), there exists a g : P — F such that ¢g = ¢.(g9) = 1p.
Therefore F' = P @ K. Since P is the summand of a free module, it is projective. O

Recall that a right R-module F' is flat if F ®p — is an exact functor.
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Remark 104. Consider a commutative diagram
B

l l l where the vertical arrows are isomorphisms. Then the top row is exact if and

D E > F
only if the bottom row is exact.

The proof of this is left as an exercise for the reader, but is fairly simple diagram chasing.

Proposition 75. Let R be a commutative ring, and S be a multiplicatively closed set. Then Rg is a flat
R-module (so in particular, R is a flat R-module).

Proof. Let A 4, B & e exact. Then

RsoprA =21y RewprB =294 Rs@pC

| | !

I g
AS —1> BS —1> CS
is a commutative diagram. Furthermore, we showed that the bottom row is exact. By the homework
[edit: see immediately below], the vertical arrows are isomorphisms. Then by the remark, the top row is

also exact. Thus Rg is a flat R-module. O

Homework Problem 9. Let R be a commutative ring, let S be a multiplicatively closed set in R, and let
M be an R-module. Then Mg = M Qg Rgs.

Proposition 76. Let {A;};c; be a set of right R-modules. Then ©A; is flat if and only if each A; is flat.
Proof. Let L L M % N be exact. Let (x); denote the exact sequence

A; ®r L 1@)f A; Qr M 1@9 A; ®r N
for each ¢ € I. Let (#) denote the exact sequence

1; 1;
@(_@f) @(_)@g)

®(4; @r L) (A @ M)

Note that (#) is exact if and only if (x); is exact for all s.

#) @ (A4 0rLD) 212D a4 05 M) 219D g4 0p N)

| N ]

1; 1;

(#4) & (A) on L <205 (4 0p M ZE20, 5(4) 8 N

This diagram commutes because it is so natural it would be weird if it didn’t. Therefore @ A; is flat if
and only if (#+#) is exact. By the lemma, this is the case if and only if (#) is exact. But this s the case if

and only if (x); is exact for all i. O

®(4; ®g N)

Corollary 35. All free modules F' are flat.
Proof. Recall that R is flat. Then F' = P, R, so by the previous proposition, F is flat. O
Corollary 36. All projective modules P are flat.

Proof. Since P is projective, it is the summand of a free module. That is, ' = P @ K for some module K
and free module F'. But F is flat by the previous corollary. Then by the proposition, P is flat. O
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Lemma 29. (Five Lemma) Consider the following commutative diagram of left R-modules:

A — Ay — A3 — A — A5
Y1 J, Y2 l V3 l Y4 l s l
B, B1 B, B2 By B3 B, Ba B

Suppose that each row is exact,and that 71,72, 74, and 5 are all isomorphisms. Then -3 is an isomor-
phism.

Proof. (We proceed by diagram chasing.) We will first show that 73 is injective. Suppose v3(as) = 0. Then
vaaz(az) = Bs(vs(az)) = 0. As ~4 is injective, then asz(az) = 0. Therefore there exists an as € As such
that as(az) = asz. Then Ba(v2(az)) = 0, so there exists a by € By such that 81(b1) = v2(az). Since 71 is an
isomorphism, we can choose a; € A; such that 71 (a1) = b1. Then v2(a1(a1)) = y2(az). Since 7, is injective,
then as = a(ar). Then ag = as(az) = as(ai(a1)) = 0, since the top row is exact. Therefore 75 is injective.

One does something similar for surjective. O

Proposition 77. We get a special case of the five lemma with a smaller commutative diagram:

AL, 2,0 0
o] ]
L "y "N 0

where the top row and bottom row are exact, and ¢ and 1 are isomorphisms.
Then there exists an isomorphism e : C'— N making the diagram commute.

Proof. Tt suffices to show that a map € : C — N exists. Then by the 5-lemma on

At B _2,¢ 0 0
] B | |
L -l m ‘5 N 0 0

this epsilon would be an isomorphism.

For ¢ € C, choose b € B such that g(b) = ¢. Define € : C' — N by €(c) = itp(b). It then suffices to show
that € is well-defined.

Suppose b, b’ € B satisfies g(b') = ¢. Then g(b—b") =0, 80 b—b" = f(a) for some a € A. Sob= f(a)+¥.
Then

ip(b) = w(f(a)) +i(y()
= hp9) + ip(b')
= (b))
since th = 0. It can easily be shown that € is R-linear and makes the diagram commute. Therefore, by
the 5-Lemma, € is an isomorphism. O

Definition 101. A left R-module M is called finitely presented if there exists an exact sequence

r™ R" M 0
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5.4 Day 20 - February 26
Let’s talk about the relation between Hom and the tensor product.

Theorem 80 (Hom—® Adjointness/Adjunction). Let R, S, and T be rings. Let A be an R—T bimodule,
B be an S — R bimodule, and C be a left S-module. Then the map Hompg(A, Homg(B,C)) - Homs(B®r

BorA—C
A, C) (which lives in the set of T-module homomorphisms) given by ¢ — | g4 : b ®®R (:( \(b) is a
a— dla

well-defined left T-module isomorphism.

Proof. Many of the details of this proof will be omitted.
We will first show that this map is well-defined.
Fix a ¢ € Homg(A, Homg(B,C)). Define g4 : B x A — C by (b,a) — ¢(b)(a).
One can check that g4 is R-biadditive. Then by the universal property, there exists a unique g, which is
a well-defined group homomorphism. Thus this map is well-defined.
One can then check that g4 is S-linear.
We will now show that the map ¢ — g, is T-linear. Define a map Homg(B®rA,C) = Homp(A, Homg(B,C))

fw :B—=C
b, — :
y ¥ (fw {bH Y(b® a)
One can then check that

> . By the previous part, this map is well-defined.

e For any a € A, fy(a) is S-linear.
o fy is R-linear.
e The map 9 — fy is T-linear.

We then wish to show that f,, = ¢. Fix an a € A. Then f,,(a)(b) = g4(b® a) = ¢(a)(b) for all b € B.
Thus fy,(a) = ¢(a) for all a € A.
Thus fg, = ¢. Similarly, gy, =+ for all ¢. Thus this map is an isomorphism of T-modules. O

Remark 105. This map is a bit stronger than being simply an isomorphism. It is a natural isomorphism,
meaning Homp(—, Homg(B,C)) — Homg(B ®r —, C) is a functor. It is also a functor if you replace any
other component with a dash.

Remark 106. Let R be a commutative ring, x € R, let M and N be R-modules, and suppose that xtM = 0
but x is a non-zero-divisor on N. Then Homp(M,N) =2 Hompr(M®gr(R/(x)),N) =2 Homr(M, Homg(R/(z), N)).
But Homg(R/(z),N) =2 (0:x X) =0, so Homg(M,N) = 0.

Definition 102. We say an R-module M is finitely presented if there exists an exact sequence of the form
R™ - R" — M — 0.

Theorem 81. Let R be a commutative ring and let T be a flat R-algebra (that is, there is a ring homo-
morphism ¢ : R — T). Suppose M is a finitely presented R-module, and let N be an R-module. Then
YV :TQr Homp(M,N) — Homy(T ®r M,T) given by t ® f — u; ® f is an isomorphism of T-modules.

Proof. We break the problem into several cases.

First, suppose M = R. Then Homg(R,N) 2 N, s0 T ®r Homg(R,N) 2T Qg (N) =2 Homp(T,T Qg
N) = Homp(T ®r R, T ®g N). If we follow an element through this chain of equivalences, we get that
T STQrN

1—=t® f(1)
we should check.) Therefore ¢p is an isomorphism.

Suppose instead that M = F = R™. Then by using direct sums, we get much the same results. Therefore
1p is an isomorphism.

Finally, consider the general case. Since M is finitely presented, there exists an exact sequence F' — G —
M — 0, where F' and G are free modules.

tRft® f(1)— g — it @ f. (The last mapping, sending g; to u: ® f, is something
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Now apply T ®gr — to the entire sequence. Since T is flat, the resulting sequence is still exact. That is,

TORrRF—>TQRrG—-TRrM —0 (2.1)

is exact. Now we apply Homp(—,T ®@r N) to the equation. This functor is contravariant, so we get a
backwards exact sequence. However, by applying Homr(—, N) and T ® g — in the opposite order, we get
the following commutative diagram:

0 0 T®r Homgp(M,N) —— TQ®grHomgr(G,N) —— T QgrHomg(F,N)
0 0 HOmT(T®RM7T®RN) E— HomT(T®RG,T®RN) e HomT(T®RF,T®RN)
(2.2)

Since T is flat and Hom preserves exactness, then both the top and the bottom are exact. Also, the
vertical arrows are isomorphisms, by the previous parts. Furthermore, this is a commutative diagram, since
these maps are natural. Finally, you can define the middle arrow in the same way as before.

Then, by the 5-Lemma, there is an isomorphism between T® g Hompg (M, N) and Homp(TQr M, TQrN).

O

6 Projective Modules

6.1 Day 21 - February 29

Let R be a commutative ring. Recall that a finitely generated projective module over a quasi-local ring is in
fact a free module. What about a converse?

Theorem 82. Let M be a finitely presented R-module. Then the following are equivalent:
1. M is projective.
2. M, is a free Ry-module for all p € Spec R.

3. My, is a free Ryy-module for all maximal ideals m.

Proof. We have already proven that (1) implies (2). Furthermore, (2) implies (3) follows instantly from
definitions, as every maximal ideal is prime.

Tt then suffices to show that (3) implies (1). To this end, suppose M is a finitely presented R-module,
and suppose that M, is a free Ry,-module for all maximal ideals m.

Recall that a module is projective if and only if Homg(M, —) is exact. Let A % B = be exact. Then
Hompg(M, A) EEt Hompr(M,B) — C — 0 is exact (where C' = coker(f.)). We wish to show that f, is
surjective, and this is equivalent to showing that C' = 0.

Let’s localize at a maximal ideal m. Then

fa
Homp(M,A)n —— Homp(M,B)y Cn 0

| | !

f
Homp, (M, An) — Homp. (M, Bn) —— 0

Since My, is free, then it is projective, so the bottom row is exact. The vertical maps are isomorphisms
since M is finitely presented. Also, the diagram commutes because the maps are natural. Therefore, by the
5-lemma, Cy, = 0 for all maximal ideals m. But the only such module is 0, so C' = 0. Since C was the
cokernel of f,, then f, is surjective. Thus M is projective, by an equivalent condition we proved before.

O
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Remark 107. If M is a projective module, it is finitely presented. Therefore, in the previous theorem we
need not check finitely presented if M is projective.

Let’s now make an example to show that finitely presented was a necessary condition in the statement
of the previous condition.

Definition 103. Let R be a (not necessarily commutative) ring with unit. We say R is von Neumann
reqular if, for all a € R, there exists ¢ € R such that a = aza.

Example 109. Any division ring is von Neumann regular.
Example 110. Any product of division rings (infinite or finite) is von Neumann regular.

Exercise 30. Let R be a commutative von Neumann regular ring. Then Rg is von Neumann regular for
any multiplicatively closed set S.

Proposition 78. Let (R, m) be a commutative, quasi-local, von Neumann regular ring. Then R is a field.

Proof. We know that commutative ring is a field if and only if its only maximal ideal is (0).

Fix some a € m. Then there exists z € R such that a = axa = a?r. Then a(l —ax) =0. If 1 —ax € m,
then 1 = (1 — ax) + ax € m, and this is a contradiction. Thus a(1 — ax) ¢ m. Since R is semi-local, then
(1 —az) is a unit. Thus ¢ =0, so m = (0). Thus R is a field. O

(o)
Example 111. Let R = H C. Then R is von Neumann regular, but not semisimple.
i=1
Recall one characterization of a semisimple ring is that every ideal is a direct summand of the ring. Since
R is no semisimple, there exists an ideal I of R such that R/I is not projective.
Let M = R/I, which is finitely generated. But Ry, is a field for all maximal ideals m. Therefore M, is
a free Ry-module for all m, and M is not projective.

7 Injective Modules

Definition 104. Let R be a ring and let E be a left R-module. Then E is called injective if, for every
diagram 0 — M 9 N, and f: M — E, there exists an h : N — E such that hg=f.

Theorem 83 (Baer’s Criterion). Let R be a ring, and let E be a left R-module. Then E is injective
if and only if, for all left ideals I of R, if i : I — R is the inclusion map, and f : I — FE is an R-module
homomorphism, then there exists an h : R — FE such that hi = f.

(That is, every homomorphism f : I — E can be extended onto all of R.)

Proof. Certainly, if E is injective, then the map ¢ has such an h.

Conversely, suppose 0 — M = N is exact, and f : M — F is any R-module homomorphism. Without
loss of generality, we can assume M C N, and that ¢ is the inclusion map.

We now use Zorn’s Lemma. Let A = {(k, hy)|M C K C N,hg : K — E such that hg v f}
Partially order A by (K, hg) < (K',hg/) if and only if K C K’ and hg: o= hy.

One can verify that Zorn’s Lemma applies, so there exists a maximal element in A. Let (K, hx) be such
a maximal element.

We then wish to show that K = N. Suppose for the sake of contradiction that K C N. Let x € N \ K,
and let I = (K :gp ) = {r € Rlrz € K}.

Define g : I — E by i — hg (iz). One can verify that § is a homomorphism of R-modules. By hypothesis,
we can extend g to g. That is, there exists g : R — E such that g and g agree on I.

Let L = K + Rx. “Define” hy : L — E by k +rx — hg(k) + g(r). We need to show that hy is
well-defined. Suppose k + rz = k' +1'z. Then (r — 1) = k' — k € K. Therefore, r — 1" € I = (K :g X).
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Therefore,

or—r) = glr—1)
= hg((r—ra)
= hi(K — k)

Therefore, hi (k) + g(r) = hx (k') + g(r"), so hr(k + rx) = hr (k' + r'z). That is, hy, is well-defined.
But then (K, hk) < (L,hr). This contradricts the maximality of K, so K = N.

7.1 Day 22 - March 2

Recall the following exercise:
Exercise 31. If R is a ring and F is an R-module, then F is injective if and only if Homg(—, E) is exact.
Recall also Baer’s Criterion:

Theorem 84. Checking the criterion for injective modules is equivalent to checking the same criterion only
for ideals of R.

Now we get a new exercise!

Exercise 32. Let {E;};cr be a collection of left R-modules. Then H FE; is injective if and only if each F;
iel
is injective.
From this we get that the direct sum of finitely many injective modules is injective.
Remark 108. The direct sum of an arbitrary family of injectives is injective if and only if R is left Noethe-
rian.

Definition 105. We say an R-module M is divisible if, for every u € M and non-zero-divisor r € R, there
exists a v’ € M such that ru’ = u.

Example 112. If R is a field, every R-vector space is divisible.

If R is a domain, then @, the field of fractions of R, is a divisible R-module. (More generally, if R is a
commutative ring, and S = {non-zero-divisors in R}, then Rg is a divisible R-module. We call Rg the total
ring of fractions of R.)

Sums, products, and quotients of divisible modules are divisible. In particular, Q/Z is a divisible Z-
module.

Proposition 79. Let R be a commutative ring, and let £ be an injective left R-module. Then FE is
divisible.

Proof. Let u € E, and r € R. Suppose r is a non-zero-divisor. Then consider the diagram 0 — R — R.
Define f: R — E by 1 — w.

Since E is injective, then there exists an h € H such that hr = f. Then v = f(1) = hr(1) = rh(1). Thus
u’ = h(1) satisfies the definition of divisibility. O

Proposition 80. Let R be a PID. Then every divisible module is injective.

Proof. Let E be a divisible module over R. Using Baer’s criterion, it suffices to check the injectivity condition
on ideals of R. Let I be an ideal in R. If I = 0, there is nothing to check, so suppose I # 0.
Since R is a PID, then I = (a) for some a € R. Let f : (a) — F be an R-module homomorphism. We

need to find i : R — F such that h‘( : = f. Let u = f(a).
a

Note that since a # 0 and R is a PID, then a is a non-zero-divisor. Since FE is divisible, and a is a
non-zero-divisor, then there exists v’ € E such that au’ = u. Define h : R — E by h(z) = zu/. Then
h(ra) =ravw’ =ru=rf(a) = f(ra).
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Thus we have extended f to an h: R — E. Thus F is injective.

Example 113. Since Z is a domain, then Q, the field of fractions of Z, is divisible as a Z-module.
Therefore Q/Z is divisible as a Z-module as well.

Lemma 30. Every Z-module M can be embedded into an injective Z-module. That is, there exists an exact
sequence 0 - M — E, where E is injective.

Proof. Choose a free module F' which surjects onto M. That is, choose a free module F' and a surjective
Z-homomorphism ¢ : FF — M. Let K = ker¢. Then M = F/K. However, K C F = @Z c §Q = 1.
Therefore M = F'/K C I/K, so M embeds into I/K.
As Q is divisible, then I is divisible. Thus I/K is divisble. However, Z is a PID, so by the proposition,
I/K is injective.
O

Proposition 81. Let ¢ : R — S be a ring homomorphism. Let E be an injective left R-module. Then
Hompg(S, E) is an injective left S-module.

Proof. Recall that a left S-module M is injective if and only if Homg(—, M) is exact. However Homg(—, M)
is always left exact. It then suffices to show right exactness.

Suppose 0 — M Iy N is exact in ({(S — mod)). Then by tensoring with S, we get

0o— M —I 4+ N

~| ~|

00— S®s M &) S®s N
is an exact sequence of R-modules.
Then applying Hompg(—, E), we get that

Homp(S®s N,E) % Homp(S®sM,E) —— 0

| l

Homg(N,Hompg(S,FE)) —— Homg(M,Hompg(S,E) —— 0
But the bottom is exact since F is injective. Therefore Hompg(S, E) is injective as an S-module.
O
Theorem 85. Let R be aring, and M be a left R-module. Then M embeds into an injective left R-module.

Proof. We know that M is a Z-module, so it imbeds into some E which is an injective Z-module. Let
f: M — FE be such an embedding. Also, there exists a ring homomorphism from Z — R.
By the previous proposition, Homyz(R, E) is an injective left R-module. Define ¢ : M — Homyz(R, E)

by m ¢(m): R—E .
r— f(rm)
Then one can verify that ¢ is an injective R-module homomorphism. O

7.2 Day 23 - March 4

Lemma 31. Suppose F is an injective module, and that A is a direct summand of E. Then A is injective.

Proof. Since A is a direct summand of F, there exists a module B such that E =A@ B. Let ¢ : A — E be
the inclusion taking a — (a,0) and let 7 : E — A be the projection (a,b) — a.

Suppose 0 — M % N is an exact sequence and that f : M — A is any map. Then ¢f is an injection
into E. Since E is an injective, there exists hy : N — E such that hig = f¢. Then whig = wéf = f (as
m¢ = 1. Let h = mhy. Then hg = f, so A is injective. O
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Proposition 82. Let R be a ring, and let F be a left R-module. Then FE is injective if and only if every
short exact sequence of the form 0 — F LMA N0 splits.

Proof. Suppose E is an injective. Then 0 — E £ M is exact, and 1g : E — E, so since FE is injective, there
exists an h: M — FE such that hf = 1g. In other words, the sequence splits.

Conversely, by the last theorem from last class, we know we can imbed E into an injective I. That is,
we can make a short exact sequence of the form 0 — F ENyS 9 M — 0, where T is injective. This splits, so
I =2 E® M. Since I is injective and F is a summand of I, then by the lemma, F is also an injective. O

Definition 106. Let M be an R-module. A projective resolution of M is an exact sequence ... — P, —
Py —..— Py — M — 0, where each P; is projective.

We similarly define a free resolution of M to be an exact sequence ... - F; — F;_1 — ... = Fy - M — 0,
where each F; is free.

The definition of an injective resolution is slightly different. An injective resolution is an exact sequence
of the form 0 — M — I — I' — I? — ..., where each I; is injective.

Remark 109. Homological algebra is the study of a module and its resolutions. Namely, it attempts to
understand a module based on its resolutions (for instance, the projective dimension or injective dimension).

8 Integral Extensions

Let’s now change gears and talk about integral extensions. All rings in this case will be commutative.

Definition 107. Let R C S be rings. An element u € S is integral over R if there exists an equation of the
form ™ + riu” Y+ ...+ rp_1u+ 7, =0, with each r; € R.
That is, we say u € S is integral if it is the root of some monic polynomial in R[z].

Remark 110. If each R; is a field, then u € S is integral over R if and only if u is algebraic over R.
Example 114. If R = Z, then /5 is integral over Z. However, % is not integral over Z.
Proposition 83. Let R C S be rings, and let u € S. The following are equivalent:

1. w is integral over R.

2. R[u] is a finitely generated R-module.

3. There exists a finitely generated R-submodule M of S, such that 1 € M and uM C M.

4. There exists a faithful R[u]-module M such that M is finitely generated as an R-module. (Recall that
a module is faithful if Anngp,) M = 0.)

Proof. Suppose (1). Then there exists an equation of the form u™ + ru"~! + ... + 79 = 0. Then one can
show that R[u] = R-1+ Ru+ ... + Ru""1, so R[u] is finitely generated as an R-module. Thus (1) implies
(2).

Suppose (2). Then let M = R[u]. Note that R[u| is a finitely generated R-submodule of S such that
1 € R[u] and uR[u] C R[u]. Thus (2) implies (3).

Suppose (3). Let M be the finitely generated R-submodule M of S such that 1 € M and uM C M. By
assumption, M is finitely generated as an R-module, so it suffices to show that M is a faithful Ru]-module.
Since uM C M, then M is an R[u]-module. Furthermore, since 1 € M, if x € Anngy,) (M), then 1 -2 =0,
so x = 0. Thus M is faithful. That is, (3) implies (4).

Suppose (4). We use “the determinant trick”. Let m = Rz + ...Rx, be the given finitely generated

R-module. since M is an R[u] module, then uM C M. For j = 1,...,n, we can write uz; = Zai’jui for
=1

some a; ; € R. Let A = [a;;].
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In matrix form, we have that

0 u Ty Ty

Thus (ul, — A)T = 0. Multiplying by adj(ul, — A), we get on the left that det(ul, — A)I,,T = 0. Thus
det(ul, —A)-x; = 0 for all i. Thus det(ul, —A) € Aung(M), but since M is faithful, then Anng(M) = 0, so
det(ul, — A) = 0. But det(ul,, — A) is a monic polynomial in R[u]! Thus v is the root of a monic polynomial
in R[z], so u is integral. O

8.1 Day 24 - March 7

Recall from last class an integral extension:

Definition 108. Let R C S be rings. An element u € S is integral over R if there exists an equation of the
form u™ + ru” "t 4+ ...+ rp_1u + 1, = 0, with each r; € R.
That is, we say u € S is integral if it is the root of some monic polynomial in R[z].

We actually proved that u being integral is equivalent to three other things. Let us not define another
related notion:

Definition 109. Let R C S be rings. We say S is an integral extension or simply integral if every element
s € S is integral over R.

This leads to the following criterion:

Corollary 37. Let R C S be rings, and let v € S. Then the following are equivalent:

1. w is integral over R.

2. RJu] is a finitely generated R-module.

3. RJu] is integral over R.

Proof. Last time, we showed that (1) implies (2).

Suppose (2). Let o € R[u]. Let M = R[u], which by assumption is a finitely generated submodule of S.
Furthermore, 1 € M and M C M. Then by criterion (3) of the conditions from last class, we know that «
is integral over R. Since o was arbitrary, then R[u] is integral over R. Thus (2) implies (3).

Suppose (3). Since u € R[u], then w is integral over S.
O

We can use induction to prove the following corollary:

Corollary 38. Let R C S be rings. Let ug,...,u, € S. Then the following are equivalent:
1. uq,...,u, are integral over R.
2. Rluy,...,uy] is a finitely generated R-module.

3. Rluy,...,uy] is integral over R

This gives us a neat fact:

Corollary 39. Let R C S be an integral extension. Then S is finitely generated as an R-algebra if and only
if S is finitely generated as an R-module.
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Proof. If S is finitely generated as an R-module, then S = Ruj + ... + Ru,, for some uy,...,u, € S. Thus
S = R[ul, ceey un}

Conversely, if S is finitely generated as an R-algebra, then S = R[vy,...,v,]. But then by the previous
corollary, S is finitely generated as an R-module. O

Definition 110. Let R C S be rings. We say the integral closure of R over Sis T = {u € S|u is integral over R}.
If R=T, then we say R is integrally closed.

Proposition 84. Let R C S be rings, and let T be the integral closure of R over S. Then T is a subring of
S containing R.

Proof. For all r € R, r is the root of x — r € R[z]. Thus r is integral over R, so R C T.

We must now show that T is a subring of S. It suffices to show that T is closed under addition,
subtraction, and multiplication. Let «, 8 € T. Then o + 8, — 8, a8 € R|a, f]. Since a and § are integral,
then by the lemma, R[a, (] is an integral extension of R. Thus a + 8, — 3, and «f are integral. That is,
a+ B,a—p,af € T. Thus T is closed under addition, subtraction, and multiplication, so T is a subring of
S. O

Definition 111. If R is a domain, then we say R is integrally closed (not in the context of any other ring)
if R is integrally closed in its field of fractions.

Proposition 85. Let R be a unique factorization domain. Then R is integrally closed.

Proof. Let F be the field of fractions of R. Let a € F' be integral over R. Write o = © where ged(r,s) =1
and r, s € R.

Then since « is integral over R, there exists a monic polynomial f(z) = 2™ + c12" ! + ... + ¢, € R[z]
such that f(a) =0.

Then (g)"—i-cl(g)"_l +oten =0,80 1" +c1sr" 4 c,8™” = 0. Thus ™ = s(—c1r™ L — ... —c,s" 1),
so s|r™ in R. But ged(r, s) = 1 = ged(r™, s).

Thus s is a unit, so @ € R. In other words, R is its integral closure over F', so R is integrally closed.

O

Proposition 86. Let R C S be rings, and let T" be the integral closure of R over S. Let W be a multiplica-
tively closed set of R. Then Ry C Sy . Furthermore, the integral closure of Ry in Sy is Ty .

Proof. We will first show that Ty, is the integral closure of Ry in Sy .

Let i € Tw,sot €T and w € W. Then since T is the integral closure of R in S, then there exits ¢; € R
such that " + ¢;t" 1 + ... + ¢, = 0.

Then, dividing by w”, we get that (%)” + %(%)”*1 + o+
over Ry .

Thus the integral closure of Ry, over Sy, contains Ty .

Conversely, suppose = € Sy and suppose -+ is integral over R,,. Then there exist coefficients < (note
that we can combine to make a common denominator) such that ()" 4 & (£)n—1 4 4 Sl t 4 o —

(uv)™ + r1(uo)" L + L+ g (w) + 1y,

“n = 0. But each 25 € Ry, so ﬁ is integral

0 o
Multiplying by (wwv)™, we get that =1 where 7; = c;wiv~! €

1
R. Therefore, there exist w’ € W such that w'[(uv)™ + 71 (uv)" ™! + ... + rp_1(uwv) +1r,] = 0.
Therefore (w'™)[(uv)™ + r1(uv)"™ + ... + 11 (uv) + 7] = 0 = (vow’)™ + 74 (uwvw’)* 1 + ... + 7/, where
ri=r;(w') € R.

Thus w'uv € T Let t = w'uv. Then & = MZ, € Tw,so & = wa, c Tw.
Therefore, Ty is the integral closure of Ry, over Sy . O

Corollary 40. Let R C S be rings, and let T" be the integral closure of R over S. Let W be a multiplicatively
closed subset of R. Then,

1. If S is integral over R, then Sy is integral over Ry .

2. If R is integrally closed over S, then Ry is integrally closed in Sy .
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3. If R is an integrally closed domain, then so is Ryy.

Proposition 87. Let R C S be an integral extension, and let I be an ideal of S. Then I N R is an ideal of
R. Furthermore, the map R/(INR) — S/I by r+ INR — r+ I is a well-defined injective ring map.
Finally, S/I is integral over (the canonical image of) R/(I N R).

Proof. We will first show that this map is a well-defined injective ring map. First, note that this map is
well-defined since INR C I. Also, it is easy to see that it preserves addition, subtraction, and multiplication.

It then suffices to show that this map is injective. Suppose r + I = 0. Then r € I. Also, r € R, so
relINR. Thusr+INR=1NR, so this map is injective.

Now let us show that we have integrality (is that a word?). Let 5 € S/I. Since S is an integral extension
of R, then s™ + 78" '+ ... 4+7, =0, then 5" + 75" ' + ...+ 7, =0, s0 5 is integral over R. Thus S/I is
integral over the canonical image of R/(I N R).

O

8.2 Day 25 - March 9

Let’s continue with integral extensions.

Corollary 41. Let R C S be an integral extensions. Let p € Spec.S. Then p is maximal if and only if pN R
is maximal.

Proof. If p € Spec S, then S/p is an integral extension of R/(p N R). Then S/p is a field if and only if
R/(pN R) is a field. O

Lemma 32. Let Ny, ..., N; be R-submodules of M. Let W be a multiplicatively closed set. Then ﬂ§=1 (N)w =
(mglei)W~

Proof. We use induction. It then suffices to show the case that t = 2.

Suppose a € (N1)w N (N2)w. Then o = o = 1%, where ny € Ny, ng € Ny, and wi,wp, € W.

Then there exists wz € W such that 8 = wzwon; = wswing. But then 8 € NN Ny. Thus a = wlbzt;m
(N1 N NQ)W

Conversely, suppose v € (N1 N Na)w . Then v = = for some n € Ny NNy and w € W. Then v =  is a
representation of v as an element of both (N7)w and (Na)w.

Thus (NlﬂNQ)W: (Nl)Wm(NQ)W O

Theorem 86 (Lying Over Theorem). Let R C S be an integral extensions. Let p € Spec R. Then there
exists q € Spec S such that gN R = p. (We say “q lies over p”.)

Proof. We first will consider a special case: suppose (R, m) is a quasi-local ring and suppose that p = m.
Then let n be any maximal ideal of S. Then nN R is a maximal ideal in R, so nN R = m, as desired.

We now move to the general case. Let W = R\ p. Then Sy is integral over Ry . Also, Ry is quasi-local,
with maximal ideal py,. Then, by the special case, there exists qu € Spec Sy such that qw N Ry = pw.
But by the lemma, qw N Ry = (¢N R)w. Thus (qN R)w = pw, so qN R = p. Also, q is prime since qu is
prime. O

Theorem 87 (Incomparable). Let R C S be an integral extension. Let p € Spec R. Suppose q1 # g2 €
Spec S lie over p. Then q; € q2 and g2 C q;.

Proof. We again get a special case: suppose (R, m) is quasi-local and that p = m. Then since g " R =m is
maximal, then by the corollary, q; is maximal. Similarly, go is maximal. Then, since distinct maximal ideals
are incomparable, then q; and ¢s are incomparable, as desired.

We now move to the general case. Again, let W = R\p. Then Sy is an integral extension over Ry, . Note
that (q1)w N Rw = (91 N R)w = pw = (92)w N Rw. By the special case, since (Rw,pw) is a quasi-local
ring, then (q1)w and (q2)w are incomparable. Thus ¢; and g2 are incomparable. O
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Theorem 88 (Going Up Theorem). Let R C S be an integral extension. Suppose p; C ps are primes in
Spec R. Let g1 € Spec S lie over p;. Then there exists g2 2 g1 such that qo N R = ps.

Proof. We once again get a special case: suppose (R,m) is quasi-local, and po = m. Then from the Lying
Over Theorem, there exists a maximal ideal n containing q;. Then n N R = m. Since p; was not maximal,
then gy isn’t either. Then since g is maximal, we get that q2 C q;.

In the general case, let W = R\ pa. Observer that (q1)w N Rw = (p1)w. Then Ry is a quasi-local ring
with maximal ideal (p2)w. Then by the special case, there exists (g2)w € Spec Sy such that q2 D (q1)w
and (q2)w N Rw = (p2)w. Therefore q,, 2 q1 and g2 N R = po. O

Theorem 89. Let R C S be an integral extension. Then dim R = dim S.

Proof. We’ll show that for every n > 0, dim R > n if and only if dim S > n.

(=) Suppose dim R > n. Then there is a prime chain in Spec R of the form pg C p1 € p,,. By the Lying
Over Theorem, there exists qg € Spec S such that qg N R = pg. By repeated use of the Going Up theorem,
we get that there exist q1 2 qo, 92 2 q1, etc. Thus qo C q1 € ... € gy, is a strictly ascending chain in Spec S.
Thus dim S > n.

(<) Suppose dim S > n. Then there exists a chain of prime ideals of the form ¢qo C q; € ... € ¢y, lying
inS. Thenqo"NRC qg1NRC...<C ...qp N R is a chain of prime ideals in Spec R. By the incomparability
theorem, the containments are strict. Thus dim R > n.

Thus dim R = dim S. O

Example 115. Let F' be a subfield of C which is algebraic over Q. Let R be the integral closure of Z in F'.
(Such an R is called an algebraic number field.) Then dim R = dimZ = 1.

Example 116. Let V = {(23,2%,2°) € C?|z € C}. Consider I(V) = {f(z,y,2) € Clz,y,2]|f(p) =
0 for all p € V'}.

The coordinate ring of V is defined to be C[z,y, z]/I(V). Note that 1 = 2® —yz € [(V), fa = 22 —2?y €
I(V), and f3 = y*> — xz € I(V). Then it turns out that I(V) = (f1, f2, f3)-

Consider ¢ : Clx,y,z] — C[t] given by f(z,y,2) — f(3,t4,t°). Then ker¢ = I(V). Therefore
Clz,y,2]/I(V) = im¢ = C[t3,t*,t°]. Note that C[t] is an integral extension over C[t3,t% ¢°]. Then, by
the theorem, 1 = C[t] = dim C[t?,t4,#5] = dim Clx, y, 2]/I(V).

This is a good thing! After all, the dimension should correspond to the intuitive sense of the dimension
of the curve, and V is certainly dimension 1!

8.3 Day 26 - March 11

Last time we proved the Going Up Theorem. Today we will prove the Going Down Theorem, but before we
can do that, we need some lemmas.

Lemma 33. (Division algorithm in polynomial rings) Let R be a ring, and let f(z) € R[z] be a monic
polynomial. Then for all g(z) € R[z], there exist unique ¢(x),r(z) € R[z] such that g = fq + r and
degr < deg f.

This is such a classical result, we will not prove it.

Corollary 42. Let R C S be rings, and let f(z),g(z) € R[z]|, where f(z) is monic. Then f|g in R[z] if and
only if f|g in S[x].

Proof. Certainly, if f|g in R[x], then f|g in S[z].

Conversely, if f|g in S[z], then by the division algorithm, g = fgr +7g in R[z] and g = fgs+rs in S[z].
But both of these lie in R[z|, so rg = rs and gr = gs. Since g = fqgs + rs and f|g in S[z], then rg = 0.
Thus g = fqs = fqgr. Since qgr € R[z], then f|g in R|x]. O

Proposition 88. Let R C S be an extension of domains. Let K = Q(R) C L = Q(S). Suppose R
is integrally closed in K. Let o € S be integral over R. Then « is algebraic over K. Furthermore, if
f(z) = Min(o, K), f(z) € R[z].
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Proof. Since « € S is integral over R, then there exists a polynomial h(x) € R[x] such that h(a) = 0. But
h € Rlz], so h € K[z]. Thus « is algebraic over K.

Let f(z) = Min(a, K). Then, by the definition of the minimal polynomial, f(z)|h(z) in K[z]. Let L be
an algebraic closure of L. Then every root of h(x) in L is integral over R (since, by definition, they all are
the roots of a monic polynomial with coefficients in R).

Then, write f(z) = 2" + c;2" ! + ... + ¢, € K[z], and also write f(z) = (z — a1)...(z — @), where each
a; € L. Note that all a;’s are integral over R. But each ¢; is the product and sum of the «;s, so the ¢;s
are integral over R as well. Also, ¢; € K, so since R is integrally closed in K, then ¢; € R for all j. Hence

f(z) € R[z]. O

Remark 111. Let R C S be an extension of domains. Let K = Q(R) C L = Q(S). Suppose R is integrally
closed in K. Let o € S be integral over R. By the previous proposition, « is algebraic over K, and
f(z) = Min(o, K) € R[z].

Then, if g(z) € R[z] is monic such that g(«) = 0, then f(z)|g(z) in R[z].

Proposition 89. Let R C S be an integral extension, and let I be an ideal of R. Suppose u € IS. Then u
is a root of a polynomial of the form 2" + i;2"~! + ... 4+ 4,, where each i; € I. In fact, i; € I,

Proof. We again use the “determinant trick”.

Since u € IS, then there exist i; € Ig and s; € S such that v = i151+...+4,5,. Let T = R[s1,...,s—r] C S.
Note that T is integral over R.

Since T is finitely generated as an algebra over R, then T is finitely generated as an R-module. Then
T = Ry1 + ...Ry; for some y; € T.

Furthermore, v € IT. Then uwy; € ITy; C IT = Iy, + ... + Iy;. Thus there exists a; ; € I such that
l

uy; = Zaw-yi for all j. Let A = (a;;), and let ¥ = (y1,...,y1)T. Then Ay = uy, so (A — ul)(y) = 0.
i=1

Therefore det(A — ul) = 0. But det(A — zI) is a monic polynomial of the form z" +i;2"~! + ... +4,. In

fact, each i; € I, as desired. O

We can now prove the Going Down Theorem:

Theorem 90 (Going Down Theorem). Let R C S be an integral extension of domains. Suppose that R
is integrally closed in Q(R). Suppose also that py C p; are primes in Spec R, with q; € Spec S a prime ideal
such that RN q; = p;. Then there exists qo C q; such that qo N R = po.

Proof. Let W = R\ pg, and let T = S\ ¢;. Then TW = {wt|lw € Wt € T} is a multiplicatively closed
subset of S.

We now wish to show that pgS N WT = (). Suppose for the sake of contradiction that wt € ppS. Then,
by the previous proposition, wt is the root of a monic polynomial of the form g(z) = 2™ + a1z 1 + ... + ayn,
where each a; € po.

Let h(z) = g(wz). Then h(x) = w"z™ + w" ta;2"~ ' + ... + a,. Note that h(t) = g(wt) = 0. Let
f(z) = Min(t, K), where K = Q(R). By the first Proposition, since R is integrally closed, then f(z) € R[z].
But since h(t) = 0, then by the remark, f(x)|h(x) in R[z]. That is, there exists ¢(x) € R[z] such that
W) = f(2)ale). o

Then, in R/po[z], we have that h(z) = f(2)g(z) = W"z™ since the a; € po.

Recall that R/py is a domain since pg is a prime ideal. Recall also that f(z) was monic, so f(x) = 2" for
some r. Therefore f(z) = 2" + c12"~! + ... + ¢, where each ¢; € pg. Thus 0 = f(t) =t" +c1t" L+ ... + ¢,

Rearranging, we get that " = —c;t" ! — ... — ¢, € pgS C p1.S C qi. Since q; is prime, then ¢ € q;.
However, we defined T'= S\ q1, and ¢t € T, so this is a contradiction.
[Proof will be completed later.] O
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8.4 Day 27 - March 14
We ended last class halfway through the proof of the Going Down Theorem:

Theorem 91. (Going Down Theorem) Let R C S be an integral extension of domains. Suppose that R is
integrally closed in Q(R). Suppose also that py C p; are primes in Spec R, with q; € Spec S a prime ideal
such that RN q; = p;. Then there exists qo C q; such that qo N R = po.

Proof. Let W = R\ po, and let T'= S\ ¢1. Then TW = {wtjw € W,t € T} is a multiplicatively closed
subset of S.

We showed last time that pgS N WT = (.

Now, let A = {I|I ideal of S, I D pgS, INWT =0}. Then poS € A, so A is nonempty. Also, any chain
in A has an upper bound which is their union.

Thus by Zorn’s Lemma, A has a maximal element, qo. It must be the case that qg is prime [why?]. Then

qo € Spec S.

Also, W C WT,s0 qo W C qoNWT =0, so qo N R C pg. But qo D poS D po, s0 qo N R D po. Thus
q0 N R = po.

Furthermore, since qo N'T = ), then qo < q1. O

Since we can “go down” one step, we can actually “go down” chains of primes:

Corollary 43. Let R C S be an integral extension of domains, and suppose R is integrally closed. Suppose
po C p1 € ... € p,, is a chain of ideals in Spec R. Suppose also that there exists q,, € Spec S such that
qn N R = p,. Then there exists qo T q1 € ... T gn—1 < g5, such that q; N R = p; for all 4.

Corollary 44. Let R C S be an integral extension of domains. Suppose R is integrally closed, and let
q € Spec S. Then ht(q) = ht(q N R).

Proof. We will first show that ht(q N R) > ht(q) for all integral extensions.
Let q0 € q1 € ... € qn = q be a chain of primes in §. Then, contracting to R, we get that qo N R C
qg1NRC ... C ..quNR = gN R (note that we get strict inequalities by the incomparability theorem). Hence,

ht(gN R) > n.
It then suffices to show that ht(q) > ht(q N R). Let po S p1 € ... € pp = p = qN R. By the previous
corollary, there exists qo € ... € g, = ¢ such that q; N R = p; for all i. Thus ht(q) > n. O

Remark 112. Let R = Klz1,...,2,], where each z; is an indeterminant, and K is a field. Consider a
monomial dz{*...x%, where each o; > 0, and d € K \ {0}. Let ay, ..., an,—1 be positive integers.

Fori=1,..,n—1,let y; = 2; — 2%, and let y, = z,. Note that K[z1,...,2,] = k[y1, ..., Un] = Rlyn].
Then, dz{*...x%" = d(y1 + y2)* o.(Yp—1 + yn" 1) O 1yn.

Note that the highest degree term in y, is dyn'® "o =19=1%% (and there are other terms as well).
Note that this is “monic” in y,, in the sense that y, has no y; coefficients in front of it.

Let @ = a1, ..., . Suppose F(x1,...,x,) = Z doxit...xy™, and that F(z1,...,x,) # 0.

finite

We wish to do a change of variables such that this polynomial becomes “monic” in y, . We already can
make each monomial be monic, but this could backfire if the monomials have the same exponents and add
up to a leading coefficient of 0.

However, we can make a choice of the a; so that this doesn’t happen. Since F(z1,...,2,) is a finite sum,
then we can choose an integer ¢ which is larger than any «; appearing in a nonzero term in F. Let a; = ¢

fori=1,...,n—1.

Then, with y; = 2, — 2% for ¢ = 1,...,n — 1, and y, = x,, we get, as before, terms of the form
anc+aict...an_1c” "t
dayn .

But note a,c® + aic+ ... + ap_1¢" "t = B + ...+ B! with B; < c for all 4 if and only if a; = ;.
(Because these are essentially base-c expansions for numbers, and these are distinct.)

Thus, each nonzero term of F' becomes “monic” in y, of distinct degrees in y,. Hence, F' becomes
“monic” in y,.
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9 Affine Rings

Definition 112. Let K be a field. An affine ring (or an affine K-algebra) is a finitely generated K-algebra.
That is, an affine ring is a ring of the form K[uy,...,u,], where the u;s may be either indeterminant or
algebraic.

Remark 113. If K[uq, ..., u,] is an affine ring, then define ¢ : K[x1, ..., x,] = K[u1, ..., us] by f(z1, ..., 2,) —
f(u1,...,un). Therefore Kluy,...,up] = K[z1, ..., x,])/I, where I = ker ¢.

Thus, an equivalent definition of an affine ring is one which is the homomorphic image of a polynomial
ring.

Lemma 34. (Noether Normalization Lemma) Let A = K[uq,...,u,] be an affine K-algebra. Then there
exists y1, ...,y € A which are algebraically independent over K, such that A is integral over the polynomial
ring R = K[y, ..., yr].

We will prove the Noether Normalization Lemma next class.

Remark 114. Let A, K, and R be as in the Noether Normalization Lemma. Then, since A is finitely
generated as a ring over K C R, then A is finitely generated as a ring over R. Then, since A is also integral
over R, then A is finitely generated as an R-module.

Remark 115. Let A = KJuq, ..., uy] be an affine K-algebra. Let yi,..,y, be the algebraically independent
elements over K guaranteed by the Noether Normalization Lemma. Then dim A = dim R = r.

9.1 Day 28 - March 16

We are about to prove the Noether Normalization Lemma.
However, we need an exercise first.

Exercise 33. Let C C B C A be rings. Suppose B is integral over C, and A is integral over B. Then A is
integral over C.

Lemma 35. (Noether Normalization Lemma) Let A = K[uq,...,u,] be an affine K-algebra. Then there
exists y1, ...,y € A which are algebraically independent over K, such that A is integral over the polynomial
ring R = K[y1, ..., yr].

Proof. Choose a set of y1, ..,y € A such that A is integral over R = K[y, .., yr] and such that r is the least
possible. (Note that since uq, ..., u, is such a set, then a “least possible” set exists, and r < n).

It then suffices to show that {yi,...,y,} is algebraically independent over K.

Suppose for the sake of contradiction that {yi, ..., y,} is algebraically depended over K. Then there exists
f(Tla "'aTT) € K[Tlv "aTT] \ {0} such that f(yh "'7y7“) = 0.

But by the hideous lemma last class, there exists a change of variables of the form Xy =17 T, ..., X,_1 =
T —T/ ', X, = T, such that g(X1, ..., X;.) := f(X; + X3, ..., X,.) = cXN +...+[lower order terms in X,
is monic in terms of X,.

Then let 2y = y1 — yral,..zp 1 = yp1 — Yy’ ', 2 = yr. Note that g(z1,...,2.) = f(z1 + 2%, ...,2,) =
f(y1, .., yr) = 0. But also observe that K|z1,..., 2] = K[y1, ..., yr]. Since z, is a root of M, then
2z, is integral over K|[z1, ..., zp—1].

But, by the exercise, integral extensions are transitive, so A is integral over K|zy,...,2,—1]. Thus our
choice of r was not minimal, and this is a contradiction. Thus {yi, ...,y } are algebraically independent over
K. O

Definition 113. If A = KJ[uy, ..., u,] is an affine K-algebra, and yq, ..., y, are a set of algebraically indepen-
dent elements guaranteed by the Noether Normalization Lemma, then we say that R = K[y, ..., y,] is called
a Noether normalization for A.

Remark 116. Suppose A is an affine K-domain, and let Ky, ..., .| be a normalization.
Then Q(A) is algebraic over k(y1,...,¥r), 80 {y1,...,yr} is a transcendence base for Q(A)/K. Therefore
r is the transcendence degree of Q(A)/K.
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Remark 117. In general, dim A = dim K[y, ..., y-]. It is a fact that dim K[y, ..., yr] = 7, so by transitivity,
dimA =r.

Theorem 92 (Nullstellensatz - Strong Form). Let A be an affine K-algebra which is a field. Then A
is algebraic over K.

Proof. By the Noether Normalization Lemma, there exists a normalization R = k[yi, ..., y,] of A.

Then R C A is an integral extension. We showed that, in an integral extension, the top ring is a field if
and only if the bottom ring is a field. Therefore K[yi,...,y,] is a field. However, the y; are transcendental
over K, so K[yi, ...,y is isomorphic to a polynomial ring.

Recall that polynomial rings are fields if and only if they have 0 variables. Thus » = 0, and R = K.
Then A is integral over K, so A is algebraic over K.

O

Corollary 45. Let K be an algebraically closed field, and let R = K[z, ...,x,] be a polynomial ring. Then
m is a maximal ideal of R if and only if m = (21 — ¢1, ..., ¢, — ¢y), Where ¢q, ..., ¢, € K.

Proof. Note that (z1 — ¢1,...,2, — ¢,) is the kernel of the ring surjection K|x1,...,2,] — K given by
f fler,...,cn). Thus m is always maximal, regardless of the structure of K.

Conversely, suppose m is a maximal ideal of R. Note that there is a ring map K — R — R/m. Since m
is maximal, then m N K = (0), so this map is injective.

Consider K C R/m = K|[T1,...,Ty]. Since R/m is a field and finitely generated as a K-algebra, then by
the Strong Form of the Nullstellensatz, R/m is an algebraic extension of K. Since K is algebraically closed,
then R/m = K. Therefore the map K — K|z1,...,2,]/m is an isomorphism. Therefore, for each z;, there
exists ¢; € K such that T; = x; + m = ¢; + m. Thus z; — ¢; € m for all i. Thus m D (21 — ¢1, ..., Tn, — Cn)-
Since these ideals are both maximal, they are equal. Thus m = (z1 — ¢1, ..., Ty, — Cp)- O

9.2 Day 29 - March 18
Theorem 93 (“Trick of Rabinowitsch”). Let R be a commutative ring, and I be an ideal of R, and let

x be an indeterminant over R. Then /T = ﬂ (mNR).
m maximal in R[z]
m>DI
Proof. Certainly, I C ﬂ (mN R). Also, this is a radical ideal, so VI C m (mNR).
m maximal in R[z] m maximal in R[z]
m>/ m>DJ
Let f € ﬂ (mN R), and consider J = (I, fx — 1) C R[z].
m maximal in R[z]
mDI

We wish to show that J = R[z]. Suppose for the sake of contradiction that J # R. Then let m be a
maximal ideal in R[x] such that J C m. Therefore I C m, so f € m. But fr —1 € m, so 1 € m. This
contradicts the maximality of m. Thus R = J.

Therefore we can write 1 =191 + ... + ingn + (fx — 1)gn+1, where g; € R[z] and i; € I for all j. If f is
nilpotent, then f € /I, so we’re done. If f is not nilpotent, then Ry #0.

Consider the ring homomorphism ¢ : R[z] — Ry given by h(x) — h(%) Now let’s apply ¢ to the earlier
equation. S

Then 1 = z}ﬂl + Z;iz
Thus f € V.

Thus 7T = ﬂ (mNR).

m maximal in R[z]
m>DI

i

+...4+ }i:‘ in Ry. That is, there exists an f* such that f5t* =iy f*¢/+...+4, f*g,, € I.

O

Proposition 90. Let A be an affine K-algebra. Let x be an indeterminant. Then every maximal ideal of
Alx] contracts to a maximal ideal of A.
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Proof. Since A is an affine K-algebra, then so is A[z]. Let m be a maximal ideal of A[x].

Then A[z]/m is algebraic over K by Hilbert’s Nullstellensatz. Therefore we get the containment chain
K C A/(mnN A) C Afz]/m. Since the total extension is algebraic, then A/(mN A) is integral over K. Also,
A/(mnN A) is a domain. Since integral domain extensions over a field are still fields, then A/(mN A) is a
field.

Thus m N A is a maximal ideal in A. O

Theorem 94. Let A be an affine K-algebra, and let I be an ideal of A. Then /I = ﬂ m.

m maxi[mal

m>D
Proof. By the Trick of Rabinowitsch, v/I = ﬂ (mN R). Then by the previous proposition, if m
m maximal in R[xz]
mDI
is maximal in R[z], then m N R is maximal in R. Thus /T = ﬂ m.
m maximal
mDI
O

Remark 118. Suppose K = K. Let R = K|x1,...,2,]. Then every maximal ideal is of the form m, =
(x1 —c1,...; ¢ — c) where p = (c1, ..., ¢,) € K™. Therefore f € m,, if and only if f(p) = 0. Then I C m,, if
and only if f(p) =0 for all f € I.

10 Algebraic Geometry

10.1 Day 30 - March 28
We're back from break!

Definition 114. Let K be a field, and let n > 1. Let A% = K™ = {(aq,...,an)|a; € K}. Then A% is called
affine n-space over K. The elements of A}, are called points.

Definition 115. Let R = K{z1,...,x,], and let S C R. The zero set of S is Z(S) = {p € A%|f(p) =
0 for all f € S}. Then Z(S) is called an (affine) algebraic K -variety.

Remark 119. Other people have other terms for varieties. Hartshorne and followers reserve the term
“variety” for irreducible varieties. They use the term algebraic set for a not-necessarily-irreducible algebraic
variety.

Example 117. Let K = R. Let f =y — 2% € R[z, y]. Then Z(f) is the graph of the curve y = x2.
Example 118. Let K = R. Let f = 2 — 12 and g = y? — y as elements of R[z,y]. Let S = {f,g}. Then

Z(8) ={(1,0), (1, 1)}

Remark 120. By generalizing the previous example, one can construct any finite set as an algebraic variety.

Example 119. Let K = R. Let f = 22 — 22 — y? and let g = 2 — 1 as elements of Rz, y]. Let S = {f, g}.
Then Z(S) is the circle of radius 1 lying in the plane z = 1.

Remark 121. Let K be a field, and let R = K[x1,...,2,]. Let S C T C R. Then observe that Z(T) C
Z(9).

Proposition 91. Let K be the field, and let R = k[z1, ..., 2,]. Then,
1. Let {Sa}acr, where S, C R for all a. Then Z(J,, Sa) =, Z(Sa)-
2. Let S,T C R. Then Z(ST) = Z(S) U Z(T).
3. Let S C R. Then Z(S) = Z((S)), where (S) is the ideal generated by S.
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4. Let I C R be an ideal. Then Z(I) = Z(\/I).
5. A% = Z((0)) = Z(0) and 0 = Z(1).

Proof. Tt is very easy to prove (1), so we will omit the proof.

Let us now prove (2). Certainly, Z(ST) C Z(S) U Z(T). Conversely, suppose p € Z(ST) by p & Z(5).
Then there exists an f € S such that f(p) # 0.

Then, for all g € T, fg € ST, so fg(p) = f(p)g(p) = 0 as p € Z(ST). Since f(p) # 0 and this
multiplication is taking place in k, then g(p) = 0. Since g was arbitrary, then g(p) = 0 for all g € T. Thus
p€ Z(T),s0 Z(ST) = Z(S)U Z(T), as desired.

Let us now prove (3). Since S C (5), then Z((S)) C Z(S). Let p € Z(S). Then, for all f; € Z(S5),

fi(p) = 0. Let f € (S). Then f = g1 f1+... +g¢ f: for some g; € R, so f(p) = g1(p) f1(p) +..-+9:(p) fr (p) =
Thus f(p) =0 for all f € (S), so p € Z((S)). Thus Z(S) = Z((5)), as desired.

Let us now prove (4). If I C R is an ideal, then I C v/I. Therefore, Z(v/T) C Z(I).

Let p € Z(I), and let f € v/I. Then there exists a ¢ such that f* € I, so ft(p) = 0. But this
exponentiation is taking place in K, so f(p) = 0. Thus p € Z(V/1), so Z(v/I) = Z(I), as desired.

It is easy to verify (5) on your own. O

Corollary 46. The collection of zero sets satisfy the axioms of the closed sets of a topology on A.

Definition 116. The Zariski Topology on A is the topology whose closed sets are the zero sets of polyno-
mials.

Remark 122. The Zariski topology on R” is strictly coarser than the Euclidean topology.

Corollary 47. Let V = Z(S) be an affine K-variety. Then there exists f1,..., fy € R = k[z1, ..., 2] such
that V.= Z(f1) N...N Z(ft). (In fact, one can choose ¢t < n, but this result is hard.)

Proof. Recall that V = Z(S) = Z((S)). Since R = k[xz1,..,2,] is Noetherian, then each ideal is finitely
generated. In particular, (S) = (fi, ..., ft) for some f; € R.
Then, V = Z(S) = Z((5)) = Z((f1, -, f1)) = Z(f1, - fo) = Z(f1) N .. O Z( ). O

Definition 117. Let U C A’. Define the vanishing ideal of U to be I(U) = {f € R|f(p) =0 forallp €
U}.

Remark 123. Vanishing ideals are, in fact, ideals. Also, 0 € I(U).
Proposition 92. Let U C A%. Then, I(U) is a radical ideal.

Proof. Suppose f € \/I(U). Then f" € I(U) for some r, so f"(p) =0 for all p € U. This exponentiation is
taking place inside of K, a field, so f(p) = 0. Thus f € I(U). Since f was arbitrary, then /I(U) = I(U).
Thus I(U) is a radical ideal. O

Remark 124. We have a correspondence between the set of affine K-varieties, and the set of radical ideals
in K[z1, ..., %)

Proposition 93. For any variety V of A%, we have that V = Z(I(V)).

[proof omitted]

10.2 Day 31 - March 30

Recall from last class the following results:

Remark 125. We have a correspondence between the set of affine K-varieties, and the set of radical ideals
in K[z1, ..., %)

Proposition 94. For any variety V of A%, we have that V = Z(I(V)).
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However, the I(Z(.J)) # V/J for an ideal J. Let’s look at an example.

Example 120. Let k = R, and n = 1. Let J = (22 + 1) C R[z]. Then Z(J) = 0. Therefore I(Z(J)) =
I(0) = R[z]. However, 1/(z? + 1) # R[z].

Theorem 95 (Nullstellensatz - geometric version). Let K = K, and let J be an ideal of K[z, ..., Z,].
Then I(Z(J)) = V/J.

Proof. If p = (a1, ...,an) € A, then let m, = (21 — a1, ..., T — ap).

Recall that f € m, if and only if f(p) = 0.

Therefore, for an ideal J, recall that J C m,, if and only if f(p) = 0 for all f € J, which is the case if and
only if p € Z(J).

Recall that, as K = K, then every maximal ideal is of the form m,, for some p € A%.

Now we are ready to show that I(Z(J)) = v/J. Note that

fel(Z(lJ) < f(p)=0forallpeZ(J)
< femy,foralpeZ(J)
<~ fem, for all m,supsetZ(J)
= fe [] m
peZ(J)
However, ﬂ m, = ﬂ m=J.
peZ(J) m nn{tzagc‘i]mal
Thus f € I(Z(J)) if and only if f € v/J. O

Corollary 48. If K = K, then there exists a bijective, inclusion-reversing correspondence between subva-
rieties of A% and radical ideals of K[x1, ..., zp].

And that’s everything we need to know about algebraic geometry!

11 Invariant Theory

Now we get to just talk about a random grabbag of topics! Let’s start with invariant theory.

Let K be a field, and let R = K[z1,...,x,]. Let S, act on R by o(f(z1,...,%0)) = f(Zo(1), s To@m))-
(Really, what we are doing is defining a 6 : R — R for all 0 € S,,. Then each & is an automorphism of R
fixing K, so S,, is (isomorphic to) a subgroup of Autk(R).)

Definition 118. Let R%" := {f € R|o(f) = f for all 0 € S, }. Then we call RS the fized subring of R or
an invariant subring of R.

Way back when, we showed that R = K|[s1, ..., s,], where the s;s are the elementary symmetric functions
in 1, ...,Tn.

Remark 126. The “first problem of Invariant Theory” is the following: If R = K[z1,...,x,], and G is a
finite subgroup of Autx (R), then is RY a finitely generated K-algebra?

Hilbert proved the answer was yes in 1890. Later, he showed (in some cases), what the generators would
be.

Noether gave a cool proof in the 1920s, so let’s look at that.

Theorem 96. Let R be a finitely generated K-algebra, and let G be a finite subgroup of Autg(R). Then
RC is a finitely generated K-algebra.
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Proof. Let R = Kluy,...,uy], let r = |G|, and let ¢ be an indeterminant. For each 1 < i < n, consider

fit)y =Tt —o(w)) =t"+cirt"™ + ...+ cip
oeG
Note that f7(t) = f;(t) for all o € G. Therefore, o(c; ;) = ¢; ; for all i, 4, so f;(t) € RE[t].
Let S = K[Ci,jhgign C RC.
1<i<r

Note that f;(u;) = 0 for all 4, so each u; is integral over S. Therefore, R = K|[uy, ..., u,] is integral over
S. However, R is a finitely generated S-algebra (in particular, R = S[uq, ..., 4,]), so R is a finitely generated
S-module.

But since S is a finitely generated K-algebra, then by the Hilbert basis theorem, S is Noetherian.

Therefore, R is a Noetherian S-module, so R is an S-submodule of R. Hence, R® is a finitely generated
S-module. Therefore, R® is a finitely generated S-algebra. Since S is a finitely generated K-algebra, then
by the transitivity of finitely-generatedness, R® is a finitely generated K-algebra.

O

Corollary 49. With R and G as above, then by the Noether Normalization Lemma, there exists y1,...,y; €
RE which are algebraically independent, such that R is a finitely generated K[y, ..., y;]-module.

Note that this is a bit weaker than what happened when G = S,,, where K[yi,...,y;] = R®, instead of
the latter only being finitely generated as a module over the former.

Question 3. Let R be a Noetherian domain, and let K = Q(R). Let R denote the integral closure of R in
K. Is R a finitely-generated R-module?

Question 4. Let R be a Noetherian, integrally closed domain. Let L be a finite algebraic field extension of
K = Q(R). Let S be the integral closure of R in L. Is S a finitely generated R-module?

The answer to Question [3]is yes, in the case that R is a finitely generated k-algebra with char k = 0.

12 Extensions Of A Field of Fractions

12.1 Day 32 - April 1
Our final will be on Monday May 2, 10-12. It will be open note, but not open laptop.

Remark 127. Recall the following results about separable extensions: Let E/F be a finite separable ex-
tension of fields. Since E/F is finite, it is automatically algebraic.

Let o1, ..., 0, be the distinct field embeddings of F into E fixing F'. Recall that Trllf: =o1+..40,.: E—> F
is an F-linear functional. Furthermore, recall that since E/F is separable, then Trk # 0.

Theorem 97. Let E/F be a finite separable extension of fields. Let {aq, ..., } be an F-basis for E. Then
there exists a basis {1, ..., 8-} of E such that Tr&(Bia;) = 6; ; for all i, j.

Proof. Let E* = Homp(E, F). Then dimp E* = dimp(E) - dimp(F) = dimp E. Define of : £ — F by

of oy 0 le #] . That is, af(a;) = 6 ;.
lifi=j

(Vocabulary lesson: we say that {af, ..., a.x} is the dual basis for E* corresponding to {a, ..., a,}.)
For each 3 € E, define fg: E — F by 7 — Trg(ﬁ'y). One can verify that fg is F-linear, so fg € E*.
Thus the map ¢ : E — E* by 3 +— fg is F-linear. We now wish to show that ¢ is injective. Suppose
#(B) =0 for some S € E. Then, for all y € E, 0 = ¢(8)(y) = fs(y) = Trg(,@fy). If 8 #0, then BE = E, so
it must be that Trg = 0, which is nonsense. Therefore, 3 = 0, so ¢ is injective.

Since dimp(E) = dimp(E*), then ¢ is also surjective, so ¢ is an isomorphism.
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Let 8; = ¢~ () for all 4. Then

Trg(ﬁiaj) = fa(ay)
= ¢(Bi)(ay)
= oo~ (a]))(ay)
= (o)

0i,j

as desired.
O

Lemma 36. Let R be a Noetherian integrally closed domain. Let K be the field of fractions of R. Let L be
a finite separable extension of K. Let S be the integral closure of R in L. Let W = R\ {0}. Then Sy =L
(and in particular, Q(S) = L).

Proof. Certainly, Sy C L.

Conversely, let « € L. Then « is algebraic over K = @Q(R), so there exists ¢;,d € R such that " +
fetaon~t 4+ = (. Multiplying by d”, we get that (do)™ 4 c¢p—1(de)" 4.+ c1d" % (der) + cod™ ! = 0.
Thus, d, is integral over R, so daw = f € S. Then a = g € Sw.

Thus L C Sw, so L = Sy, as desired. O

Lemma 37. Let R be a Noetherian integrally closed domain. Let K be the field of fractions of R. Let L
be a finite separable extension of K. Let S be the integral closure of R in L. Then Tr%(S) C R.

Proof. Let u € S. Then u is a root of a monic polynomial f(z) € R[x]. Let o : L — L be an embedding
fixing K. Since R C K, then o fixes the coefficients of f(z). Thus o(u) is a root of f(z). Therefore o(u) € L
is integral over R. Therefore Trk (u) = o1 (u) +... 4 0, (u) is integral over R and is in K. Since R is integrally
closed in K, then Trk (u) € R, as desired.

O

Theorem 98. Let R be a Noetherian integrally closed domain. Let K be the field of fractions of R. Let L
be a finite separable extension of K. Let S be the integral closure of R in L. Then S is finitely generated as
an R-module.

Proof. Let ai,...a,} be a K-basis for L. By the first lemma, there exist o} € S and a d € R such that
;= %2 fori=1,...,r. Then {a],...,a..} is also a K-basis for Lj so we can assume {aq,...,a,.} C S.

By the previous theorem, there exists a K-basis for L {1, ..., 8-} such that TY%((Biaj) =0,

We now wish to show that S C RS; + ... + RS,

Let u € S. We already know that S C K31+...+Kf,, so there exists ¢; € K such that u = ¢1 51 +...+¢,- 5.
Then, ua; = ¢181a3+...4¢.Bra;, SO Trf((uai) = ¢;. Since uq; € S, then by the second lemma, Trf((uai) € R.
Thus ¢; € R for all 4, so u € RB; + ... + RS,

Then, since R is Noetherian, M = RpB; + ... + Rf3, is a Noetherian R-module. Therefore, S is an
R-submodule of M, so S is finitely generated as an R-module. O

Theorem 99. Let K be a field with char K = 0, and let R be an affine K-domain. Then the integral
closure of R in its field of fractions is a finitely generated R-module (and is therefore Noetherian).

Proof. By the Noether Normalization Lemma, there exists algebraically independent elements y1,...,y4 € R
such that R is a finitely generated module over the subring T' = k[yi, ..., yq] (so the extension T C R is
integral).

Let E be the field of fractions of R, and let S be the integral closure of R in E. Note that S is also the
integral closure of T in E.

Let F be the field of fractions of T'. Since R is a finitely generated T-module, then F is a finitely generated
F-module. As char K =0, then E/F is separable.

Therefore, by the previous theorem, S is a finitely generated T-module. Since T C R C S, then S is also
finitely generated as an R-module. O
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12.2 Day 33 - April 4
Recall the following theorems from last class:

Theorem 100. Let R be a Noetherian integrally closed domain. Let F' = Q(R), and let E be a finite
separable extension of F, and let S be the integral closure of R in E. Then S is finitely generated as an
R-module.

Theorem 101. Let K be a field of characteristic 0, and let R be an affine K-domain. Let E = Q(R), and
let S be the integral closure of R in E. Then S is a finitely-generated R-module.

Let’s also talk about some old definitions.

Remark 128. Let F be a field of characteristic p, and let E/F be a field extension. Recall the following:
1. We say a € E is purely inseparable over F if a?" € F for some p”.
2. We say E/F is purely insepable if each a € E is purely inseparable over F.
3. If E/F is finite, then E/F is purely inseparable if and only if EP" C F for some n.

4. Let FP* = {a € E|a is purely inseparable over F'}. We called F?* the purely inseparable closure of
Fin F, andit is a subfield of E containing F'.

5. If E/F is normal, then E/FP- is separable and FP-*/F is purely inseparable.

Remark 129. Let R be a domain of characteristic p. Let K be an algebraic closure of Q(R). For any ¢ € R
and n > 1, then the polynomial z*" — ¢ € R[z] C K|[z] has a unique root in K. (In particular, if a is a root,
then 2P" — ¢ = (z — a)?".)
We will denote this root by o
Furthermore, for ¢, d € R, we have that c7" + d5™ = (c+ d)r%” and ¢ - 7 = (c- d)z%"
Let R7™ = {cz% ¢ € R}. Then R is a subring of K containing R. Also, R - R» -
However, note that, for alln > 1, R = R by the isomorphism ¢ — e

1

»” C...CK.

=)

Theorem 102. Let E/F be a field extension, and let char F = p. Suppose {y1,...,yq} C F is algebraically

independent over F. Let m > 1. For any algebraic extension L/F', then {yr%”, ,yz%“} is algebraically

independent over L.

Proof. Recall that {y1, ..., yq} is algebraically independent over F if and only if Tr. deg. (F(y1,...,yqa)/F) = d.
o EN

It then suffices to show that Tr. deg. (L(y{" ,...,ys" )/L) = d. However, we can do so by a big complicated

picture. [

From this, we can conclude that the p-th root of an indeterminant will still be an indeterminant.

Lemma 38. Let F' be a field of characteristic p > 0. Let x1, ..., x4 be indeterminants over F', and let L be
1 1
a finite field extension of F. Then L{x?™,...,z7"] is a finitely generated F[z1, ..., z4]-module.

[Proof omitted.]

12.3 Day 34 - April 8

(There was no class on Wednesday.)
Hint for a homework problem: Let a € ﬂ Ry. Then let a = ¢. We want to show that ((b) :r

m maximal
a) = R.
Recall this theorem:
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Theorem 103. Let R be a Noetherian integrally closed domain. Let K be the field of fractions of R. Let
L be a finite separable extension of K. Let S be the integral closure of R in L. Then S is finitely generated
as an R-module.

Proof. O

Theorem 104. Let K be a field, and let A = K|z, ...,24] be a polynomial ring over K. Let F = Q(A) =
K(x1,...,xq4). Let E be a finite field extension of F', and let B be the integral closure of A in E. Then B is
finitely generated as an A-module.

Proof. We will first show the theorem when E/F is separable or purely inseparable.
By the recalled theorem, if E/F is separable, then the theorem is true.

If E/F is purely inseparable, let char K = p, and write £ = F(a, ..., ;) where apn € F for a fixed n
and for all 7. Since F is the field of fractions of A = K|z, ..., %], then afn = fi(z1.a) for some f;,g; €

gi(1,--2a)
K[z1,...,x4]. Note that we can in fact commonize the denominators and assume g;(z1, ..., 2q4) = g(Z1, ..., q)
for some g € K|[z1, ..., %4].

1 1
P 1

= £ P P
Then, a; = LiEteed) 7 filzy o -2 ) , where f;,§ € KP"[ AR A
g(z1,..wa) P g(zf ’, a:dn)
Let S be the set of all the p™th roots of all the coeﬁiments of the fisand g. Let K/ = K(S) = K|[S]. Then
a a1
K'/K is finite and purely inseparable. Also, f;,§ € K’[a:1 ol ] =T. Let L =Q(T) = K'(x" ,...,z").

Note that all o;; € L.
Then, let C' denote the integral closure of A in L. We wish to show that C' = T'. Certainly, T is integral

over A since (z/")?" = x; € A for all i and K’»" C K for some s. Thus T' C C. However, T is integrally

closed in Q(T) = L. Thus T' = C.
1 1

Recall that C' = K'[z]" ,...,x]" | = T is finitely generated as a module over K'[z1, .., 4], which in turn is
finitely generated as a module over A (since [K’ : K| < 00). Then, by transitivity of finitely-generated-ness,
C is a finitely-generated A-module. Since B is an A-submodule of C, and A is Noetherian, then B is finitely
generated as an A-module. This completes the proof in the purely inseparable case.

If E/F is neither separable nor purely inseparable, then we proceed as follows. First, we will show that
we can assume without loss of generality that E/F is normal.

To this end, let E be the normal closure of F J/F. Let B be the integral closure of A in E. Suppose
B is a finitely generated A-module. If we can show that B is a Noetherian A-module, then since B is an
A-submodule of B, then B is a finitely generated A-module.

Therefore, it suffices to show the case where F/F is finite and normal. Let E/ = FP*. Then E'/F
is purely inseparable, and F/FE’ is separable. Let B’ be the integral closure of A in E’. By the purely-
inseparable case, B’ is finitely generated as an A-module. Then B’ is a Noetherian, integrally closed domain
(since Q(B’) = E’). Therefore B is the integral closure of B’ in F.

By the separable case, B is a finitely generated B’-module. Since we assumed that B’ is a finitely
generated A-module, then by transitivity of finitely-generated-ness, B is a finitely generated A-module. [

13 Representation Theory Revisited

13.1 Day 35 - April 11
Recall the following things about group-rings.
Remark 130. If G is a finite group, and C is the field of complex numbers, then

C[G] B(I1) x ... x B(I)

= nlfl@...@ntft

, where I, ..., I; represent all the simple left ideals of C[G] up to isomorphism, and B(I;) is the sum of all
the left ideals of C[G] which are isomorphic to I;.
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We then have the following results
1. t is equal to the number of conjugacy classes of G.
2. n; =dim¢ I; for 1 <1¢ < ¢.

3. B(I;) 2 M,,(C) for 1 <i<t.

i

Remark 131. Let R be a commutative ring, and let G be a finite group. Then Z(R[G]) = Rz1 & ... ® Rz,

where z; = Z , where (1, ..., C; are the distinct conjugacy classes of G.
g€l
In particular, Z(Z[G)) =2z @ ... ® Zz C Cz @ ... ® Cz = Z(C[G)).
For the rest of today, let A be the integral closure of Z in C. That is, A denotes the set of algebraic
integers.

We will now build up to the fact that n;

|G| for all 4.

Proposition 95. For each i, let ¢; = % Z Xi(g_l)g~ Then z; € Aey + ... + Aey.
geG

Proof. Recall that Z(C[G]) = Ce; x ... x Ce; (as an internal direct product).

Since z; € Z(C[G]) = Ce; X ... x Cey., then there exist o; € C such that z; = ey + ... + azeq. Note that
zi € Z(Z|G]) = Zz1 + .. ZLz.

As Z(Z|@G]) is a commutative ring, and is finitely generated as a Z-module, then Z(Z[G]) is integral over
Z. Let f(x) € Z[x] be a monic polynomial such that f(z;) =0. Then f(aje; + ...aze;) = 0.

That is,

0 = flarer +...azer)
= floner) + ... + flager)
- f(oq)el + ...f(at)et

Note that the second equality is because e;e; = 0 for ¢ # j, and the third equality is because e;e; = e;.
But since ey, ...e; is linearly independent over C, then each f(c;) = 0 for all j. Thus «; € A for all j, so
zi € Aey + ... + Aey. O]

Lemma 39. Let x be any character for G and let g € G. Then x(g) € A for all g € G.

Proof. Recall the definition of x(g): x(g) = Tr(p(g)) where p : G — GL¢(V) is a representation. Since
g™ = 1 for some n, then p(g)™ = 1. Thus every eigenvalue of p(g) is an n-th root of unity.

But each n-th root of unity is an algebraic integer! Also, the trace of a matrix is the sum of its eigenvalues
(with some multiplicities), so x(g) = Tr(p(g)) is the sum of some algebraic integers. Since A is closed under
addition (because it is a ring), then x(g) € A. O

Theorem 105. For each i =1,...,t, n;

|G-

t

Proof. Recall that %Iei = Z xilg™1)g = le-(gj*l)zj, where each g; € C;.
ged j=1

But this is in Azy + ... + Az; since Xi(gjfl) € A by the Lemma. By the proposition, Azy + ... + Az C

Aey + ... + Ae;. Thus % € A. However, we can see that Llﬂ € Q, so ‘nﬂ € ANQ = Z. In other words,

Now let’s talk about the representations of products of groups.
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Definition 119. Let p; : G; — GL¢c(Vh) and let ps : G3 — GL¢(V3) be representations of some groups Gq
and Gs.
Define p; ® pa : G1 X Go — GLc(Vi ®¢ Va) by (g1,92) — p1(g1) ® p2(ge).

Remark 132. One can verify that p; ® ps is a group homomorphism.

Exercise 34. Show that Tr(¢ ® ¢) = Tr(¢) - Tr(v).
From this, one gets that Xy, @p, (915 92)) = X1 (91) - X (92)-

Corollary 50. The following are equivalent:
1. p1 ® po is irreducible as a representation

2. Xp,@p, is irreducible as a character

3. <Xp1®;02’X;01®P2> =1

4. (Xp1>Xpr) =L and (Xpy Xpy) =1

5. p1 and po are irreducible as representations.

Proposition 96. If {p1,...p:} and {¢1, ..., ¢} are the irreducible representations for G; and G respectively,
then {p; ® ¢;|1 < i <t,1<j < s} is the set of irreducible representations for G1 ® Ga.

Lemma 40. Let ¢ : G — GL¢c(V) be an irreducible representation. Let g € Z(G). Then p(g) = A for
some root of unity A. In particular, |x(g)| = x(1)

Proof. Recall that Z(C[G]) = Ce; x ... x Ce; (as an internal direct product). Then, we can write g =
(a1, ...,aq) to represent g = ajeq + ... + ayey.

Since V is a simple C[G]-module, and C[G] = B(I1) x ... x B(I;), then V = I; as C[G]-modules, for some
j. Without loss of generality, let V' = I;.

Then e; = (1,0,...,0) acts as the identity on V, so e;V = 0 for all j # 1. Let w € V. Then gu =
(a1, ..., p)u = (aqu, 0, ...,0). Thus p(g;) = a1ly. Since |G| is finite, then g has finite order, so a; must be a
|G|-th root of unity. O

13.2 Day 36 - April 13

Proposition 97. Let R be a Noetherian ring, and let S be a domain containing R. Let u € S and suppose
there exists a nonzero r € R such that ru™ € R for all n > 1. Then u is integral over R.

Proof. Recall that u is integral over R if and only if R[u] is finitely generated as an R-module.
Consider R - 1 as an R-submodule of Q(R). Since u" € R- 1 for all n, then R[u] C R 2.
Recall that, since R is Noetherian, then any submodule of a finitely generated R-module is also finitely
generated.
But R - % is a finitely generated R-module (namely, it is generated by %), so R[u] is a finitely-generated
R-module. Thus u is integral over R.
O

Theorem 106 (Schur). With the usual notation for a character x, then n;|[G : Z(G)] for all i.

Proof. For all integers m > 1, let G,,, = G X G x ... x G (m times). Let x be an irreducible character, and
let n = degx = x(1). Then there exists a representation p : G — GL¢c(V) such that Tr(p) = x. We then

wish to show that n|[G : Z(G)].

Let pp =p®p...®p: Gy = GLe(V ®¢ ... ®c V) (where both tensor products occur m times).
Since p is irreducible, then p,, is an irreducible representation for G,,. Also, deg(pm) = X,,.(1) =

Tr(prn(1)) = Tr(p(1))™ = ™.
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Recall from last class that if g € Z(G), then p(g) = Al for some root of unity A. Define v: Z(G) — C*
by g — A4

Let H = kery = {g € Z(@)lplg) = I} = kerp 1 Z(G). Let D = (g1, gm) € Z(Gm) = Z(G) X ... %
Z(G)v (g1, -+ gm) = 1}

One can check (should check) that D < G,,,. Moreover, D C ker p,, since if p,,(g1...gm) = 1 implis that
Pm(g1s s gm) = p(G1) ® .. @ p(gm) = A, v @ ... @ Ay, Iy = Ag, o Ag L = Agy g I = 1.

But recall that normal subgroups induce representations (and irreducible subgroups induce irreducible
representations). Thus D <1 G, gives an induced irreducible representation on G.,/D, with p,, : G /D —
GLc(V &c ... ®c V) such that degp,, = n™. But by the previous theorem, degﬁm‘\Gm/D\, so nm‘ |Gy /D).

We now wish to show that |D| = |Z(G)|™"! - |H|. In order to do so, let & = (g1,...,gm) € Z(Gm)
Z(G) x ... x Z(G). Then a € D if and only if g;...g,, € H, which is the case if and only if g,
(g1---gm—1)"1H. We therefore have a bijective correspondance between D and Z(G)™ ! x H by «
(gla"'agm) - ((gla"'agm—l)agL“gm) and (917 oy m— 17(91 ) 1h) ((gla"'agm—lah)-

Thus |D| = |Z(G)|™ 1 - |H|.

m |G : |G _ 12(G)] Gl ™
Therefore, n ’m That is, 2T A = A (an(G)I ) € Z for all m > 1. Then, by

the previous proposition, % is integral over Z. But it is also a rational number, and the only integral

rational numbers are integers! Thus ||Z(‘G)| € Z. In other words, n|Z(G |‘|G\ S0 n’ ‘Z(G =[G : Z(G)].

I m

O

Lemma 41. Let G be a finite group and let x be an irreducible (complex) character of G. Suppose C
is a conjugacy class of G such that ged(|C|,n) = 1, where n = degy. Then for all ¢ € C, x(g) = 0 or

Ix(g)| =n.

Proof. Let m = |C|, and let z = Z g. Recall that z € Aey @ ... ® Ze; (were A is the integral closure of Z
geC
in C).

By one of the formulas about characters, %@ € A for all g € C. Since ged(m,n) = 1, then there
exists 7,5 € Z such that 1 = rm + sn. If we multiply this equation by X(g) , then we get that %g) =
- (mX(g)) + s(x(g)). Since r,s € Z C A, and mﬁ(g),x( ) € A, then xglg) € A.

However, x(g) = A1 + ... + A, for some kth roots of unity Ay, ..., Ap.

Let o = X;g) = Mtotdn ¢ 4 Then |of = [Arfstia) < PalttAnl < 1 Furthermore, note that we
have |a| =1 if and only if A; = A; for all ¢ and j, which is equlvalent to |x(g)| = n.

Let w be a primitive kth root of unity, and let E = Q(w). Then let H = Gal(E/Q), and let o € H. Note
o(a € A) since o takes integral elements to integral elements.

Furthermore, for all 4, o(\; = )\ for some k-th root of unity A;. Therefore, o(«a ) = M
Let N = N§ : E— Q. Then, N(a) = [] o(e) € QN A = Z. Therefore, N(a) = [ |0 )] < 1. Thus
ocH oc€EH

either N(a) =0, so @« =0 and x(g) =0, or N(a) =1, so |o(a)| =1 for all 0. Namely, this is true o = id,
so || = 1. Thus |x(a)| =n
O

13.3 Day 37 - April 15

Recall this theorem from last class:

Lemma 42. Let G be a finite group, and let x be an irreducible C-character of G. Let n = deg x. Suppose
C' is a conjugacy class of G such that ged(|C|,n) = 1. Then, for all g € C, x(g) =0 or |x(g9)| = n.

Proposition 98. Let G be a finite simple group. Then there does not exist a conjugacy class C such that
|C| = p* for some prime p and integer a > 0.
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Proof. Let x1,..., x+ be the irreducible (complex) characters of G, and let py, ..., p; be their associated rep-
resentations. Let n; denote the degree of x;. That is, n; = x;(1). Without loss of generality, assume that p;
is the trivial representation.

Suppose for the sake of contradiction that |C| = p* for some prime p and integer a > 0.

First, we will show that if p { n; for some 7 > 1, then y;(g) =0 for all g € C.

Let G; = {g € G|pi(g) = A for some A € C}. Note that G; < G. But by assumption, G is normal, so
either G; = {1} or G; = G. Suppose for the sake of contradiction that G; = G. Since ¢ > 1, then p; is
not the constant (trivial) homomorphism. Also, since G is simple, then ker p; = {1}. Then G £ p;(G) =
pi(G;) = {M|g € G}. Thus G is abelian, so this contradicts the fact that |C| > 1. Therefore G; = {1}.

That is, for all g # 1, |x:(9)] < n;. As p 1 n;, then ged(|C|,n;) = 1. Then, by the lemma, x;(g) = 0
or |xi(g)] = n; for all g € C. Since |xi(g)| < n; for all g # 1, and 1 ¢ C, then x;(g) = 0 for all g € C, as

desired.
t

Recall one of the formulae about characters was that, for all g # 1, Z Xi(1)xi(g) = 0. In particular,
i=1

¢
this is true for some g € C. But x;(1) = ny, so Znixi(g) = 0. Recall that n; = 1 and x1(g) = 1, so
i=1

t
1+ Z nixi(g) = 0. By the previous part of the proof, ptn; for all ¢ > 1, so x;(g) = 0 for this g € C. Thus
i=2

1 =0, a contradiction! Thus there is no conjugacy class of size p®. [this is flawed]
O

Let’s now do one application of character theory. It is Burnside’s Theorem.

Theorem 107. Let G be a group of order p®q®, with p and ¢ primes. Then G is solvable.

Proof. Several cases of this are easy. First, if G is abelian, then it is solvable. Also, if a =0 or b = 0, then G
is, respectively, a p-group or a ¢-group, and we have already proven such groups are solvable. If a = b =1,
then either it has a unique Sylow p-group or a unique Sylow g-group, which must be normal.

We will now proceed by induction on a + b. If a + b = 2, then a = b = 1 which case we have already
discussed.

Suppose a + b > 2. It then suffices to show that G has a nontrivial normal subgroup. Suppose for the
sake of contradiction that G is simple. Let P be a Sylow p-subgroup. Then, by classical results, Z(p) # {1},
solet x € Z(P)\ {1}.

Let Cq(z) = {y € Glyxr = xy} (the centralizer of 2 in G), and note that P C Cg(z). Let C denote
the conjugacy class of z. Then |C| = [G : Cg(z)] = ¢' for some | < b. But by the previous proposition,
[ = 0. Therefore, |C] =1, so C = {z}. In other words, z € Z(G). Thus Z(G) # 1, so Z(G) is a nontrivial
subgroup. However, it is a proper subgroup as well, since we already dealt with the case that G is abelian.
Thus Z(@G) is a proper nontrivial normal subgroup, so by the inductive hypothesis, G is solvable. O

And now, a word on Frobenius reciprocity:

Remark 133. Let G be a group, and let H < G. Let x € char(H). Then, x¢ induced up to G, so for all

¢ € char(G), ¢u € char(H), and (x“, ¢) = (x, ¢n).
This is hard to do normally, but with commutative algebra, this ends up being just Hom—® adjunction!

14 Primary Decompositions

Let’s now talk about primary decompositions.

Definition 120. Let R be a commutative ring. Let N C M be R-modules. For any a € R and any module
L,let ar, : L — L be the R-module homomorphism given by [ +— al.

We say that N is a primary submodule of M if, for all a € R, apr/y : M/N — M/N is either injective or
nilpotent (i.e. af = 0 for some n).
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Remark 134. If L ¢ N € M, then N is primary in M if and only if N/L is primary in M /L. This follows
directly from the fact that (M/L)/(N/L) = M/N. In particular, N is primary in M if and only if (0) is
primary in M/N.

Proposition 99. Let I C R be an ideal. Then I is primary (as an R-module) if and only if, whenever
abe I, either a € T or b e VI.

Proof. Suppose I is a primary ideal of R, and suppose ab € I. Then, for all a € R, ag/; is either injective
or nilpotent.

Either @ € I or a € I. In the former case, we have nothing to show. In the latter case, then @ # 0 in
R/I, but bg/r(a) = ba =0, so br/r is not injective. Therefore bg,; is nilpotent, so there exists an n € N
such that 0 = b"(1) = b". Thus b™ € I, or in other words b € v/I. Thus either a € I or b € /1.

Conversely, suppose whenever ab € I, then either a € I or b € VI. Let a € R and suppose ag/y is not

injective. Then there exists a b ¢ I such that ag/;(b) =0 = ab. Thus ba = ab € I. Since b ¢ I, then a € VT
That is, a™ € I for some n € N. Thus a%/l =0, so ag, is nilpotent.
O

14.1 Day 38 - April 18

Let’s talk more about primary decompositions.

Proposition 100. Suppose N is a primary submodule of M. Then \/W is prime.
Before the proof, let’s define a term.

Definition 121. If p = \/Anng(M/N), then we say N is p-primary, or p is the prime prime associated to
M/N.

Proof. Since N # M, then 1 ¢ /Anng(M/N), so this ideal is not all of R.

Suppose ab € /Anng(M/N), and suppose a € /Anng(M/N). Recall that /Anng(M/N) = {r €

R|ryp/n is nilpotent} .

Since N is primary, and a ¢ \/Anng(M/N), then ay/y is injective. Since ab € \/Anng(M/N), then

there exists an n € N such that (ab)}}i/N = ahy/nbiy/n = 0 for some n. Since ayyyy is injective, then so is
/s 80 by = 0. Thus b € /Anng(M/N).
That is, whenever ab € \/Anng(M/N) and a ¢ \/Anng(M/N), then b € \/Anng(M/N). Thus this

ideal is prime. U

Let’s look at a non-example of a primary ideal.

Example 121. Let k be a field, and let R = k[z,y]. Let I = (22,2y). Then T = (X). However, zy € I,
by ¢ I and y ¢ VI = (X). Thus I is not primary.

Proposition 101. Suppose y/Anng(M/N) = m is a maximal ideal. Then N is a primary submodule of
M.

Proof. Let a € R, and suppose ayy/n is not nilpotent. It then suffices to show that ays/n is injective.

Since a ¢ \/Anng(M/N) = m, then Anng(M/N)+ Ra = R. Thus 1 = r + sa for some r € Anng(M/N)
and s € R.

Now suppose apr/n (Z) = 0 for some T € M/N. Then ax € N. But 2 = rz + sax, and both rz € N since
r € Anng(M/N), and sax € N since ax € N. Thus 2z € N, so T = 0. That is, ap;/n is injectivve. Thus N
is primary. O

Remark 135. Let R be a ring, and let I C R be an ideal. Then Anng(R/I) = I, and \/Anng(R/T) = /1.
If T is a primary ideal, then v/T is prime. If v/T is maximal, then I is a primary ideal.

Proposition 102. Let R be a PID. Let I be an ideal of R. Then the following are equivalent:

1. I is primary in R.
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2. I =(0) or I = (f™) for some irreducible element f and n > 1.

1
3. I =(0) or I =m" for some maximal ideal m and n > 1.

Proof. Let’s first show that (2) implies (1). Certainly, (0) is prime in R (since it is a principal ideal domain),
so it is primary. On the other hand, if I = (f") for some irreducible element f, then VI = /(") D (f).
But since f is irreducible, then (f) is maximal, so either /I = (f) or v/I = R. The latter is not the case
because 1 & /1, so VI = (f). Then, by the previous proposition and remark, since VT is maximal, then T
is primary.

Thus (2) implies (1).

Now let us show that (1) implies (2). Let I be primary, and suppose I # (0). Therefore, by the previous
remark, v/T is prime. Recall that the prime ideals in a PID are either 0 or generated by irreducible elements.
Since I # 0, then /T # 0, so /I = (f) for some irreducible f € R. Let n be the least number such that
frel

We now wish to show that I = (f"). Suppose g € I. Write ¢ = f'h where ged(f,h) = 1. Then
f'h =g € I, so since I is primary, eiether f' € I or h € VI = (f).

But ged(f,h) = 1, s0 h & (f). Thus f' € I. We chose n to be the least element so that f € I, so so
1 >n. Thus g = f'h € (). Therefore I = (f).

Thus (1) implies (2).

The proof of the equivalence of (2) and (3) is left to the reader. O

Corollary 51. If R = Z, then I is primary if and only if I = (0) or I = (p™) for some prime p and n > 1.

Remark 136. People were very interested in generalizing unique prime factorization from Z to other rings.
In Z, the statement for ideals goes as follows.

Let R =Z, and let I C R be a nonzero ideal. Then I = (n) for some n # —1,0, 1.

Then, we can write n = p"'..p;'*, where each p; is prime and m; > 1. Then I = (pi"'..pJ"*) =

P NN (E™*) = @)™ N0 (pe)™.
However, in order to prove this, you need the fact that Z is height 1, so the chinese remainder theorem
applies nicely. Thus this exact statement of unique prime factorization doesn’t generalize totally.

Example 122. Let k be a field and let R = k[x,y]. Let I = (22,y). Then /T = (x,y). Since v/I is maximal,
then I is primary. Note that I is not a power of a prime ideal, since it could only be a power of (z,y), and
it is not.

Also, powers of prime ideals need not be primary!

Example 123. Let k be a field, and let f = 22 — yz € k[z,y,2]. Let R = k[z,y,2]/(f), and let Let
p = (7,2)R = (z,y)/(f). Then p is prime, and p? = (z%,7%,7%) = (22,22, 2%,y2)/(f). Thus zy € p?, but
zgp?and g & \/p2 =p = (T,%). Thus p? is not prime!

Definition 122. Let M be an R-module, and let N C M be a submodule. Then N is called irreducible in
M if, whenever N = Ly N Ly for some submodules L1, Ly C M, then N = Ly or N = Ls.

Remark 137. If A C N C M, then N is irreducible in M if and only if N/A is irreducible in M /A, which

is the case if and only if (0) is irreducible in M/N.

14.2 Day 39 - April 20
Recall the definition of primary. We will prove some equivalent conditions about it.

Remark 138. Let M be an R-module, and let Q C M be a submodule. Then the following are equivalent:

1. Qis primary. (That is, for all a € R, apr/q : M/Q — M/Q is either injective as a function, or nilpotent
as a function.)

2. For all a € R (Q :p a) = @ (meaning a is a non-zero-divisor on M/Q) or ™M C Q for some n.
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If M = Ris Q = I, an ideal, then we get a further equivalence that
3. Foralla € R, a € VI (and VT is a prime ideal), or (I :z:a) = I.

We get a simpler statement if we assume Q = (0).

Remark 139. For any module M, (0) is primary in M if and only if for all a € R, either a™M = 0 for some
n, or (0 :ps a) = 0 (that is, a is a non-zero-divisor on M).

Now let us return to the topic from last class, irreducible submodules of a Noetherian module.

Theorem 108. Let M be a Noetherian R-module, and let ) be an irreducible submodule of M. Then @
is primary.

Proof. By the remark from last class, @ is primary in M if and only if (0) is primary in M/Q. Since M is
Noetherian, then M/Q is Noetherian as well. Also, since @ is irreducible in M, then (0) is irreducible in
M/Q.

Therefore, we will assume without loss of generality that @ = (0). By the previous remark, it suffices to
show that if a € R and a"M ## 0 for all n, then a is a non-zero-divisor on M.

Suppose for the sake of contradiction that 0 # (0 :a; a). Then consider the ascending chain 0 C (0 :j;
a) C (0:7a?) C (0 a®) C ...

Since M is Noetherian, then this chain eventually stabilizes. That is, (0 :ps a™) = (0 :ps ™"/ for some n
and all j. Suppose for the sake of contradiction that there exists some u € R\ (0 :p; a™) [other choice of u?].

We then wish to show that RuNa"M = (0).

Let = ru = a™y for some r € R,y € M. Then ax = rau = a"™'y. But rau = 0 since [???]. Thus
a1y =0. Thus y € (0:3 a"™) = (0 :pr a™), s0 a™y = 0, so x = 0. Thus Ru Na"M = (0).

Since (0) is an irreducible submodule, then Ru = 0 or a”M = 0. Since Ru # 0, then "M = 0.

O

Definition 123. Let N be a proper submodule of M. A primary decomposition for N (in M) is an equation
N =Q1N..NQs, where each @Q); are primary submodules of M.

Theorem 109. Let M # 0 be a Noetherian module. Then every proper submodule of M has a primary
decomposition.

Proof. Let A = {N C M]|N does not have a primary decomposition}. Then then suffices to show that
A=0.

Suppose for the sake of contradiction that A # (). Then since M is Noetherian, we can choose N € A
which is maximal. By the contrapositive of the previous theorem, N must be reducible.

That is, there must exist L1, Lo 2 N such that N = Ly N Ly. But if Ly = M, then N = L1 N Ly = L.
Since this is not the case, then Ly C M. Similarly, Ly C M.

Therefore, L1, Ls € A, so they each have a primary decomposition. Then, by intersecting their two
primary decompositions, we get a primary decomposition for N. This contradicts the fact that N € A, so
A = (), as desired. O

Lemma 43. Let @1, ...QQ,, be p-primary submodules of M. Then Q1 N...NQ, is p-primary as well.

Proof. We must show that Q1 N ... N Q,, is primary, and that its associated prime is p.

For each Q;, since Q); is p-primary, then y/Anng(M/Q;) = p. But note that Anng(M/(Q1N...NQR)) =
Anng(M/Q1)N...N Anng(M/Q,).

Therefore, /Anng(M/(Q1 N ...NQx)) = \/Anng(M/Q1)N...0/Anng(M/Q,) = pN...Np = p. Thus,
if @1 N...NQ, is primary, it will have the right associated prime.

We must now show that Q1 N ... N Q,, is primary. Let a € R. As we have just shown, if a € p, then
a € /Anngp(M/(Q1N...NQy)), so aM C Q1 N...NQ,. On the other hand, if a & p, then (Q1N...NQy i
a)=(Q1:a)N..N(Qn:na)=Q1N..NQ, (as each Q; is p-primary).

Thus, by the remark above, @1 N ... N @, is primary, and since it has the right associated prime, then
Q1 N...NQ, is p-primary. O
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Definition 124. Let N C M. We say an irredundant primary decomposition for N is an equation where
N =0Q1N..NQs where

1. Each Q; is p;-primary.
3.NCQiN..NnQ;N..NQ, for all 4.

Proposition 103. If N has a primary decomposition, it has an irredundant primary decomposition.

Proof. If some @Q);, Q; violates the second criterion, then they can be combined by the Lemma.
If some @; violates the third criterion, then it can be dropped completely.

This eventually terminates, so we are done.
O

Example 124. Let k be a field, and let R = k[z,y]. Let I = (2%, 2y). Note that I = (z) N (2%,y) is an
irredundant primary decomposition. However, note that I = (x) N (22, ry,y?) is another irreducible primary
decomposition.

That is, there are two irreducible primary decompostions for I! However, both i.p.d.s have the same
collection of associated primes, namely {(z), (z,y)}. Note also that the number of primary components is
the same in both decompositions, and (z) appears in both. We will formalize the reasons for this later.

Now let’s talk about how localization plays with a primary decomposition.

Proposition 104. Let @ be a p-primary submodule of M, and let S be a multiplicatively closed set of R.
Then

1. Qs = Mg if and only if pN S # (.
2. If pnN S =0, then Qg is pg-primary.

Proof. Recall that localization commutes with quotienting. Therefore, it suffices to show the statement holds
for (0) in M/Q. That is, we may assume without loss of generality that @ = 0.

Thus, (0) is primary in M and p = y/Anng(M).

(Proof of 1). If pNS # 0, let t € pNS. Then t"M = 0 for some n. Since t € S, then " = S. Thus
Mg =0= (Qg, as desired.

Conversely, suppose Qs = Mg, and let u € M \ Q. Then § = 4 for some ¢ € Q and s € S. Then, there
exists a t € S such that tsu = tq. Since tq € Q, then u € (Q :as ts) \ Q. Therefore, ts € pN S, so pN S # 0.
This completes the proof of (1).

We will prove (2) tomorrow. O

14.3 Day 40 - April 22

Let’s finish the proof of a proposition from last class.

Proposition 105. Let @ be a p-primary submodule of M, and let S be a multiplicatively closed set of R.
Then

1. Qs = Mg if and only if pN S # 0.

2. If pnN S =0, then Qg is pg-primary.
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Proof. Recall that localization commutes with quotienting. Therefore, it suffices to show the statement holds
for (0) in M/Q. That is, we may assume without loss of generality that @ = 0.

Thus, (0) is primary in M and p = y/Anng(M).

(Proof of 2). We wish to show that Qg is ps-primary. But Q@ =0, so Qs = 0. Let © € Rs. Either * is a
non-zero-divisor on Mg or it is not.

If = is a non-zero divisor on Mg, then multiplication by % is injective on M.

On the other hand, if £ -ut = 0 for some ¥ € Mg\ 0, then =¥ = 0. That is, there exists an s’ €
such that s'ru = 0. Since % # 0, then u # 0, so s'r is a zero-divisor on M. Since M is p-primary, then
all zero divisors are nilpotent. That is, there exists an n such that (s'r)*M = 0. Then (#)"MS =0, so
(£)"Ms = 0. That is, multiplication by % is nilpotent on Mg.

Thus, multiplication by Z is either injective or nilpotent on Mg, so (0) is primary in Ms.
It then suffices to show that the prime associated to Qg = 0 is p.
But note that s'r € p [why]? Thus, © € ps. Therefore, \/Anng,(Ms) C ps. Thus Mg is pg-primary.
O

Remark 140. Localization distributes across intersections of ideals. That is, (Q1 N ...NQ¢)s = (Q1)s N
..N(Q)s for any submodules Qg, ..., Q; of M. (This is a good exercise to do.)

Suppose N = Q1 N...N Q; is a primary decomposition for N in M, where each Q; is p;-primary. Then
Ng = M)S if and only if S Np; # 0 for all 4, which is true if and only if (Q;)s = (M;)s for all i.

Proposition 106. Let N = @1 N...Q¢ be an irredundant primary decomposition for N C M. Let S be a
multiplicatively closed set of R such that Ng # Mg. From the previous remark, this implies that SNp; = 0
for at least one 7. Reorder the Q; such that SNp; =P fori=1,...,r and SNp; #0fori =7r+1,...,t. Then
Ng=(Q1)sN...N(Q)s is an irredundant primary decomposition.

Proof. By the previous remark, since localization distributes over intersections, then

Ng =

Note that the third equality is by part 1 of the previous decomposition.

Thus, Ng = (Q1)s N ... N (Q;)s is a primary decomposition. We must now show that it is irredundant.

Because N = @1 N...NQ; was an irredundant primary decomposition, then they have distinct associated
primes pi,...p;.. By the previous proposition, the associated prime of (Q;)s is (p;)s for i = 1,...,7. Since
the p; are distinct, then the (p;)s are distinct.

It then suffices to show that we cannot do without any of the (Q;)s, for i =1,...,7.

Suppose for the sake of contradiction that (Q;)s D (Q1)sN...N (Ql)s N..N(Qr)sN(Qrs1)sN...N(Qr)s =
(@1N..N Q; N Q+)s. We know that Q; 2 Q1N ...N Q; N ..N Qy, since they formed an irredundant primary
decomposition for N. Then, there must be aw € Q1 N...NQ; N..N Q; \ Qi, so § € [something].

Hence, w is a zero divisor on M/Q;, so w € p;N.S. This is a contradiction, so the primary decomposition
is irredundant. O

Remark 141. In the proposition above, the set of associated primes of Ng = Q1 N ...N Qy is

{ps|p is an associated prime of Ng = (Q1)s N ...N(Q+)s and pN S = 0}

Theorem 110 (First Uniqueness Theorem). Let R be a Noetherian ring, and let M be a finitely gener-
ated R-module. Let N be a proper submodule, and let N = Q1N...NQ¢ be an irredundant primary decomposi-
tion. Let p; be the prime associated with @Q;. Then {p1,...p:} = {p € Spec R|p = (N : z) for some = € M }.
Therefore, the set of primes only depends on N, and not on the irredundant primary decomposition. In
partiuclar, every irreducible primary decomposition for N has the same number of primary components.
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Proof. We can reduce to the case that N = 0.

Let 0 = Q1 N...NQ; be an irredundant primary decompostion, where each Q); is p;-primary for i =1, ..., ¢.

We will first show that p € {p € Spec R|p = (N :g ) for some x € M} implies p € {p1,...p¢}.

Choose some x € M, and suppose p = (0 :g z) is prime. Then, pR, = (0:r, {). Since pR, # Ry, then
T #0,s0 My #0.

Then (rearranging the order of the irreducible primary decomposition), 0 = (Q1)p, N ... N (Qr)p is an
irreducible primary decomposition for (0) in M,, and (Q;), is p; Rp-primary.

Since p # R, then x # 0. Thus z ¢ Q; for some i. But px = 0 since p = (0 :g x). Thus p consists of zero
divisors on M/Q);. Since Q; is primary, then zero divisors on M/Q; are nilpotent. Thus p C p;. Therefore,
pR, C p;R,. But pR, is a maximal ideal and p; R, # 0, so pR, = p; R,. Thus p = p;.

That is, p € {p1,...,p:}. Thus {p € Spec R|p = (N :g z) for some x € M} C {p1,...p¢}.

Conversely, we wish to show each p; € {p € SpecR|p = (N :g z) for some xz € M}. We will show that
p1 € {p € Spec R|p = (N :g x) for some = € M}, and an identical argument will apply to the other p;.

We have two cases. The first case is that (R, m) is local, and p; = m. Let A = {(0:g 2)|1/(0 :g ) = m}.
We will first show that A # (.

Since our decomposition with irredundant, then Q2N...NQ; Z Q1. Thus there exists a u € Q2N...NQ\ Q1.

Also, since m = p; is the prime associated to Q1, then m = p; = \/Anng(M/Q1). Since R is Noetherian,
then m is finitely generated, so m™ C Anng M/Q; for some n. Hence, m"™u C Q.

But since m"u C Q2N ... N Q¢ as well, then m"u C Q1 N...NQ, = 0. Thus m"u =0, so m C /(0 :r ).
Since u # 0, then \/m # R, som= \/m That is, (0 :g u) € A, so A # 0, as desired.

Since R is Noetherian, then there exists a maximal element of A. Let (0 :g z) be such an element. We
wish to show that (0 :g ) is prime, and that (0:g ) = m.

Suppose ab € (0 :g x) but that b € (0 :g x). Then abz = 0, but bz # 0. Also, (0 :g z) C (0 :g bx).
Thus m = /(0 :g ) C \/(0:p bz). Since bx # 0, then (0 :g bx) C R, so 1/(0:r bx) ¢ R. But since m is
maximal, and m C /(0 :g bx) C R, then m = /(0 :g bx). Thus (0 :g bz) € A. Since (0 :g =) was maximal
in A, and (0:g 2) C (0:g bx) € A, then (0:g z) = (0:5 bx). But abx =0, s0 a € (0 :g bx), so a € (0:g x).
Thus (0 :g ) is prime.

Since (0 :g ) is prime, then it is radical. That is, (0 :g ) = /(0:gx) = m. Thus p; =m € {p €
Spec R|p = (N :g x) for some « € M}. This concludes the specific case.

In the other case, R is not necessarily semi-local. However, by localizing, we get that p; R, is an associated
prime of the localized irredundant prime decompositon. Then, by the previous case, p1 Ry, = (0 : Ry, Z), for
some § € My, .

Since R is Noetherian, then p; is finitely generated. That is, p1 = (a1, ...,a,). Then for each i, - = %
so there exists an s; ¢ py such that s;a;z = 0 for i = 1,...,n. Let s = s1...5,, and note that s € p;. Then
a;(sx) =0foralli=1,...,n,s0 p1 C (0:g sz). Then p; = (0 :p sz) as s & p;.

Thus p; € {p € SpecR|p = (N :g z) for some z € M}, so {p1,..p:} = {p € SpecR|p = (N :r
x) for some x € M}, as desired. O

15 Associated Primes

15.1 Day 41 - April 25

We showed last class that, in nice cases, any primary decomposition of a specified submodule has the same
set of associated prime ideals. This gives rise to the following definition.

Definition 125. Let R be a Noetherian ring, and N C M be finitely generated R-modules. Let N =

@1 N...NQ; be an irredunant primary decomposition. For each i, let p; = \/Anng(M/Q;). Then {py,...,p+}
is the set of associated primes of N in M, or of M /N. We denote this set by Assr(M/N).

Remark 142. We proved lass class that Assg(M/N) is well-defined in this context, and that Assp(M/N) =
{(N :g z) € Spec R|z € M}.

Remark 143. Assume again that Let R be a Noetherian ring, and N C M be finitely generated R-modules.
We have the following results:
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1. Let p € Spec R. Then the following are equivalent:

(a) p € Assg(M) = Assp(M/0).

(b) p=(0:p z) for some z € M.

(c) There exists an injective R-module homomorphism R/p — M (given by 1 — z).

(d) Homp, (k(p), My) £0.

M =0 if and only if AssgM = ().

If S is a multiplicatively closed set of R, then Assg, Mg = {ps|p NS =0 and p € Spec R}.
If N c M, then AssrN C AssrM.

A S

Suppose N C M. Then N = 0 if and only if N, =0 for all p € AsspM.

Let us prove this last item.

Proof. Suppose N C M. Certainly, if N = 0, then N, = 0 for all primes p, including the ones in Assp M.
If N # 0, then there exists some p € AssgN C AssgM. But p € AssgN. Therefore, by one of the

remarks, we have that Homg, (k(p), Ny) # 0. But certainly, if N, = 0, then all homomorphisms into this

would be 0. Since this is not the case, then N, # 0. O

Proposition 107. Let R be Noetherian, and let M # 0 be a finitely generated R-module. Then the set of
zero divisors on M is the union of the associated primes. That is, ZDg(M) := {r € R|ru = 0 for some u €

M \ {0} = UpEAssR(M) p.

Proof. Let p € AssgM. Then p = (0 :g ) for some z € M. Furthermore, z # 0, since p # R. Thus pz = 0,
50 p C ZDR(M). Thus Uye s pns C ZDr(M).

Conversely, suppose r € ZDgr(M). Then ru = 0 for some v € M \ {0}. Thus r € (0 :g u). Let
A= {0 :g v)[(0:g u) C (0 :5 v) for some v # 0}. Since (0 :g u) € A, then A is nonzero. Also, R is
Noetherian, so one can choose a (0 :g v) which is maximal in A.

One can show that (0 :g v) is prime [we made an identical argument previously], so (0 :z v) € AssgM.
But since r € (0 :g v), then 7 € Uycpssp(any P- Thus ZDr(M) C Upenssp(an) P-

Thus ZDr(M) = UpGASSR(M) . O
Proposition 108. Let R be Noetherian, and let M # 0 be a finitely generated R-module. Then the radical
of the annihilator is the intersection of the associated primes. That is, v/Anng M ﬂpe Assp P

Proof. Let (0) = Q1 N ...N Q; be an irredundant primary decomposition for (0) in M. Then Anng M =
m§:1 Anng M/Q;. Thus, by elementary properties of radicals, /Anng M = ﬂle VAR M/Qi = Nycassy v P-
O

Recall that if M is a (finitely generated) R-module, then SupprM = {p € Spec R|M, # 0}. Recall also
that if M is finitely generated, then SupprM = V(Anng M).

Definition 126. Define the minimal primes of M to be the set of minimal primes in SupprM.
We use the following notation: MingM = {p € SupprM|M, = 0 for all q C p}.

Remark 144. If M is finitely generated, then MingM = {p € Spec R|p is minimal over Anng M}.

Proposition 109. Let R be a Noetherian ring, and let M be a finitely generated R-module. Then
MingM C AsspM C SupprM.

Proof. Let p € MingM. Note that p € AssgM if and only if pR, € Assr, M,. But Suppr, M, = {pR,}
since p € MingM. Thus Assp, M, = {pRp}, so p € AsspM.

Suppose now that p € AssgM. Then HoMp,(k(p), M,) # 0, so like we said above, M, # 0. That is,
p € SupprM. O
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Lemma 44. Let R be a ring, let I be an ideal, and let M be a finitely generated R-module. If IM = M,
then there exists an s € I such that (1 — s)M = 0.

Proof. Suppose p € Spec R, and that I C p. Then I, M, = M,. Since I C p, then I, C pR,, so (pR,) M, =
M,. But pR, is the unique maximal ideal in the semi-local ring R,, so by Nakayama’s Lemma, we have that
M, =0. Thus p € Anng M.

Thus I + Anng M = R [why?]. In particular, there exists s € I and ¢ € Anng M such that s +¢ = 1.
Thent=1—5s¢€ Anng M. O]

15.2 Day 42 - April 27

Recall the following Lemma, which we proved last class:

Lemma 45. Let R be a ring, and let I C R be an ideal. Llet M be a finitely generated R-module, and
suppose IM = M. Then there exists s € I such that (1 — s)M = 0.

Last class, we stated Krull’s Intersection Theorem:

Theorem 111 (Krull’s Intersection Theorem). Let R be a Noetherian ring, and let M be a finitely
generated R-module, and let I be an ideal of I. Then there exists an s € I such that (1—s)(,—, I"M) = 0.
In particular, if I C Jac(R), then 1 — s is a unit and (-, I"M = 0.

Let us now prove it.

Proof. Let N = (,~, I"M. Note that N = IM N IN. We then wish to show that there exists an s € S
such that (1 —s)N = 0.

We have two cases: either IM = M, or IM C M.

In the former case, by the Lemma there exists an s € I such that (1 — s)M = 0. Therefore

(1-8)N = (1—-s)(IMNIN)
1-s)IMN(1—s)IN

(
(
(I-s)MN((1—-s)IN
0
0

N(1—s)IN

as desired.

If IM # M, then INC N C M,so IN C M.

Therefore, there exists an irredundant primary decompostion IN = QN ...N Q; for IN in M.

Suppose for the sake of contradiction that IN # N. If not, then IN C N, so N C Q; for some I. But
IN C @, so I consists of zero divisors on M/Q;. Since Q; is primary, then I C \/Anng(M/Q;). Since I if
finitely generated, then this implies that I"™ C Anng(M/Q;) for some n.

That is, I"M C @Q; for some n. But N C I"M C @Q;, so this contradicts the fact that N C @;. Thus
IN = N.

Since R is Noetherian, and N C M, a finitely generated R-module, then by the Lemma, there exists
some s € I such that (1 — s)N = 0. O

Corollary 52. If R is Noetherian, and either a domain or a quasi-local ring, and I # R, then nnZO I =0.

Now, let us turn back to primary decompositions. Sometimes, it turns out that the primary ideals in an
irredundant primary decomposition are unique. This is summed up in the second uniqueness theorem.

Theorem 112. Let R be a Noetherian ring, and let M be a finitely-generated R-module. Let N C M. Let

N = Q1 N..NQ; be an irredundant primary decomposition, and for ¢ = 1,...,¢, let p; = \/Anng(M/Q;).
Then, if some p; € Ming(M/N), then Q; = ¢~ (Ny,), where ¢ : M — M, is the natural localization map.
Therefore, the p;-primary component for N in M is unique.
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Proof. Let S = R\ p;. Note that p; NS # 0 for j # i. Therefore, (Q;)s = Mg for all j # i.

Therefore,
Ny, = (Q1N..NQt)p,
= (Ql)m Nn...N (Qt)pi
= (Ql)pl

Note also that (Q;)p, is piRp,-primary in M,,.
We now wish to show that Q; = ¢~ ((Q:)y,)-
For simplicity, let @ = Q;, and let p = p;. Let u € Q. Then % € Qp,sou € ¢ HQp). Thus Q C ¢~ 1(Qp).
Conversely, let u € ¢~!(Qy). Then 1 = 2 for some v € Q and s ¢ p. Therefore, there exists some s" ¢ p
such that s'u = v € Q. Since s’ € p = /Anng(M/Q), then (Q :ps s') = Q. Since u € (Q :ar ') = @, then
Q = ¢ 1(Qy), as desired.
[

Theorem 113. Let R be Noetherian, and let M # 0 be a finitely generated R-module. Then there exists
a filtration of submodules of M 0 C Ny C ... C Ny = M such that N;/N,_1 = R,, for some p; € Spec R.

Proof. Choose some p; € AssgM. Then p; = (0 :g x1) for some x; € M. Therefore Rxy = R/p; (by the
isomorphism R/p — Rxy by T+ ray.

Let Ny = Rx1 C M. If Ny = M, then we are done.

If N1 % M, then choose ps € Assg(M/N). Then ps = (Ny :g @2). Let Ny = Ny + Rzo = Rxy + Ruo.
Therefore, No /N1 = RTo = R/py. We now have a chain 0 = Ny C Ny C No.

If Ny # M, we repeat. Eventually, this must terminate by the ascending chain condition. O

Here’s how we normally use this result.

Remark 145. Suppose you have a property that is true for domains, and that it is “preserved by exact
sequences” (meaning if 0 -+ A — B — C — 0 is exact, then the property is true for B whenever it is true
for A and C.)
Then, by the previous theorem, there exists a nice filtration. This gives us a bunch of exact sequences
0 — Nt — Ngy1 — Nigi1 /N — 0. Since Niy1/Nj is isomorphic to a domain by the previous theorem, our
hypothetical property is true for it. Also, by induction, the property is true for N. Thus it is true for Ny, 1.
In this way, we can induct and show that this is true for any finitely generated R-module!

Thanks for reading! Good luck in your algebra endeavors!
-Robert
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Chapter 3
Appendix

This appendix was originally my ultra-condensed notes for when I was studying for my comprehensive
exam. It consists of raw theorems and results about central concepts (almost all ring/module theory) that
I considered essential to know. You might find it useful too!

1 Projective Modules

Here R is a ring, and P is a projective left R-module.

Definition 127. An left R-module P is called projective if any of the following equivalent conditions are
met:

1 If M 5 N = 0is exact and g : P — N, then there exists some h : P — M such that fh =g.
2. Every short exact sequence of the form 0 — L — M — P — 0 splits.

3. P is the direct summand of a free module.

4. Hompg(P,—) is exact.

5. P, is free for all p € Spec R.

6. Py is free for all m € Maxspec R.

Theorem 114. If R is a polynomial ring, then every f.g. projective module over R is free.
Theorem 115. If R is a semilocal ring, then every f.g. projective module over R is free.

Theorem 116. If R is commutative, S is a multiplicatively closed subset of R, and P is a projective
R-module, then Pg is a projective Rg module.

Theorem 117. If P is a finitely generated projective R-module, then the map f : Spec R — Ny given by
q — rk P, is continuous (with respect to the discrete topology on Ny).

Theorem 118. Projective modules are flat.

Example 125. Free modules are projective. D™ is projective over M, (D) (where D is a division ring).
Summands of free modules are projective. Direct sums of projective modules are projective.
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2 Injective Modules

Here R is a ring and FE is an injective R-module.

Definition 128. A left R-module F is called injective if any of the the following equivalent conditions are
met:

1. If0— M % N is exact, and f : M — E, then there exists an H : N — E such that hg = f.

2. (Baer’s Criterion) For all left ideals I of R and f : I — E, if i : I — R is the inclusion map, there
exists an h : R — FE such that hi = f.

3. Hompg(—, E) is exact.

4. Every short exact sequence of the form 0 - F — M — N — 0 splits.

Theorem 119. Let F = H E; be a product of left R-modules. Then FE is injective if and only if each E;
il

is injective.

Theorem 120. F is divisible (i.e. for all non-zero-divisors r € R, and all u € E, there exists u’ € E such

that u = ru'.

Theorem 121. If R is a PID, then every divisible module is injective.

Example 126. Let R be a PID. Then Q(R) is injective. Q/Z is an injective Z-module. k[z]/x? is an
injective itself-module. If E is injective, and ¢ : R — S is a ring homomorphism (so S is an R-module), then
Hompg(S, E) is injective. Every module is contained in an injective hull. A direct summand of an injective
module is injective.

3 Semisimple Modules

Definition 129. A (left) R-module M is called semisimple if any of the following conditions are met:
1. Every submodule of M is a direct summand of M.
2. M is the sum of simple submodules.

3. M is the direct sum of simple submodules.

Theorem 122. Any submodule of a semisimple module is semisimple.
Theorem 123. Any nonzero semisimple module contains a simple submodule.
Theorem 124. If M is semisimple, then the following are equivalent:

1. M is Artinian.

2. M is Noetherian.

3. M is finitely generated.

4. AM(M) < 0.
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4 Semisimple Rings
Definition 130. A ring R is called semisimple if any of the following conditions are met:

1. R is semisimple as a left- or right- R-module.
2. R is the direct sum of matrix rings over division rings.
3. J(R) =0 and R is left Artinian.

4. Every R-module is projective.

Theorem 125. A module over a semisimple ring is semisimple.
Theorem 126. If R is semisimple, J(R) = 0.

Theorem 127. Let k be a field of characteristic p (possibly p = 0). Then k[G] is semisimple if and only if
|G| < 0o and p1|G].

5 Localization

Here, R is a commutative ring, and S is a multiplicatively closed subset of R containing 1, and M is an
R-module.

Theorem 128. If R is Noetherian (resp. Artinian), then so is Rg.

Theorem 129. If [ is an ideal in R, then I¢ = Rg if and only if I intersects S.
Theorem 130. Spec Rg is in natural bijection with {p € Spec R|p NS = 0} (by p — ps).
Theorem 131. Mg = M ®r Rg.

Theorem 132. Rg is a flat R-module (i.e. localizing is exact).

Theorem 133. The following are equivalent:
1. M =0.
2. My, =0 for all p € Spec R.
3. My =0 for all m € Maxspec R.

Theorem 134. If AnngM intersects S, then Mg = 0. If M is finitely generated, then the converse holds
(i.e. Mg =0 implies Anng(M) intersects S).

6 Hom Modules

Definition 131. Let F be an additive covariant functor on module categories. Then F' is left exact if,
whenever 0 - A — B — C' is exact at B, then 0 — F(A) — F(B) — F(C) is exact at F(B).
0

We say F is right exact if, whenever A — B — C' — 0 is exact at B, then F(A) — F(B) — F(C) — is
exact at F'(B).

Theorem 135. For R a ring and M a module, M ®p — is right exact.
Definition 132. We say M is flat if M ® p — is exact.
Theorem 136. For any ring R, R and Rg are both flat as R-modules.
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Theorem 137. If R is a ring, then any projective R-module is flat.
Theorem 138. The functors Hompg(M,—) and Hompg(—, N) are left exact.
Theorem 139. Hom in either coordinate distributes over direct sums.
Theorem 140. For any modules, @& A; is flat if and only if each A; is flat.

Theorem 141. (Hom — ® Adjointness/Adjunction) Let R, S, and T be rings. Let A be an R—T bimodule,
B be an S — R bimodule, and C be a left S-module. Then the map Hompg(A, Homg(B,C)) - Homg(B®p

BopA—C ) ,
1S a

A, C) (which lives in the set of T-module homomorphisms) given by ¢ — | g4 : - (a)(b)
a— ¢a

well-defined left T-module isomorphism.

7 Tensors and Flat Modules

Here R is a ring and M is an R-module.

Theorem 142. (Universal Property for Tensor Products) Let h : M x N — M ®g N be the natural map.
For any abelian group A and R-biadditive map f: M x N — A, there exists a unique group homomorphism
g:A— M ®pg N such that f = go h.

Definition 133. We say M is flat if tensoring by M is exact.
Theorem 143. If I and J are ideals, then R/T ®g R/J = R/(I + J).

Theorem 144. Tensors distribute over arbitrary direct sums.

8 Primary Decompositions

Theorem 145. Suppose N is a primary submodule of M. Then \/Anng(M/N) is prime.
Theorem 146. If I C R is primary, then v/T is prime. If /T is maximal, then I is primary.
Theorem 147. Irreducible submodules of Noetherian modules are primary.

Theorem 148. If M # 0, then every proper submodule of M has an (irredundant) primary decomposition.

Theorem 149. Primary submodules play nicely with localization: if @ C M is p-primary, then Qs = Mg
if and only if p NS # (). Also, if pN S = 0, then Qg is ps-[rimary.

Theorem 150 (First Uniqueness Theorem). If R is Noetherian, M is a finitely generated R-module,
and N is a proper submodule, then the associated primes of an irredundant primary decomposition of N are
independent of the primary decomposition, and denoted by Anng(M/N).

Theorem 151 (Second Uniqueness Theorem). If M is a finitely generated module over a Noetherian
ring, and p; € Min(M/N), then the p;-primary component of N is unique in any irredundant primary
decomposition.
Theorem 152. Let p € Spec R. Then the following are equivalent:

1. p e Asspr(M)

2. p=+/Anng(M/Q;) for some primary component ; in any primary decomposition of 0.

3. p=(0:g ) for some x € M.

4. There exists an injective R-module homomorphism R/p — M given by 1+ x.
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5. Homg, (k(p), M) # 0.

Theorem 153. We have the following other results:
1. N =0 if and only if Assr(M/N) = 0.
2. If S is multiplicatively closed, then Assp(Mg) = {ps|pNS =0 and p € Spec R}.
3. If N c M, then AssrN C AssrM.
4. If N C M, then N =0 if and only if N, =0 for all p € Assg(M).

Theorem 154 (Krull’s Intersection Theorem). Let R be a Noetherian ring, and let M be a finitely
generated R-module, and let I be an ideal of R. Then there exists an s € I such that (1—s)((I"M) = 0.

Corollary 53. If R is Noetherian and either a domain or a quasi-local ring, then for any proper ideal I,
NI"=0.

9 Integral Extensions

Theorem 155 (Lying Over Theorem). Let S be an integral extension of R. Let p € Spec R. Then there
exists q € Spec S such that p = RNq.

Theorem 156 (Incomparability Theorem). Let S be an integral extension of R. Let q1,q2 lie over p.
Then q; and qo are incomparable.

Theorem 157 (Going Up Theorem). Let S be an integral extension of R. Then one can “go up” chains
of primes.

Theorem 158 (Going Down Theorem). Let S be an integral extension of R, and assume both R and S
are domains. Suppose also that R is integrally closed in Q(R). Then one can “go down” chains of primes.

10 Techniques For 0

Theorem 159. Let M be an R-module. Then the following are equivalent:
1. M =0.
2. M, =0 for all p € SpecR.
3. My, = 0 for all m € Maxspec R.
If M is finitely generated, the following are also equivalent:
1. M =0.
2. (Nakayama’s Lemma) M = JM (where J is the Jacobson radical).
If N C M and R is Noetherian, then the following are equivalent:
1. N=0
2. Assp(M/N) =10
3. N, =0 for all p € Assr(M).
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Chapter 4

Index
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R-biadditive, dimension,
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p-primary, [125]
k-linear representation, equivalent, 2]
(Localization of a module), exact, [35} [09]
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action, [60] external direct sum,
additive, [94]
affine K-algebra, factor modules,
affine n-space over K, finite length module,
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algebraic number field, fixed subring, [I16]
algebraic set, [I14] flat, [96] [07]
algebraically dependent over F, forgetful functor, 04
algebraically independent over F, free resolution, [T05
annihilator, Frobenius bimodule structure,
arrows, [03]
Artinian, [34] Galois extension,
associated primes, [[30] Galois group,

automorphism group, general equation of degree n,

bilinear form, height

canonically split, Hermitian inner product, [75]
hom functor,

category, 03
character, )
characterist.ic7 gbgroup, }d.eal,
class function, injective, [102] @
class functions, injective resolution, [I05]
commutator, 2] inseparable closure,
commutator subgroup, [24] ?nseparable degree,
composition, 93] mtegral, _
composition series, [43] }ntegral CIOSuer,
compositum, [9] integral extension, [106
constant rank, integrally closed,
contravariant functor, [94] internal direct sum,
covariant functor, [94] invariant subring, [L16
cyclic (respectively abelian, solvable, nilpotent, irreducible,
ete.), irreducible in M, [126]
cyclotomic polynomial, irredundant primary decomposition, [12§
isomorphic,
degree, [60] [70] isomorphism of representations, [66]
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Jacobson radical,
join, [9]

left, [34]
left R-module,

left exact, 05} [07]
left primitive,

left semisimple,
length, [42] [43]

linear action,
local,

localization functor, [04]

minimal generating set, [80]
minimal over I,
minimal prime,
minimal primes, (131
morphisms,

multiple root, [f]
multiplicative, [04]
multiplicatively closed,

natural isomorphism, 100
nil,

nilpotent,

Noether normalization, [T12]
Noetherian,

norm, [T9]

normal closure,

normal extension,

objects,
opposite ring,

perfect, [6]

points, [[14]

primary decomposition, [127]
primary submodule of M,
prime, [78]

prime associated to M/N,
prime spectrum, [7§]

primitive n-th roots of unity, [

primitive n-th root of 1,
projective, [61] [134]
projective resolution, [105

proper refinement,
purely inseparable, [12]

quasi-local,

radical, 27]

rank,

refinement,
residue field,
right,

right R-module, [34]
right exact, 05} [130]
right semisimple,
ring, [33]

root tower, [26] 27]

semiprimitive, [57]
semisimple,
separable, [0]

separable closure, [9]
separable degree, [7]
separably closed, [J]
series, [42]

short exact sequence,
sign representation, 68|
simple, [3§]

simple root, [6]

solvable,

solvable by radicals,
solvable series,

split,

split short exact sequence, [35]
symmetric, [75]

tensor product,
total ring of fractions, [I03]

trace, [I9}, [70]

transcendence base,
transcendence degree,
trivial ideals,

unital,

vanishing ideal, [TT5]
von Neumann regular,

Zariski Topology,
Zariski topology, [79]

zero set of S,
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